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Abstract

This work describes the implementation of a method within density functional theory that allows to
calculate the side-jump contribution to the transverse conductivity of the anomalous Hall effect from ab
initio. Besides the Gaussian disorder model no additional assumptions are made.

The anomalous Hall effect is a very complicated phenomenon and no predictive theory that accounts for
all its contributions exists so far. Until now, previous calculations of the anomalous Hall conductivity
have mainly concentrated on the intrinsic contribution. The calculation of other contributions to the
conductivity such as the side-jump contribution is very challenging, since no information about the
impurity content and disorder type in the material considered is available from the outset.

In the present work it is explained that for a model of Gaussian disorder the side-jump contribution does
neither depend on the impurity concentration nor the scattering strength and can be calculated directly
from the electronic structure of the pure crystal alone. It is then described how the obtained quantities
can be efficiently computed by employing the Wannier-interpolation scheme.

The procedure developed in this work is applied to a wide range of ferromagnetic materials such as
elemental bece Fe, hep Co, fee Ni, and L1 FePd and FePt alloys. It turns out that the inclusion of the side-
jump contribution significantly improves upon the theoretical prediction of the anomalous Hall effect in
these materials. Furthermore, it is illustrated that the side-jump contribution shows a strong anisotropy
with respect to magnetization direction. The topological properties of the side-jump contribution in
contrast to that of the intrinsic contribution are examined as well.






Chapter 1

Introduction

T the beginning of this work it shall be explained in a few words what the anomalous Hall effect is
A and why it is such an interesting topic at all. We start with describing the empirical observations
which are meant by the term "anomalous" and give a short overview of how the understanding of the
anomalous Hall effect has evolved over time. Then we review the current state of the art of the field:
We show what others have done, both experimentally and theoretically, and explain what the intended
contributions of this work are, namely to derive a theory for the anomalous Hall effect which is in better
agreement to the observed results than the existing one.

1.1 What is the anomalous Hall effect?

From now on, we will refer to the anomalous Hall effect as AHE for brevity. The discovery of the AHE
by E. Hall in 1881 may be regarded as one of the earliest experiments in solid state physics and was a
breakthrough at that time [1]. Fig. (1.1) shows a schematic experimental setup for measuring the AHE.
The specimen is a ferromagnetic material to which some voltage is applied in the presence of an external
magnetic field H,. Due to the magnetic field the sample will be magnetized; we denote its magnetization
by M. The applied voltage is associated with a current I, and an electric field £,. However, there also
exists a transverse current j, which originates from the AHE. The ratio between the induced current j
and the electric field E is a measure of the conductivity o,

j=0oE, (1.1)
or, written in its components,

The resistivity tensor p is defined as the inverse of the conductivity tensor o:

p= o L. (1.3)

Pzy

M, b -
L ’ , Ry M3
E, /
’ Pxy;s Oxy > HZ

FIG. 1.2: Dependency of the Hall resistivity
FIG. 1.1: Experimental setup for measuring the Py on the magnitude of the external magnetic
anomalous Hall effect (AHE). field.
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200
:t o 1200 FIG. 1.3: (left) Hall resistivity in Co as a func-
“g tion of H, at various temperatures [4].
S T100°% TABLE I: Hall coefficients at room temperature
a
=200 in units of 10712 Vem/(AG) [5].
° 943K Non-ferromagnets Ferromagnets
R H RO Rl
ml ° §67°K \Y 0.82 Fe 0.28 7.22
Mn 0.84 Ni -0.46 —-6.05
o 697 °K _ _
897 Cu 0.50 | Co 0.84  0.60

NisMn -0.56 155
FesAl  0.00 470
B(kG) = CrTe -5000

The AHE shows itself as a strong signal in the off-diagonal elements of the resistivity tensor p. Already
at an early stage in the history of the AHE a number of experimental studies had revealed that for a
sample geometry as in Fig. (1.1) the off-diagonal element p,, can be decomposed into two parts [2, 3].
The first, so-called ordinary contribution depends directly on the magnetic field H, while the second,
anomalous contribution is a function of the magnetization M,:

Pzy = pgzdinary + P?;IE = RoH, + R M. (1~4)

In this equation Ry stands for the ordinary Hall coefficient and the anomalous Hall coefficient is denoted
R;. While the ordinary contribution to the resistivity is due to the Lorentz force like in non-magnetic
materials, the anomalous contribution to the resistivity arises from completely different physical mech-
anisms and is not easy to explain. Note that in ferromagnetic materials the magnetization is not a simple

function of the magnetic field and in general H and M may even point into different directions. The
dependency of the anomalous contribution pg{E

distinctive anisotropy effects.

on the magnetization direction in the sample leads to

The anomalous contribution differs from the ordinary contribution in several ways. First of all, ferro-
magnets might show a non-vanishing spontaneous magnetization even if the external magnetic field is
zero. Therefore, it holds that pr;{E = RiM, + 0if M, # 0 and for that reason one can still measure a
transverse current for the AHE if H, = 0, whereas the ordinary Hall resistivity does not exist if 1, = 0.

Second, the anomalous contribution is typically very large, i.e.:
R1 > Ry. (1.5)

In Fig. (1.2) the qualitative dependency of the Hall resistivity p,, on the magnitude of the external mag-
netic field H, is shown. On a phenomenological level such curves are easy to explain. Lets assume
that the sample is not magnetized from the outset. Without a magnetic field random magnetic domains
in the ferromagnet form and the net resistivity adds up to zero. When the magnetic field increases, the
magnetization will increase as well until a certain saturation value M, is reached. Beyond the saturation
value only the ordinary contribution Ry H to the resistivity will increase any further which becomes
noticeable as a kink in the course of p;,. According to Eq. (1.4), from the slope of p,, the ordinary Hall
coefficient Ry and from the offset the anomalous Hall coefficient R; can be determined if one extrapo-
lates from the magnetically saturated state back to zero magnetic field.
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In Fig. (1.3) the Hall resistivities in Co as a function of the external magnetic field for various temper-
atures are shown. The general course of p,, pretty much resembles that of Fig. (1.2). It can be derived
from the different slopes and offsets at different temperatures 7" that both Ry and R; have a distinctive
dependency on T'. Depending on the material and temperature Ry and R may have either sign, posi-
tive or negative. For Co the anomalous Hall coefficient R; becomes positive at 7"~ 210°K [5]. At room
temperature R is negative and its absolute value is greater than R;. However, at higher temperatures
R; becomes much larger than Rj.

In Tab. (I) the ordinary Hall constants Ry of some non-ferromagnetic materials and the Hall coefficients
Ry and R; of some ferromagnetic materials are summarized. We notice that the absolute values of Ry
are comparable in magnitude to the corresponding values of the ordinary Hall constants Ry in non-
ferromagnets, but the anomalous contribution is typically very large as stated in Eq. (1.5). Since the
resistivity is so much enhanced in ferromagnets, the AHE has also been called the extraordinary Hall
effect in the older literature.

1.2 AHE: More than 130 years of research

Shortly after the AHE was discovered in 1881 it became apparent that its underlying physical mecha-
nisms must clearly differ from the ordinary Hall effect. While the ordinary Hall effect in non-magnetic
materials can easily be explained in terms of the Lorentz force, which is proportional to the strength of
the external magnetic field H, the AHE is approximately independent of H and depends on a multitude
of material specific parameters instead. Smith and Sears assumed that p,, in ferromagnets should in
particular be a function of the magnetization M [6]. However, it were Pugh and Lippert who developed
a method to measure H and M accurately and confirmed this assumption experimentally [2, 3].

It was not before 1954 that Karplus and Luttinger calculated for the first time the order of magnitude
of pﬁyHE in their seminal work on the Hall effect in ferromagnets [7]. Their idea was that spin-orbit
interaction modifies the movement of electrons in the presence of an electric field and gives rise to the
anomalous effects. Although their notion is correct from today's point of view and leads to the so-
called intrinsic contribution of the AHE, it was not believed in their time. Especially Smit criticized that
Karplus' and Luttinger's theory neglected the effects of scattering from impurities [8]. In that regard he
argued that the momentum relaxation which is caused by scattering processes exactly compensates for
the acceleration of electrons by the electric field and the intrinsic contribution should therefore vanish.
Although his reasoning eventually turned out to be wrong, he nevertheless succeeded in deriving the

skew-scattering mechanism which he considered the primary contribution to the AHE [9].

In response to Smit's criticism Luttinger devised a rigorous quantum mechanical theory of the AHE by
expanding the conductivity in terms of the impurity scattering strength v [10]. With this approach he
recovered the intrinsic contribution, which is of order O(v"), and Smit's skew-scattering contribution,
which is of order O(v™!). His solution for the AHE conductivity also contained some additional terms
but his approach was too complicated and nontransparent so that he could not assign any physical
meaning to them. For that reason Luttinger's theory did not find wide acceptance among his compatriots
although it was utterly correct.

In search of an alternative and simpler formalism Berger found that some of the intriguing aspects of
the AHE could intuitively be explained in terms of electron wave-packets that scatter from impurities
[11]. He showed how the center of mass of a suitable wave packet experiences a small transverse dis-
placement Ar on scattering from a single impurity. In the presence of spin-orbit interaction this leads to
the so-called side-jump contribution to the AHE. Berger's theory built up on an earlier work by Adams
and Blount. Since an electric field mixes Bloch states of different bands, parts of a wave packet would
start fast oscillations if it was constructed from Bloch states of a single band alone. Adams and Blount
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TABLE II: Selection of important contributions to the field of the AHE.

Author(s) Year  Ref. | Findings

Hall 1881 [1] | Experimental discovery

Pugh and Lippert 1930 [2, 3] | Empirical relation: p,, = RoH, + R1 M.,

Karplus and Luttinger 1954 [7] | Intrinsic contribution

Smit 1955 [8,9] | Skew scattering

Luttinger 1958  [10] | Quantum theory of AHE

Berger 1970  [11] | Side-jump contribution

Onoda and Nagaosa 2002  [14] | Topological nature of AHE

Yao et al. 2004  [15] | First principles calculation of intrinsic AHE in bec Fe
Sinitsyn et al. 2007  [16] | Semiclassical theory of AHE

Kovalev et al. 2010  [17] | Side-jump contribution from the electronic structure

demonstrated that the unwanted interband mixing can be eliminated if one chooses a basis in which the
part of the Hamiltonian due to E is diagonal [12, 13].

Confusingly, the side-jump contribution shows the same parametrical dependence on the impurity scat-
tering strength v like the intrinsic contribution, i.e., it is of order O(v”). This misled Berger to the
assumption that the intrinsic contribution is "spurious” and, as a consequence, his work triggered a
persistent debate on how the skew-scattering and the side-jump contribution relate to each other.

The discovery of the Berry phase has brought fresh impetus into the discussion of the AHE [18]. The
Berry phase is a general quantum geometrical concept, which can readily be applied to the case of Bloch
electrons in a solid, see Appendix (??). At first, topological arguments were utilized in the semiclassical
theory of the AHE, which deals with the dynamics of wave packets moving in a weak electric field.
The wave packets are composed of Bloch states 1, (r) and subject to scattering due to disorder. Their
dynamics is determined by the time dependent Schrédinger equation, which can be obtained from an
effective Lagrangian with the help of a variational principle [19]. The advantage of this semiclassical
approach is that the wave packet dynamics allows for an intuitive picture of the AHE mechanisms,
although the side-jump contribution has to be treated separately [16, 20--22].

In the framework of semiclassical transport theory it is easy to distinguish between the different contri-
butions to the AHE. It was found that the conventional decomposition of the AHE into only three parts
may actually be misleading and the link to physical mechanisms should be established with care. Instead
of identifying these physical mechanisms it has been suggested that a more natural classification of the
contributions to the AHE consists in separating them according to their dependence on the Bloch-state
transport lifetime 7, which is directly proportional to the inverse of the impurity concentration n; [23].
This approach appears to be evident and is followed in the present work.

In the meantime, major theoretical efforts revealed that the Berry phase of Bloch wave-functions plays
an important role in the field of the AHE. In particular, the intrinsic contribution can be understood as a
realization of Berry-phase effects in momentum space [14, 24, 25]. Research on the topological properties
of the AHE has also stimulated interest in its calculation from ab initio. For the first time this has been
accomplished by Yao et al. [15]. Their work introduced the long sought possibility to quantitatively
compare experiment with the theory of the AHE, but only for the intrinsic contribution.

A predictive theory of the other contributions to the AHE does not exist by now because of the difficulties
in modeling impurity scattering from the outset. However, Kovalev et al. recently derived an expression
for the side-jump contribution which is fully determined by the electronic structure of the material [17].
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In the present work their ideas are applied to real materials, thereby predicting the values for the AHE
with an accuracy unprecedented so far.

In Tab. (II) some of the important contributions to the field of the AHE are summarized. Considering
the fact that only the theoretical efforts of over one century of intense research led to the understanding
of the AHE on the level we currently have, such a summary must be rather incomplete. For a thorough
review of the field of the AHE the reader is referred to the excellent article [23].

1.3 Analyzing the AHE into its parts

Conventionally, the AHE can be divided into three different contributions, namely the intrinsic contribu-
tion, the skew scattering and the side-jump contribution. These names were not chosen systematically,
they rather reflect the physical understanding of the specific mechanism assigned to each contribution
at that time. If these contributions are actually evaluated with modern Green's function techniques, they
are interpreted in a different way. For example, from today's point of view the side-jump contribution
is no longer just the sideways displacement of a wave packet scattering from impurities but it is made
up of other contributions which were not taken into account previously.

The approach followed in the present work complies with the modern point of view and separates the
contributions to the AHE according to their dependency on the impurity concentration n; [23]. The
contribution proportional to O(n?) is separated further into the intrinsic contribution and the side-jump
contribution, but we do not exclusively assign the particular physical mechanism found by Berger to the
latter. A vocabulary mismatch can easily be avoided if the potential sources of confusion are known. For
example, the intrinsic contribution should be understood as the contribution to the AHE which does not
involve scattering from impurities. In this sense the other contributions can be considered extrinsic [20].
It turns out that the side-jump contribution is an extrinsic contribution but nevertheless independent
of the impurity concentration n;. Some authors use the term intrinsic contribution in a different sense
and assign it to any contribution which is independent of n;. This slightly different definition of the
intrinsic contribution would then include the side-jump contribution as well [24]. In the following we
will provide a proper definition of the various contributions to the AHE which occur in this work, see
Fig. (1.4).

1.3.1 Skew scattering

Smit found out that the scattering of electrons from impurities becomes asymmetric if spin-orbit inter-
action is present [8, 9]. According to Fermi's golden rule, the transition probability W;_,  from a state ¢
to a state f due to a perturbation normally equals the transition probability W_,; of the inverse process.
However, spin-orbit interaction, which is contained either in the scattering potential or in the Hamil-
tonian of the unperturbed crystal alone, introduces a chiral dependence which modifies the transition
probability according to its right- or left-handedness with respect to the magnetization direction M,
ie, Wi # Wy_,; for terms of higher order than in Fermi's rule. Smit coined the term skew scattering
for these asymmetric scattering contributions to the AHE and demonstrated that the skew-scattering
mechanism is inversely proportional to the impurity concentration n;,

1
0’;1; o< o (1.6)

For our purposes we define the contribution to the AHE conductivity which satisfies o, o< n; ' as the
skew scattering contribution. Skew scattering is the dominating contribution in the super-clean regime

where the impurity concentration goes to zero. It appears that the diagonal conductivity o, is inversely
proportional to the impurity concentration n; as well, for the more dirt in the sample is, the less free will
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E a) Intrinsic contribution. The electrons obtain a ve-
locity perpendicular to the electric field, irrespec-
tive of scattering from impurities.

b) Skew scattering. Spin-orbit interaction leads to
an asymmetric scattering from impurities.

c) Side-jump contribution. To some extent it can be
understood as the sideways displacement of elec-
tron wave-packets that scatter from impurities. Al-
though it is disorder driven, the side-jump contri-
bution does not depend on the impurity concentra-
tion n;.

FIG. 1.4: lllustration of main mechanisms to the AHE according to [23].

the current flow. This means that the skew-scattering is also proportional to the diagonal conductivity
0z and the constant of proportionality is denoted by S:

1
agscl; o< —

x sk

1 = Ogy < S04y (1.7)
Ogx O —

ni

S is often called the skewness factor. The difficulty in calculating the skew-scattering contribution to
the AHE consists in creating a realistic model which describes the disorder.

1.3.2 Intrinsic contribution

The first theoretical work which dealt with the AHE in detail was published by Karplus and Luttinger in
1954 [7]. They discovered the intrinsic contribution and showed that electrons moving in the presence
of an electric field experience a deflection which is perpendicular both to the field and to the direction
of their spin. In non-ferromagnetic materials, the number of electrons with spin up is equal to the
number of electrons with spin down and the contributions from both kinds of spin cancel each other out
if no external magnetic field is applied. In ferromagnets this symmetry is broken by the spontaneous
magnetization which these materials show and the intrinsic contribution does not sum to zero.

The intrinsic contribution depends only on the electronic structure governed by the Bloch functions
Ynk(r), ie., it occurs regardless of any scattering mechanism. This characteristic feature can be ex-
plained in terms of the Berry phase of Bloch electrons. We will see later that the intrinsic contribution
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may be identified with the expression

O'intE(BQh/ dgk Im Z (¢nk|®x|¢mk>(¢mk|@y|¢nk>

v (277)3 n#Em (5nk - 5mk)2

: (1.8)

where © is the velocity operator and ¢, is the band energy. Written in this form the intrinsic contribu-
tion is directly accessible to ab initio calculations. As can be seen from inspection, it is truly independent
from the impurity concentration n;:

Ug“ o< n?. (1.9)
The intrinsic contribution has large values at avoided band crossings in the electronic structure, where
the energy values €,k and €, are close together. This divergent behavior makes its calculation compu-
tationally demanding.

1.3.3 Side jump contribution

The side-jump contribution has already been found by Smit, but it was Berger who revised this con-
cept and analyzed it thoroughly. Berger considered the scattering of an electron wave packet from a
spherical impurity in the presence of spin-orbit interaction and showed that it experiences a sideways
displacement transverse to its incident wave vector k. For a single scattering process this displacement
is extremely small. Berger argued that the accumulation of side-jumps in dilute alloys is the main reason
for the AHE [11].

However, if we actually compute the AHE with rigorous quantum mechanical techniques, we inevitably
find ourselves confronted with expressions that lack an identification in simple semiclassical terms. By
the very nature of things the AHE is rich in its possible shapes and we generally refrain from establishing
links to a semiclassical picture that might prove deceptive in the end. The semiclassical theory is certainly
more transparent, but on the other hand many aspects of the AHE cannot be treated systematically
[20]. In the light of this fact it is convenient to define the side-jump contribution as the disorder driven

contribution to the AHE which is independent of the impurity concentration n?, or equivalently
AHE sk int sj sji — AHE sk int
Opy = Oy + (a;r; + Ugy) S 0N 0L, O Oy
NN (1.10)
O(n;h) o)

This definition does not rely on the identification of the semiclassical processes that constitute the side
jump. Naturally, the physical mechanisms which lead to Berger's original side-jump contribution are

declaredly contained in o3),.

1.4 Experimental studies on the AHE

Since both the side-jump and the intrinsic contribution are independent of n;, it is difficult to separate
them in dc experiments. In this section it will be explained how the AHE can be decomposed in spite of
this difficulty, since the anomalous Hall coefficient R; turns out to depend quite sensitively on a number
of parameters, most notably on the longitudinal resistivity p,,. Experimental evidence is provided that
the scattering independent contributions to the AHE, i.e., the intrinsic and side-jump contribution, are
generally important.
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1.4.1 Scaling relations
Due to symmetry reasons, only three components of the conductivity tensor o = p~! are independent
from each other for a sample geometry as depicted in Fig. (1.1). Therefore, if the sample is spatially
uniform, we can write:

Ozz Oxy 0 Pzz  Pxy 0 1 Ozx —Ogy 0
0=|-0zy Oao ol »= ~Pzy Pxx 0 1]= 5 . 9 | %y Oz
(o= + U:cy U?gz"’”?gy
0 0 (o 0 0 Pzz 0 0 0'—zz

(1.11)

It may be expected that the off-diagonal conductivity o, is much smaller than the diagonal conductivity
Oz This permits the approximation

Oxx 1
Ofp + 0%y Oz
Oy Oy 2
pxy = 2 2 N = 2 = _O-Iypxg;' (113)
Oz + U:z:y T

The parametrical dependence of the off-diagonal resistivity p,, = pgzdinary + pIA;{E on the longitudinal

resistivity p,, is a suitable means to distinguish between the several contributions of the AHE. The
ordinary contribution pggdmary to the off-diagonal resistivity p,, is only proportional to the magnetic

field and thus independent from p,:

p;;dinary o< H,, 0(p2x) (1.14)
On the other hand, the anomalous contribution pﬁfE is proportional to the magnetization M, according
to Eq. (1.4). Since the criterion Eq. (1.13) has to be fulfilled, the relation pﬁyHE o< p2 implies that Oy
is constant. This is the case for the intrinsic and side jump contributions. If pﬁyHE o< pyy instead, this
relation implies 0,y o< 1/pys, or equivalently 0., o< 0., which is the case for the skew-scattering

mechanism:

(1.15)

AHE { O(p2,) = 04y = const., Intrinsic contribution and side jump,
pxy &< 9

O(puz) = Ouy < Oz, Skew scattering.

If the experimental measured off-diagonal resistivity p., is plottted against p,,, the exponent 3 in the
scaling relation

Py ©¢ pgw (1'16)

reveals which contribution to the AHE is important. In order to find the correct scaling behavior the
longitudinal resistivity p,, has to be varied appropriately.

1.4.2 Crossover between AHE mechanisms

Fig. (1.5) is extracted from a recent publication by Miyasato et al. where p;, and consequently o, has
been varied with temperature in the range from a few °K up to room temperature [28]. In the so-called
good metal regime, where 0, o< 10* — 105 (Qcm) ™, the conductivity o, was found to be insensitive
to 04, for Fe, Co and Ni. According to Eq. (1.15) this suggests that the intrinsic contribution and side
jump dominate in this regime. Generally, experiments in which the temperature 7" has been varied in
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order to change the resistivity p,, have the disadvantage that they do not tell whether 7" or p,, is the
significant quantity. For example, at finite 7" inelastic scattering processes caused by phonons or spin-
waves might occur which are not taken into account in the scaling relations Eq. (1.15). Besides p the
temperature might effect other parameters of the system such as the magnetization or the distribution
of states as well. However, in an earlier measurement of the anomalous Hall coefficient R; = pﬁyHE /M,
in iron by Jan and Gijsman the resistivity had also been varied by changing the temperature 7'. These
measurements have been checked by Kooi who had varied the resistivity in iron-silicon alloys Fe;_,Si,
by changing the impurity concentration z, i.., the content of Si. His overall result Ry o< plY from
Fig. (1.7) suggests that either the intrinsic contribution or the side-jump prevails in Fe, too.

All mechanisms of the AHE can be treated on an equal footing if the anomalous Hall resistivity is fitted
against the longitudinal resistivity according to

p?;{E = APz + bpigc hnd pﬁg}{E/sz = a+bpgq, (1.17)
where a and b are assumed to be constant and do not depend on temperature 7" if p,, is tuned by 7.
While the parameter a is a measure of the strength of skew-scattering contribution to the AHE, the
parameter b is a measure of the strength of the scattering independent contributions to the AHE, i.e., of
the intrinsic contribution and side jump. Fig. (1.6) shows the linear fit of the ratio pr;{E Pz against pyg
for the ferromagnetic alloys FePd and FePt. The skew-scattering contribution can be read off directly
from the offset @ while the side-jump contribution (b — ™) p,, = b p,, can be obtained from the slope
b provided that the intrinsic contribution ™ p,,, is computed from first principles techniques. Seemann
et al. adopted this approach and found that in FePt the intrinsic contribution is the dominant source of
the AHE but in FePd the side-jump contribution is of equal importance. On the other hand, the skew-
scattering seems to play only a minor role in these alloys [26].

1.4.3 Sign of AHE

The AHE has been studied most intensively in transition metals, i.e., including the ferromagnetic mate-
rials Fe, Co and Ni. The ordinary Hall coefficient R depends mainly on the density of charge carriers in
the sample and can be used as a means to distinguish between electron and hole conduction. For Fe the
number of unoccupied states in the 3d atomic orbital is larger than the number of occupied states in the
4s atomic orbital and for this reason one expects hole conduction [29]. In analogy to the ordinary Hall
effect, where the Hall constant is given by the density of charge carriers n and the elementary charge e,

11
Rpg=-—=

SR — )
ne  nle|’ (1.18)

a positive sign of the Hall coefficient Ry in ferromagnets suggests that hole conduction is dominant. This
presumption is confirmed by the fact that the sign of Ry in Fe is actually positive, see Fig. (1.8). Hence,
a negative sign of the Hall coefficient Ry suggests that electron conduction prevails. This seems to be
the case in Ni or Co. In contrast, the interpretation of the sign of R; is not clear. At low temperatures
a highly nonlinear behavior of R; can be observed, even going through a sign change as in the case of
Co, see Fig. (1.9). This phenomenon has been lacking a satisfactory explanation until now.

1.5 Ab initio computation of the AHE

Until recently calculations of the AHE conductivity for ferromagnetic materials such as Fe, Co and Ni
have mainly focussed on the intrinsic contribution. The practical reason for this is that no information
about the impurity potential is available from the outset and because of that scattering effects are difficult
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FIG. 1.8: (above) Temperature dependence of the 5

ordinary Hall coefficient R in Fe, Co and Ni [5].

FIG. 1.9: (left) Temperature dependence of the Ro(105°k)=- 20 ’9 -4
anomalous Hall coefficient Rg = R; in Fe, Co and R (t’ﬁ‘ﬂ) -805 17
Ni [5].

to deal with. In many materials the intrinsic contribution is the dominant contribution to the transverse
conductivity O'AHE see Tab. (III). Then it is possible to predict the AHE on the level of general trends
and signs with the intrinsic contribution alone. For example, in Fe the intrinsic contribution can be
accounted for about 75% of the total AHE conductivity. On the other hand, in materials such as FePd or
Ni one fails to describe the AHE based on the intrinsic contribution alone and a considerable deviation
from the calculated intrinsic contribution can be observed. However, some disagreement is also due to
the confusing experimental situation. For example in Ni, the complicated temperature dependence of
the AHE makes it very difficult to identify the intrinsic contribution and the values for the measured
conductivity range from —1100 S/cm at 5 °K to —637 S/cm at room temperature [30, 31].

1.5.1 Conventional approach: KKR and CPA

The conventional approach to deal with disorder in the computation of the AHE consists in using
the Korringa-Kohn-Rostoker method (KKR) in combination with the coherent potential approximation
(CPA) [32]. According to Eq. (1.7) the contribution o3 » is proportional to the longitudinal conductivity
0 zz SO that the overall conductivity can be decomposed into

AHE 1nt sj sj _ int sj
Opy  =Ogy + 0 +03, = ( y+ay)+50m. (1.19)

Eq. (1.19) yields a linear dependence of O‘AHE

implicit parameter to vary the latter.

on 0y, if the impurity concentration is regarded as an

In Fig. (1.10), the Hall conductivity Je"“ = O'AyHE mt has been calculated in the ferromagnetic alloys
Fe,Pd;_, and Ni,Pd;_, for several values of the impurlty concentration x. By extrapolation to o, = 0
the side-jump contribution in the dilute regime can then be obtained from the offset of antr for these

materials. However, such an indirect computation of the contributions to the AHE represents a sig-
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R TABLE III: Calculated 0™ compared with experimental

0 i Pd ] values for the scattering independent conductivity.
é 10- q o™ [S/cm] Exp. [S/cm] | o™ /Exp.
S L | Fe 751 [15] 1032 [34] 73%
e | Co 481 [35] 813 [36] 59%
30 |
F Ni-rich [00 1]
ot ) Co 116 [35] 150 [36] 77%
G_ (LOhm cm)-1 [100]
- FePt 818 [26] 1267 [26] 65%
. oextr — _ int
FIG. 1.10: o, = Oy Oy VS. Ogy for FePd 133 [26] 806 [26] 17%
Fe,Pd;_, and Ni,Pd;_, [33]. -
Ni 2203 [37] | —1100 = —637 [30, 31] >200%

nificant computational challenge since the exact knowledge of the disorder potential in the system is

AHE Hut precisely this information is usually not known.

necessary in order to compute Oy >

1.5.2 Novel approach: Universal side-jump contribution

Clearly the overall theoretical prediction and understanding of the AHE is not satisfactory at this point
and is in fact the motivation of the present work, namely to improve the prediction of the AHE conduc-
tivity from ab initio by taking the side-jump contribution into account. The experimental and theoretical
data presented above suggests that the side-jump contribution constitutes a significant part of the AHE,
but so far the calculation of the AHE mainly concentrated on the intrinsic contribution. Previous at-
tempts to include disorder employed either fitting procedures or extrapolation techniques but were not
capable to directly derive the side jump.

However, Kovalev et al. have recently shown that for a model of Gaussian disorder a universal side-
jump contribution to the AHE exists which can be calculated directly from the electronic structure of
the pure crystal alone [17]. It is universal in the sense that it depends neither on the impurity concentra-
tion nor the scattering strength, so that the difficulties of incorporating scattering effects into ab initio
techniques disappear. Of course, the Gaussian disorder model gives only a very rough description of
the physical scattering processes that are taking place. Nevertheless, as the present work demonstrates
the universal side-jump contribution appears to reproduce large portions of the disorder driven part
of AHE conductivity astonishingly well. Until now, calculations of the universal side-jump contribu-
tion have been performed only for simple model Hamiltonians. The present work takes the concept of
the universal side-jump contribution a step further and applies it to real ferromagnetic materials and
ferromagnetic alloys using the full-potential linearized augmented plane-wave method for electronic
structure calculations.

1.6 Outline

In Fig. (1.11) the organizing principle of the present work is shown. The content is subdivided into three
domains, namely the theory domain (Chap. 2), the computing domain (Chap. 3) and the research domain
(Chap. 4 and Chap. 5). In the theory domain the Kubo-Stfeda formula is derived which constitutes the
starting point of the calculation of the scattering independent contributions to the AHE conductivity
afterwards. These contributions are the intrinsic contribution and the universal side-jump contribution.
On the basis of their analytical properties their symmetry relations are studied that make the physical
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FIG. 1.11: Organizing principle of the present work.

understanding of these contributions easier. Other contributions like the skew-scattering mechanism
are not discussed in this work.

In the computing domain the principles of density functional theory (DFT) are explained which is the
method of choice to compute the AHE. The Jilich DFT code FLEUR is employed to provide the electronic
structure of ferromagnetic materials in the basis of Bloch functions ¢,k ). In order to reduce the com-
putational cost, a set of Wannier functions is constructed with the program Wannier90. The Wannier
functions allow for a Wannier interpolation scheme in which the Bloch Hamiltonian can be written in
terms of hopping matrices using Wannier90 and the interface between Wannier90 and FLEUR.

In the research domain the implementation of a new program to calculate the AHE conductivity and
its application to ferromagnetic materials is described. The aspects of implementation include how the
formulae from the theory domain can be evaluated in practice with the ab initio methods from the
computing domain, e.g., how the convergence of a Brillouin-zone integration can be secured, how k-
derivatives can be evaluated and how to deal with degeneracies that lead to numerical instabilities. The
topics about application include not only the results of the side-jump contribution for the ferromagnetic
materials Fe, Co, Ni, FePt and FePd and its anisotropy for different magnetization directions, but also an
analysis of the Fermi-surface properties of the side-jump contribution in comparison with the intrinsic
contribution.
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Chapter 2

Theory of the AHE

N this chapter the theory of the AHE is presented. Unless specified otherwise, the system of units is
I chosen in such a way that A = 1. We describe the impurity scattering by a scalar delta-correlated
Gaussian disorder model and show that within this model the conductivity depends neither on the im-
purity concentration nor the scattering strength. In other words, for a scalar delta-correlated Gaussian
disorder model any reference to the scattering potential cancels out in the end and allows for the cal-
culation of disorder driven contributions to the AHE conductivity from the electronic structure of the
pure system alone.

The appropriate formulae for the AHE were originally obtained in the framework of the Keldysh for-
malism [38]. The Keldysh formalism is especially applicable to a quantum mechanical system in non-
equilibrium state and is surely a perfectly valid and elegant approach to the physics of the AHE [39--41].
However, in the present work it shall be demonstrated that the same formulae can also be derived from
the somewhat more conventional linear response theory. The virtue of the linear response theory is that
it relates the conductivity of a quantum mechanical system which is not in equilibrium to its equilib-
rium current-current correlation function, which can be obtained from the familiar thermal Matsubara
Green's functions.

2.1 Definition of terms

Before we engage in the physics of the AHE it is necessary to specify which information about the system
is known and which quantities we are interested in. If the system is in equilibrium, i.e. no external fields

are present, what we know are its thermodynamic state variables V,T" and N and the quantities p, H
and pPeq:

£ « V Volume, « 1 Chemical potential,

S A% N

= « T Temperature, « H Equilibrium Hamiltonian,

= Y

& « N Particle number, * peq Equilibrium density matrix.
M 43

Let |¢,,) be an eigenstate of the Hamiltonian,

Hipn) = Bnlthn), (2.1)

which means that |¢,,) is a N-particle wave function of the many particle system. Then the equilibrium
density matrix can be defined as

Peq = an’%)(wn\’ (2.2)

17
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where the p,, are the statistical probabilities to find the state |1/,,) in the equilibrium quantum ensemble.
At temperature T the p,, are the usual Boltzmann factors exp [-3(E,, — uN)], where 5 = 1/(kgT) and
E,, is the energy eigenvalue associated with the eigenstate |1, ):

1 -8
z ’ (2.3)
Z =Tre PH-1N)

N - _ Peq =
Pn = (wn|peq|wn> =e A(En=pN)

The partition function Z is a normalization factor which serves to normalize the trace over the density
matrix to unity, Tr peq = 1. In our case the trace includes states with any number of particles. Via the
density matrix the expectation value of an operator O in equilibrium can conveniently be written as

A 1 _ _ A A
(O)eq = ~ Ze B(En ;LN,L)<%|O|¢H> = Tr PeqO. (2.4)
n
Now we adiabatically switch on a perturbation erXt(t) as the system evolves in time from ¢t = —oo,

when it is in equilibrium, to the present. In the context of the AHE the perturbation consists of a time
dependent electric field E which, according to Maxwell's equations, can be written as the time derivative
of a vector potential A and the gradient of a scalar potential ¢. The electric field will generate a time-
dependent current which is the expectation value of the current density operator J:

E Bt = B+ (1),

8

2| T = . E(r,t) = -LA(r,t) - Vo(r, 1)

g _____ - ) c ) s )

] — A
o

Z

For convenience Gaussian units are used. For the calculation of the expectation value (O); at time ¢
we need the density matrix j(¢) of the system in non-equilibrium. Although the eigenstates evolve
according to the Schrédinger equation

iOiln (1)) = H' (D)t (1)), (2.5)

the distribution of states does not change with time and is described by the same p,, as in equilibrium.
With the help of the Schrédinger equation the von Neumann equation can be derived which yields the
time evolution of the density matrix:

p(t) = 3 pn A=iH (O n (D)W (O] + iln ()N wn (D H' (1)}

= —i[H'(1). p(1)].

In the next section it will be demonstrated that p(¢) can be expressed in terms of jeq in linear response
theory. By the response (00); of an operator O we mean the change of its expectation value when the
perturbation is switched on,

(2.6)

(60):=(0) = (O)ea: = (0)r={O)eq +(0):. (2.7)

However, before we proceed we discuss the representation of the operators we need in real and recipro-
cal space. The latter representation is particularly useful for translation invariant systems. For example,
consider a function f(r,r") which has the property that it is translation invariant, i.e., which only de-
pends on the difference between its position arguments, f(r,r’) = f(r-r’). Remember the well-known
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formulae for Dirac's §-distribution and the Kronecker-¢§ [42]:

1 ik-r 1 -ik-r
GL e =aw). g [ e, (28)
k

We wish to evaluate the integral C(r) = [ 31 f(r,r’)g(x") of the function f(r,r’) with another func-
tion g(r). The function C(r) is precisely of the form of correlation functions we encounter in linear
response theory. Using Eq. (2.8), the integral C'(r) and its Fourier transform C can be calculated in the
following way:

C(I‘) _ /dBTIf( _r )g(I‘ ) _ 2 Z/dST,f ezk (r- I‘) zk' / Z kgke

kk’ k
(2.9)

- —_ikr 1 4 —i(k=k)-r
Ck:/ddre . C(I‘):§E d*r e KT fog = figi.
k’

We notice that due to the symmetry property of translation invariance C'(r) has the form of a convo-
lution integral. In Fourier space the corresponding function C is simply the product of the Fourier
transforms of f(r) and g(r).

2.1.1 Operators in real and reciprocal space

Of major importance is the Hamiltonian of the system, which is assumed to be of the form:
H'(t) = H + Heoyi (). (2.10)

At time ¢ — —oo no external fields are present and H' (—o0) = H is the Hamiltonian of the unperturbed
system in equilibrium. The part H, ext (t) of the Hamiltonian which drives the system out of equilibrium
contains all the effects of the electric field E(r,t) = —%A(r, t) — Vo(r,t). For convenience we choose
a gauge in which the scalar potential is zero, ¢ = 0. Such a choice is always possible if we redefine the
vector potential A appropriately. The constraint that the electric field shall vanish in equilibrium leads
to the following equations:

tli{n A(r,t) =0,

1. (2.11)
E(r,t) = —EA(r,t).

The electric field induces an electric current in the system. The current density is the velocity of the N

electrons in the system with charge e = —|e| at a given position r:
A e N
J(r,t) = 5Z\?i(r)6(r—f‘i)+(5(r—f'i)\7@-(r). (2.12)
i=1

If we write the current density operator in this form it can be readily seen that it is manifestly hermitian.
However, if an electric field is applied, the velocity of the i-th particle is its momentum minus the local
vector potential:

%i(r) = % (f)i - A (e )3 - r)) . (2.13)

In the presence of A the current density operator consists of two terms, the so-called paramagnetic term
J para and the diamagnetic term J4ia. The paramagnetic term is independent of the vector potential and



20 2. Theory of the AHE

usually denoted the current operator j. Time dependency enters through the diamagnetic term which
originates from A:

A

J= Jpara + Jdia)
N

Jpara(r) = Zl O(r =) +0(r = £)b;} = (x), (2.14)
. N 2
Jaia(r,t) = - Z (r,t)o(r-1;) = —%A(r,t)ﬁ(r).

In the last line the particle density operator was introduced:
N
A(r) =Y 6(r - ;). (2.15)
i=1

In the following we will need the paramagnetic part j more often in the momentum representation rather
than in the position representation. The change of basis from {|r)} to {|k)} is performed by a Fourier
transform. We stick to the usual definition

(rlk) = L e, (2.16)

Vv

where the normalization factor 1/v/V was chosen so that (r|r) = §(r—r') is normalized in the continuum
while (k'|k) = dj is normalized as a discrete set of states. The completeness relationis 1 = [ d®r|r)(r| =
Yk [k)(k|. The matrix elements we have to compute for j are

(K16 (x - #)[k) = / it / B (k) (6 (e — ) ) (k)
= / dr’ / " (K'|t")o (r —x")o(x’ - ") (" |k) (2.17)
_ <kl|r)(r|k> _ %ei(kfk').r
and accordingly

(K'[pd(r - 1) + 6(r - ¥)plk) = (k’+k)(k’|5(r—r)|k)_—(k'+k)ei<k—k’)'f. (2.18)

Let ay and alt be the corresponding creation and annihilation operators in momentum representation.
The current operator does not depend on spin and is therefore diagonal in the spin index o. In the context
of second quantization j is a single particle operator and assumes the form:

() = 2= Y S KPA(x - £) + 6(r - B)plk)al, axs

2m o Kk’
i(k-k')r T’ ke
2mV o kK’
2.19
lqra ko- ( )
va o kq k-q,0

-5 Tl
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from which the Fourier transform of j(r) can easily be identified as

4 (&
Ja= =22k -a)ay_ . (2.20)
2m 17

In the limit g — 0 the current operator is still well defined. Since the factor k is the matrix element of
the momentum operator, (k'|p|k) = kd 1/, the current operator for q = 0 can be substituted with the
velocity v = p/m:

ot~ € T
(111_1)1(1) Jg=ev= - g ka, axo- (2.21)

It can be shown by analytical mechanics and the correspondence principle that the perturbation Hex
can be written in terms of J in the following way [42]:

Ho (1) = —%/d3rj(r,t)A(r7t)
(2.22)

~ 62
= _%/d3rj(r)A(r7t) + ﬁ/dgrA(r,t)ﬁ(r)A(r,t).

For each value of r and up to linear order in A the perturbation is of the form Hey(t) = F(t)B with a
time dependent function F'(t) and an operator B which does not explicitly depend on time. This is a very
useful fact because it allows us to move time dependent factors back and forth without consideration of
commutation relations. Via Fourier transform the integral in Eq. (2.22) can be performed to yield:

~ 11

Hei () = 33 &r Y 0TI () A (1)
kk’

L (2.23)
== LIDA(D)

We can also employ Fourier transform to change from the time variable ¢ to frequency w. In the fre-
quency domain the electric field and vector potential are proportional to each other:

Ex(w) :/ dtei(w”")t/d3re_ik'rE(X,t)

1 [ .
S / dt /A (1)
€ J-co (2.24)
L i(wsin)t oo W [ st
= ——e"\ Wt Ak(t)‘_oo+— dt e Ay (t)
C C J-
w
= —Ak(w).
C

An infinitesimal small positive imaginary part  was added to the frequency in order to make the integral
converge in the limit ¢ - +o0o. For { - —oo the integrand vanishes because of the constraint that there
should be no electric field in equilibrium according to Eq. (2.11).

2.1.2 Equilibrium Hamiltonian

The Hamiltonian of the system in equilibrium should contain all the interactions of the particles with
each other and the interactions with impurities. However, our primary aim is to calculate the electric
conductivity for metallic systems. In metallic systems the free electron model is applicable, which treats
the electrons as a gas of non-interacting particles that move in the background of positively charged
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ions. This is often a very good approximation and simplifies the calculations to a great extent [42]. For
non-interacting electrons, which undergo impurity scattering, the equilibrium Hamiltonian assumes the
form

H=Hy+V, (2.25)

where Hj = Yko Ekafwakg and V is a single particle potential term. We consider the elastic scattering
of electrons from /V; identical but randomly distributed impurities at positions R ;:

N;
V=Y u(-Ryj). (2.26)
j=1

For translation invariant systems it is most natural to express V' in momentum representation:

(K[V]k) = / dr / a3 (6 )|V ey )

N.

1 (K :
== / dBr i) T Y u(r-Rj)
V j=1
LN » (2.27)
_ 9 Z dJr e—z(k -k)R; e—z(k —k)~(r—Rj)U(r _ Rj)
7=1
N; Py
STy
j=1
and with this matrix element the potential can be written as:
A A NZ - !
V-3 S = 35 3 IR ol @2
Y o kk'j=1
In summary, the system in equilibrium is described by the Hamiltonian
S S T G igR i
H=Hy+V = Z €k, Oko + Z Z Z e T ug Qe .00k (2.29)
ko o kqj=1

The equilibrium Hamiltonian H cannot be solved easily although it is only bilinear in the operators a:w
and ay,. The reason is that due to the random distribution of impurities the translation invariance of
the system is broken. However, we have to average over all the possible microscopic different impurity
configurations for practical calculations of macroscopic observables. The correct method of impurity
averaging will be explained later in this chapter. By means of impurity averaging translational invariance
will be recovered.

2.2 Linear response theory

In linear response theory one wishes to calculate the expectation value of an operator in non-equilibrium
up to the first order in the perturbational field. For our purposes the perturbation can assumed to be of
the following form:

ﬁext(t) = F(t)Ba (2.30)
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i.e,, of the same form as in Eq. (2.22) up to linear order in the perturbation A. In a preliminary step
the density matrix /() has to be expressed in terms of the equilibrium density matrix peq. This can be
achieved by changing into the Heisenberg picture of the unperturbed system:

O(t) s = 1O, (2.31)

The original operator O is allowed to depend explicitly on time. Using the von Neumann equation
Eq. (2.6) the time derivative of 5(¢)y in the Heisenberg picture is

ﬂwH=§{émmwemﬂ (232)
= L () + p(t) = ip(t) H } e
= LB () — i H(8)p(t) + i H (1) p(t) — ip(t) H } e
=i [F () B, p()]e "
=—iF()[B)m, p(t)n]- (2.33)

This equation can be integrated and then iterated to yield:
t .
p(On =pl-co)ua+ [ at' j(t)

t
=i [t (B p)n)P(E) (234)

[ee)

t
mm4/dﬂmwm%wwﬂow)

[e9)

This expression for the density matrix is exact up to the linear order in F'(t), which is satisfactory for a
weak perturbation or weak external fields. The preliminary aim to express the density matrix in terms
of peq has been accomplished by changing into the Heisenberg picture. If we now change back into the
original Schrédinger picture we obtain:

Ko P et t A .
p(t) = e_ZHtﬁeqelHt - ie_ZHt/ dt’ [B(t,)H7 ﬁeq]F(t,)elHt
. oo (2.35)
:%_dmwww4m%wwm

oo

and the expectation value of an operator Ain non-equilibrium can be calculated via
(A)=Trp(t)A

A o A / (2.36)
:<A)eq—z/_ dt’ Te A[B(t' =) 1, peq) F ().

[ee]

This is already the so-called Kubo formula for linear response, but it is not in the form it is usually
written. Using the cyclic invariance of the trace, the following identity

) (2.37)
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and the fact that poq commutes with H,

Tr AB(t' = t) g fpoq = Tt Aeiﬁ(t’_t)ée_iﬁ(t,_t)ﬁeq

e R R (2.38)
= Tre D A HEDB5 = Tr A(t —t') i Bpeq,
the expectation value from equation Eq. (2.36) can be manipulated to read
A ~ t ~ A
(A= (A)og =i [t DA~ ), Blong (1)
~oo (2.39)
(=i [ OG- ) [AG -1, BlaF ()
In the last equation the step function ©(¢ — t') was introduced,
1 fort' <t
o(-ty=1" """ (2.40)
0 fort >t.

We notice that the linear response (5 A); = (A);—(A)e, is a convolution integral in time for a perturbation
of the form Eq. (2.30). Thus, it is natural to define the following correlation function:

(AB)(t) = -iOMW([A(t) g, Bl)eq, <= (6A) = / Ca (ABY (- ) F(). (a1

Via Fourier transform the convolution integral can be written as a product like in Eq. (2.9):

(6A) (W) = (AB)(w)F(w), (242)
and accordingly

(A)(w) = {A)eq(w) + (FA)(w) = (A)eg(w) + (AB) (@) F (). (2.43)

This equation is the Kubo formula in the frequency domain. It provides the correct expectation value in
non-equilibrium up to linear order O(F").

2.2.1 Kubo formula for the conductivity

In the context of the AHE the observable of interest is the current density operator J. According to
Eq. (2.14) it can be written as

J(r,t)=j(r) - ;—iA(r,t)ﬁ(r). (2.449)

In equilibrium the net charge currentj vanishes whereas the expectation value of the density operator
7 is the electron density n:

. e? ne?
<j(rat)>eq = (j(r)>eq - %A(ratxﬁ(r))eq = _%A(rat)v
(2.45)

o0 . It A 2
(Tiea(w) = / dt / e (T (0 1)eq = - As(w).
oo me
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From the perturbation Hexs Eq. (2.23) we may consider only those terms which contain a single A since
the Kubo formula is exact just to the linear order in the perturbing field:

Floa() = =5 Do Aie () + O(A?) (240
k/

Heyi (w) is of the form Hex (w) = Yy Fir(w) Byr. Obviously the previous result Eq. (2.43) can be easily
generalized to this kind of perturbation if we carry out the replacements F' (w) - F(w), B - Bkr
and sum over the indices k'. For the calculation of the expectation value of J in momentum space we
substitute A - Jy, B - jv and F(w) - —1/(cV)A_1(w) in Eq. (2.43) and keep only terms up to linear
order in the vector potential Ay. The current operator enters twice since it is an integral part of both
the current density operator J and the perturbation Heo (w):

(Ji)(w) = ——Ak(w) - 5 S (idi Nw) A (w) + O(A?). (2.47)
&

For the evaluation of the second term we make use of the symmetry properties of the system. Because
of translational invariance the current-current correlation function depends only on the distance r — r':

LS ek i 5 )

2
V2 5

V2 Zezk (r-r") z(k’+k)r <<
kk’

(3(0)i(x")) =
(2.48)
Jidk’ >>

Due to the exponential factors this is a function of r — r’ only if k = —k’, since then any reference to the
absolute value of position r’ vanishes [42]:

(Grdir ) o< O 1er- (2.49)

Since the current-current correlation function f(r,r") = {(j(r)j(r"))) shall depend only on the distance
r — r’, the constant of proportionality in Eq. (2.49) can be directly obtained from the corresponding
expressions of the Fourier transform:

- 1 A "~
Flr) = o SRR e ort) = LS
? VX (2.50)
= fkx = <<jkjk’ ) = Vo 1 fic = Vi e (Gicdic)-
Furthermore, if we use the relation Eq. (2.24) between the vector potential A and the electric field E the
formula Eq. (2.47) for the expectation value of the current density operator becomes:

2
& .ne 1 .4
{(J1c) (W) = i —Ei(w) = — (Jid ) (@) Exc(w). (2.51)
mw w
The constant of proportionality between the electric field and the current is defined to be the conductiv-

ity:

Ja) (W) = Y. 0ap(w) Eg(w),
A L —_— (2.52)
oap(k,w) = i~ —0ap = E«ja(k)jﬁ(—k)»(w)-
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Thus, the conductivity can be directly determined from the current-current correlation function. In the
limit of a static, homogenous field one obtains the dc conductivity:

Oap = lim lim o5 (k, w). (2.53)

The two limiting processes may not be interchanged because the limit w — 0, k # 0 describes a static
but periodic electric field which would give rise to an unphysical charge build-up. In the limit k — 0 the
operatorj is well defined. In the limit w — 0 the divergent term ine?/(mw) is cancelled by an equally
divergent term from the current-current correlation function. The current-current correlation function
is commonly denoted I, 3(k, t):

Mag(k,t) = (Ja(k)js(-K))(t) = ~iO(t){[ja(k, )1, J5(~k. 0)])eq, (2.54)

and its Fourier transform is defined by

M,p(k,w) = / dt €' ,p(k, t). (2.55)

Since the dc conductivity o,z is a real quantity, it can be obtained from the current-current correlation
function via

- | o1
oa8 = Re I:Ul-’l—l’% ll(lir[l) Jag(k,w)] =-Re [}}E%) 11(15)1(1) Eﬂo‘ﬁ(k’ w)] = —3)1_1’% ll(lil(l) - ImII,g(k,w).

(2.56)

The remainder of this chapter addresses the question how II,z(k,w) and consequently the AHE con-
ductivity can be evaluated.

2.3 Correlation functions

It has been shown that for the calculation of the conductivity the current-current correlation function
is of central importance. In general, one can define two different types of correlation functions, the
so-called retarded and advanced correlation function:

CgB(t) = _i@(t) < [A(t)H7 B]?)eq;

) . 2.57
Ciip(t) = iO(-{[At) i, Bl+)eq- @37

The sign convention is as follows: If A, B are bosonic operators choose the upper sign (-), if A, B are
fermionic operators choose the lower sign (+):

c, cT, cf ce, cee, . . . fermionic operators,

cfe,cfe ecec, . .. bosonic operators,
[A,B].=[A,B]=AB-BA commutator,
[A,B],={A,B}=AB+BA anticommutator.

(2.58)

Since the expectation value (.. .)cq in the correlation functions is always meant to be taken with respect
to equilibrium the subscript ¢4 is henceforth omitted:

(A) = (A)eq. (2.59)
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From now on we measure single particle energies with respect to the chemical potential, i.e.:
X N R 1 _BH
H —- H-uN, Peq = e (2.60)

For the investigation of the analytical properties of the correlation functions it is useful to introduce the
Lehmann representation. In the Lehmann representation one uses the eigenstates {|n)} of the Hamilto-
nian H as a basis set:

A R 1 B R
Hin) = Ey|n), Pn = Peqn) = ¢ 228 Apm = (n|Alm). (2.61)

Inserting a unity matrix 1 = ), [n)(n| in the expectation value one obtains:
([A(t)m, B]s) = { ~BH jiHt j,~iHt £ e-gﬁéeimﬁe_im}

Tr
Z { ﬁEnAntmnei(En—Em)t s e_ﬁE"BnmAmnei(Em_E")t} (2.62)
nm

gm Nl

)

{Antmnei(En_Em)t + BnmAmnei(Em_En)t}
and the Fourier transform reads:

Clip(w)=-i [ "t () ([A(t) g, Bl) = i / " dt YAt g, Be)

0
pn E,-E,+w+in E,-E,+w+1in

~

0 . . A N 0 . . A
Cilp(w) =i / O[O, Bz} =1 [ dt A0, Bl-)

— 00

— E { Antmn T BnmAmn }
=L bn E,-FEn+w-i1n E,-E,+w-1in

A positive infinitesimal 7 was added to the frequency w in order to make the integrals converge in the
limit ¢ — oo for the retarded correlation function. Similarly, the positive infinitesimal 77 was subtracted
from the frequency w for the advanced correlation function in order to make the integrals converge in the
limit t > —o0. If A = B* then it can be seen from the Lehmann representation that the two correlation
functions are the complex conjugate of each other,

Cip(w) = Cip(w)". (2.64)

The retarded and advanced correlation functions at non-zero temperature are most conveniently ob-
tained in the imaginary time formalism where 7 = it. The Heisenberg picture in imaginary time is
defined as follows:

A(T)H =™ jemH (2.65)

A(7) i can always be distinguished from the ordinary Heisenberg picture A(t)z due to the imaginary
time argument. The imaginary time correlation function is defined as follows:

CAB(T) = —<T7—A(T)HB), (2.66)
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where T, is the imaginary time ordering operator:

A(T)gB  for7>0,

T, A(t)yB={""
+BA(T)y for T <0.

(2.67)

The sign change occurs whenever two fermionic operators are interchanged. Due to the symmetry
relation Cqp(7+ ) = +Cyp(7) it is sufficient to introduce a discrete Fourier transform on the interval
0<7<p:

B . 1 .
Cap(iwn) = / dr """ Cyp(T), Cap(7) = 3 > e T Cyp(iwn), (2.68)
0 n
where w,, is denoted a Matsubara frequency:

o = 2 /(3 for A, B bosonic, (2.69)

(2n+1)7/B for A, B fermionic,
and n € N. For bosons, exp (i/Swy,) = +1 while for fermions exp (iSw,,) = —1. The Fourier transform of

the imaginary time correlation function can be related to the retarded and advanced correlation functions
by using the Lehmann representation again:

1 B A S A
Cap(iwy) = —2/ dr e Tre PHHAT Ae™H™ B
0

_ __/ dr ezwn'r Z e -BEm (Em m/)'rA ot Bonim

mm/’

R Z e PEm A Brrm {ez‘wmﬁeﬁ(Em—Em,) _ 1}

mm’ m = L + iwn (2.70)
-t Z mm’Bm’rr.L {:I:e_ﬁEm' _ e—ﬁEm}
' By — By + iwn,

Amm’Bm’m
E,, — Epy +iwn,

= Z {Pm:FPm’}

— Z p { Amm' Bm'm - Brm A }
"\ Ep = Ep +iwp  Epy — By +iwp )

The Fourier transform of the imaginary time correlation function is analytic in the entire complex plane
except for the real axis where it has a number of poles. Comparing the Lehmann representation of
the imaginary time correlation function with Eq. (2.63) it can be seen that the retarded and advanced
correlation functions can be obtained from C4 g (iw) by performing the analytic continuation:

iwp >w+in =  Capliwy) - CEB(W)v (2.71)
iwp > w—in = Cap(iw,) - C4p(w). |

Usually the eigenstates {|n)} of the Hamiltonian H are not known. However, in our case it is feasible
to decompose the Hamiltonian into a part Hy which can be solved and a perturbation v,

H=Hy+V. (2.72)
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In this case the imaginary time formalism allows for a solution of the correlation function by a systematic
expansion in powers of V. For this purpose one introduces the interaction picture in imaginary time,

A Ho § ~TH
A(T) =€ Ae™ 70 (2.73)
and the time evolution operator U (7, 7"):
U(r,7') = emHo g (- H o~7'Ho (2.74)

We assume that 0 < 7 < 3. This assumption does not represent a restriction for practical calculations
because it is the only case of interest for the Fourier transform in Eq. (2.68). Inserting a factor of unity at
the appropriate places around the exponentials the correlation function can be written as a time ordered
product of the operators A,B and the time evolution operator U:

1 e a
Cap(T) = ~z Tre PHe™ A ™ B

1 ~ N A~
=——Tr  WMH 4 . 7HB (2.75)

Z e*ﬁHOeﬁHO e*‘rHO e‘rHO e*THOeTHO

1 SO " . .
=, I e PHU (B8, 7)A(T) U (7,0)B.
Accordingly, the partition function may be expressed as
Z=Tre P =Ty e_ﬁHOU(ﬂ, 0). (2.76)

It can be seen from Eq. (2.29) that in the framework of second quantization U consists of an even number
of creation and annihilation operators. Therefore no sign change occurs when we move U to the right
under the time ordering operator 7

U(B,7)A(T)U(r,0)B =T, U(B,7)U(,0)A(7) B = T,U(3,0)A(7) B. (2.77)

If we combine these expressions it is possible to reformulate the imaginary time correlation function as
an expectation value of the system without the perturbation V,

(A)o =Tr oA = — Tre P04,
A

o e—ﬁﬁo’ (2.78)
namely
Cap(r) = (U (B,AO)A(T)IBN _ <TT3(B)AA(T)1E’>07 (2.79)
(T-U(,0))o (T-5(8))o
where the S(7)-matrix is defined as
S(r) =U(7,0). (2.80)

Thus, by means of the interaction picture we expressed the imaginary time correlation function as an
expectation value (. ..)o of the non-interacting system. Eq. (2.80) can be expanded in powers of V" if we
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notice that S obeys the differential equation
0-8() = 0:U(7,0) = 0, (7M™} = 0 (Hy - F)e™ = -V (r),8(7), (2.81)
which is solved by integration and using S(0) = 1:
S(r)=1- / dr' V(') S(r'). (2.82)
0

Iteration yields:

R T R T . T1 R
S(T)Zl—/ dT1V(7'1)[+/ d7'1V(7'1)[/ dTQV(TQ)[+...
0 0 0

o 1y 7 g ) ) (2.83)
= Z / dTl---/ drn, TV (1)1 V(T0)1,
n=0 n! 0 0
which can formally be written as
S(1) = Ty exp (—/ dr’ V(T')I) . (2.84)
0
Inserting the S matrix into Eq. (2.80) the correlation functions reads:
B8 1Y) / ~ A~
T, -/ ar' V()1 A B
Cap(T) = ATre (1)iBo (2.85)

<T7—6_ fég drV(r)r )0

This expression is a very useful result. It shows that the imaginary time formalism allows for a systematic
expansion of the correlation function in powers of V.

2.3.1 Diagrammatic technique

In our case V, A and B are single particle operators of the form:

V= Z Vnmajlam, A= Z Anmalam, B= Z Bnmalam. (2.86)
nm nm

nm

When we insert these expressions into Eq. (2.85) it can be seen that we have to evaluate in the numerator
and denominator terms like (T&1(71)1 - &0 (7n)1)0, where £(7)1 = e"H0¢e7H0 and ¢ is a creation or
annihilation operator. Wick's theorem states that an expectation value of this type can be factorized into
a product of single particle correlation functions [43]:

(Tr&1 () 1 &) )0 = O (E1) P (T, (702 16 (Tin ) 1o - ATy (Tir 1) 10 (T2 ) 105

n

(2.87)

where the sum runs over all permutations P; , of the indices i, and P; , is the parity of the corresponding
permutation. Since the pairing of the £(7) is between the states of the non-interacting system, in which
the particle number is conserved, only those single particle correlation functions on the right hand side
of Eq. (2.87) are not zero which consist of a pair o< (ana;)o of creation and annihilation operators. Ac-
cording to Feynman we associate each such factor with a drawing:

~(Tran(T)1af, (7))o = o, (2.88)
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The very important linked cluster theorem states that when we apply Wick's theorem to Eq. (2.85) all the
disconnected terms in the numerator and denominator cancel each other [44]. A drawing is said to be
disconnected if it is not linked by a sequence of lines to the diagram itself. Moreover, for each diagram
of order n in the potential V there exist a number of topological identical diagrams which differ only in
the labeling of internal indices. Sorting these contributions out one can show that

S 6 B R R . A
Cap(T) = Z 1)"/0 dTl"‘/O dra TV (1)1 V(7)1 A(T) 1 B)o, (2.89)

where the dash on the sum symbol indicates that the sum runs over all topological different and con-
nected diagrams exclusively [44]. For the calculation of the current-current correlation function from
Eq. (2.54) in imaginary time the operators A and B have to be replaced with the current operator j:

o 3 8 ) ) ) )
fy(a.) = 3 (-1)" /0 dry - /0 Ar ATV (7)1 V (7) (s 7 1d5(~, 0))o. (2.90)

Besides Eq. (2.88) we need additional rules for the diagrammatical evaluation of IT,3(q, 7), namely how

to translate the current operator jq from Eq. (2.20) and the impurity potential V from Eq. (2.27). We
represent the current operator by the following vertex:

N % & +
ala) = Ja= 5 22K - )y g ok (291)

and the impurity scattering by a scattering line:

®

N;
: ; LiqR; 1
: V= Z Z Z e "oy Oy .00k (2.92)
1 g kq j=1

If we insert the second quantization form for the operators into Eq. (2.90) and employ Wick's theorem,
each term in the sum is just a product of functions of the type

Ieowor(1:7) = ~(Traxe (7)1, , () 1)o- (2.93)

The expectation value (...) is evaluated with respect to the non-interacting Hamiltonian Hy from
Eq. (2.29) which is diagonal in the basis {|ko)}. For this reason we have in momentum representation
Ikox'o' (T:T') = Gko ko (T, 7")Oky 0007 . Moreover, due to the cyclic invariance of the trace the function
Gko ko (T, 7") is only a function of the imaginary time difference 7 — 7'

gka,ka(Ta 7_/) _ _Zi Tr [e—ﬁHo e Ho akae_THO eT’Ho altge—'r’HO:I
10 . . (2.94)
- Ty [e—ﬂHoe(T—T’)Hoak o~ (T Ho T

- T ] = Boseo (7= 7").

Since gko ko (7 — 7") depends only on a single time argument its Fourier transform can be defined as in
the general case Eq. (2.68):

ko, ka(T T Z eilwn(q— i )gka ko(wn) ko, ka(wn) / dr elwnTgko kcr(T) (2 95)

iwn,

Remember that the difference w,, — wy, of even or odd frequencies is always a bosonic frequency, hence
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exp[i(wn — wm)B] = 1 and the integrals over the internal time variables 7; in Eq. (2.90) lead to a
Kronecker-¢:

1 /ﬁ o 1] o 1
- dr ez(wn Wm )T _ = ez(wn wm)’r.—:|
B Jo B Z(wn - Wm)

=
(2.96)

= Oy -

7=0

Eq. (2.96) means that energy conservation is secured at every vertex in the diagram. Since elastic scatter-
ing from impurities cannot change the momentum of the particles if we take the configurational average,
momentum is also conserved in the diagram. This implies that every four momentum (q, iwy, ) entering a
diagram must also exit it. Thus, in frequency space the analogous equation of Eq. (2.90) for II,5(q, iwy,)
becomes just the sum of all topological different and connected diagrams that transfer the frequency iw,
between two current vertices Eq. (2.91) and include any number of scattering events Eq. (2.92):

For clarity only the first diagram was labelled fully. The wiggly lines are only graphical tools that sym-
bolize the external frequencies which are not summed over when evaluating the diagram.

2.3.2 Green's functions

The equilibrium Green's functions are defined as the single particle correlation functions

G(r) = (Trawe (T may, ),  Go(r) = ~(Traxs(T)1a; o (2.98)

The Green's functions are very important quantities which we need to compute when we evaluate cor-
relation functions using diagrammatic techniques. For example, the non-interacting or free Green's
function Go(7) is just the sort of correlation function we encountered in the current-current correla-
tion function above, Go(7) = gko ko (7). Since we work with fermions, the creation and annihilation
operators obey anti-commutation relations:

{a/kO') alt’o’} = 6kk'500'7 {akaa ak’o’} =0, {a'lt(ﬁ al'(lor} =0. (2.99)

Even in our simple model of non-interacting electrons in an impurity potential G(7) is too difficult to
compute. Consider the time derivative of the operator ay, (7):

Oraxe(T)H = 07 (BTHakaefTH) = BTH[I:L akcr]efTH = [H,ax,](T)m- (2.100)

Differentiating the single particle correlation function with respect to 7 and using the the fact that the
derivative of the step function is the j-function yields the so-called equation of motion:

0:G(7) = =0, [O(r) oo (T) ) = ©(-7){af, o (7)) (2.101)

= ~0(T)awoay,, +a)_axo) — (Tr[H, ax, (T mra) ).
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If we evaluate the commutator [f] , ko | (7) g we will just generate another Green's function. However,
Eq. (2.101) can be used to calculate Gp(7) which is obtained from the Hamiltonian Hy = ), €ka£0_ak0.
Using the identity

[AB, (= ABC+ ACB - ACB - CAB = A{B,C} - (4,0} B (2.102)

and the commutation relations Eq. (2.99) the commutator [ﬁo, (ko] = —€xayk is easy to evaluate and
the equation of motion for Go(7) becomes

0:Go(7) ==6(7) —exGo(1) < —iw,Go(iwy) = -1 -exGo(iwy). (2.103)
According to Eq. (2.71) the non-interacting retarded and advanced Green's function can be obtained from
Go(iwy, ) via analytic continuation:

) 1
Go(zwn) = ﬁ

Wn —

1

. 2.104
— ek £ ( )

R/A
= G, / (w) =
w
Due to Wick's theorem any correlation function is equal to a sum of products of single particle correlation
functions G (7). The corresponding building blocks in the frequency domain are G (iw).

2.4 Impurity averaging

We have already found out that the elastic scattering of electrons from N; impurities at randomly dis-
tributed positions R; can be modeled by the potential Eq. (2.27):

N; )
K|VIk) =V (k' -k), V(q)=), e iy, (2.105)
j=1

We have to average over all possible positions of the impurities which are supposed to be uniformly
distributed over the entire system. This averaging procedure is denoted the configurational average and
will be indicated by an index (. ..).. Any contribution to the Green's function of n-th order in V contains
n scattering events, but the scatterers need not necessarily be on n different scattering sites. All possible
ways to scatter on p different impurities have to be considered where p is any number in the interval
1 < p < n. The first order contribution is evaluated easily since we have only p = 1. For macroscopic
systems the sum over impurity positions R; becomes the position average over the entire volume of the
sample,

N, 1 Ny
(Zl elq'Rj> = v /dst Zl 671q'Rj = Nz‘(sqp. (2.106)
J= J=

c

The factor q-¢ means that the sum is zero unless q = 0. Next we consider n = 2. If p = 1 the configu-
rational average is the same as for n = 1 but for p = 2 we have to take into account that two different
impurities cannot occupy the same impurity site. Hence, if the first impurity occupies any of the V;
impurity sites the second impurity can only occupy one one of the /V; — 1 available sites:

(Z e—iq1~Ri—iC12~Rj> = <Z e—i(q1+qz)'Rj> + <Z e‘iql'Ri_ti'Rj>
ij c i=j ¢ Vi# ¢ (2107)
= Nibq,+q,=0 + Ni(Ni = 1)dq, 004,.0-
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However, since N; > 1 we can write N;(N;—1) » N?. The general result of the configurational averaging
procedure of the n-th order term can shown to be [45]

3" q;-R;. " AT 2 3
Z e t2.5-19; j ~ NZ 52.;1 + N’L (52(1162012 + NZ 52(11 52(12(52013 +..., (2108)

1150y0n c

where we have to make all possible combinations of distributing the g-indices among the products of
delta functions 0y _. For a Gaussian disorder model the single impurity potential is assumed to be short
ranged and of the form v(r) = v9 0(r). The Fourier transform of this potential is a constant, vq = vo/V,

so that the configurational average of the first order contribution in the scattering potential yields

(V(a))e = nivodq0- (2.109)

In this expression, the number of impurities NV; per volume V is the impurity concentration n;. We will
see below that (V' (q)). can be absorbed into the Hamiltonian and results in a simple shift of the energy
levels. The first non trivial approximation stems from the second order contribution:

(V(a;)V(gs))e = n? US 0qy,00q,,0 + Mi v% Oqy +4,,0- (2.110)

2.4.1 Self-energy for Gaussian disorder

We expand the Green's function in powers of 14 by means of the formula Eq. (2.89) with the replacement
A = ay, and B = alt In frequency space we employ the same diagrammatic approach as reviewed
for the calculation of the current-current correlation function at the end of Sec. (2.3.1) and establish the
following additional rules:

» For each scattering event n; dq-o draw a vertex  ®,

« For each scattering amplitude vy draw a dashed line ______ ,

« For the Green's function G (iw,, ) draw a double line ~=——,

« For the free Green's function G (iw,, ) draw a single line ~—>—,
« Sum over all internal variables.

If we apply these rules to all the terms in the expansion of G(iwy) we end up with the following dia-
grammatic series:

® ® ® ®
= + : + : : + /I \\
> —_— — 1 3 1 3 — L 3\ 3
(2.111)
@ @ @ @ n '®‘ '()ID\
1 1 1 1 [ ,’®‘\ ,’ 1 ‘\
+ 1 1 1 + 1 [ + ’ ] \ + ’ ' N + ..

All the infinitely many irreducible diagrams, i. e. those which have the G lines removed at both ends
and do not separate into two diagrams by cutting a single Gy line, can be grouped into the so-called
self-energy diagram ¥ (iwy) = X2, 23 (iw, ):

@ @ /®\ /@\
@ B : + ’: \\ + SN + . : \ RIEEE (2112)
| ‘_>_‘ ’ A ’ AY
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By virtue of the self-energy the series Eq. (2.111) can be recast into a closed form. First we collect all the
terms of the form Gy XY Gy, then all the terms Go X Gy X9 Gy and so on. All combinations of indices
1,7, ... have to be considered [46]:

G = Go + GoEGO + GOEGOEGO +...= GU + GOE [Go + GOZGO + .. :|

(2.113)
= G() + GoEG.

Eq. (2.113) is the so-called Dyson equation. In terms of diagrams it can be written as

. @ , (2.114)

and leads to the solution:

1 . 1
[Go(iwn)]™ = B(iwn)  iwn — e — B(iwy)

G(iwy) = (2.115)

We see that from the exact self-energy the exact Green's function may be obtained. However, in practice
it is only feasible to approximate the exact self-energy by a few diagrams from the series Eq. (2.112). The
self-energy in the lowest order approximation is a constant factor:

®
(iwy,) = E = n; V. (2.116)
The effect of this self-energy term is simply a shift of the energy levels. If we adjust our energy scale ap-

propriately the self-energy term can be absorbed into the definition of the chemical potential in Eq. (2.60),
€k = €k — Nivo, and has no consequences at all:

1 1

G(iwy) = - — - . 2.117
(iwon) iwp — (ex + Vo) dwn — €k ( )

®

We only expect non-trivial effects to occur when we go to next higher order diagram L

. 1 9 ) 1 nw%

Y(iwn) = = ) nivgGo(iw,) = = ) ————. 2.118
(iwn) V%: o Go(iwn) V%iwn—ék ( )

This approximation for the self-energy is known as the first order Born approximation.

2.5 Kubo-Streda formula

We now employ the diagrammatic technique to evaluate the current-current correlation function in
frequency space, I1,3(k, iwy, ). We have to draw all the diagrams that connect the two current vertices
up to infinite order in the scattering potential V', Eq. (2.97):

(2.119)
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A partial summation of these diagrams can be performed by replacing the free Green's functions G (iwy, )
with the full Green's functions G (iw, ) which contain all the scattering events on the upper or lower
fermion line respectively, e.g.

When we replace the free Green's functions with the full Green's functions we are left with only those
diagrams which connect the upper and lower fermion line:

. (2.121)

Next we collect the irreducible diagrams which contain all the possible ways to connect the upper and
lower part of the conductivity bubble via an impurity scattering line in a diagram denoted [J:

L L > &£ >
=® + ® + e +..
Q:D Q:D <*’®‘\> (2.122)

We notice that in terms of [] the diagrammatic series Eq. (2.121) can be recast into the form

s = + + +...

(2.123)

In the last line the so-called vertex function was introduced. By definition it fulfills the self-consistent
equation

D co 7 (2.124)

where the unperturbed vertex . is given by e(2k—q)/(2m), Eq. (2.91). However, as will be shown later,
for an inversion symmetric system the vertex correction vanishes for the Gaussian disorder model.

In the limit q — 0, the current operators become j,(q) — ed, according to Eq. (2.21) and the current-
current correlation function can therefore be written as

. 1l . RN . .
I p(iwy,) = -2 (Tr= Z 0o G (ipn)03G (ipp +iwy) | - (2.125)

iPn c
In this case the trace Tr stands for the summation over all states in the momentum space. The Green's
function G(z) is analytic for z ¢ R, but has poles along the real axis. In order to evaluate the frequency
sum we define an auxiliary function

P(z, 2 +iwy) = —€* (Tr oG (2)0G(2 +iwy)) (2.126)

C’
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FIG. 2.1: Integration contour C in the complex
plane. The parts of the contour which are par-
allel to the real axis are shifted by an infinitesi-
mal amount ¢n away from 2z = € and z = e—iwy,.
All the poles of f(z) lie on the imaginary axis.

in terms of which the current-current correlation function reads

, 1 o .

s (iwn) = 3 > P(ipn,ipp + iwn). (2.127)
P

I1,5(%) is analytic in the entire complex plane except for z = € and z = € — iw,,. To evaluate II,3(iwy,)

we consider the integral

I-= /dz f(2)P(z,z+iwyp), f(2)= L (2.128)
c

efz+1’

where f(z) is the Fermi function and the integration contour C is depicted in Fig. (2.1). We shift the
parts of the contour which are parallel to the real axis by an infinitesimal amount +in away from z = ¢
and 2z = € — iwy, a procedure which leads to branch cuts in that region. The contour C encloses all the
poles z = ip, of the Fermi function along the imaginary axis but only regions where P(z, z + iw,, ) is
analytic in z. Since the residue of f(z) is given by —1/(3, by means of the residue theorem the integral
I can be evaluated as follows:

/ dz f(2)P(z,z +iwy) = 2mi Z Res[f(2)P(z,z +iwy), ipn]
¢ 27;;’" (2.129)

=——— > P(ipp,ipn +iwy).
52

Since the integrand vanishes in the limit 2| — oo the semi-circles do not contribute to the integral if
the contour is extended over the entire complex plane. Hence, we only have to consider the branch cuts
which are shifted by an infinitesimal small distance +in away from z = € and z = € — iwy,:

de

o (iwy) = —/— Tr {f(e) [P(e+in,e +iwy) — P(e —in, e +iwy) |

o (2.130)

+f(e —iwy) [P(e —iw,e +in) — P(e —iw,e —in)] }

We have seen above that the retarded correlation function can be obtained from the imaginary time
correlation function by the analytic continuation iw,, - w + in. Since f(& —iw,) = f(¢) for bosonic
frequencies w, we get

Mo5(w) = €2 / %f(e) Tr (0, G (2) 805G (e + w) = 1o G ()05G" (e + w) (2.131)

+0o, G (e —w) 3G (e) - 1,G (e - w) 183G (€))

¢
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The dc conductivity 0,3 is a real quantity. According to Eq. (2.56) it can be calculated via

-1 1

oap = Re [hm — ag(w)] = —lim —ImII,5(w). (2.132)
w—0 w=0 w

For small frequencies I, g(w) can be expanded into a Taylor series,

w+O(Wh). (2.133)

w=0

0
I, ~ T1,5(0) + —TT,,
s(w) 5(0) + 50 s(w)

Since G*(¢) and G“ (&) are the adjoint of each other the lowest order term of TI,5(w) is entirely real
and gives no contribution to the conductivity:

IT,5(0) o / % £(2)2i T GR(2)GR(e) € R. (2.134)

On the other hand,

B
_Ha
D s(w)

_ e / 1) T (0GR () GR(s)—vaG ()05 GR(e)
-0

w=

5 5 (2.135)
A A ~ ~R R A N~ ~A
va—agG (e)0sG (5)+va—a€G (e)0sG (5))6,

where the term in brackets is real since (...)* = (...). The expression (...)/(27%) is therefore imaginary
and yields using Eq. (2.132):

2
708 = o / de £(€) Tr (0aGR(£)950-GT(2) — 9aGA (£)050-G7(e)
T
~00:G* (e)13G(e) + 1a.0:G* (e)13G™ (e)) -

(2.136)

This equation is the so-called Bastin formula, [47]. If one keeps only one half of this expression and per-
forms an integration by parts on the other half, then several terms which contain a product of advanced
and retarded Green's function cancel each other:

2
O0p = ;—V/daf(a) Tr(ﬁaGR(e)ﬁﬁﬁgGR(a) —@QGA(E)ﬁ,g(?EGR(a)
T

— 0a0-G (2)05G " (e) + 1a0-G™ (e) 095G (),
2

46 Y de f(e) Tr (va LGP (e)05GT () — D00- GA(E)’UBGR(&)
— 0G4 (e)i30-G"(2) + 1G4 (e)i30-G" (¢))
462 de 0. f(£) Tr (8, G (2)83GR(2) — 0aGA(2)05G (e)
v (2.137)
— 5,GA(e) 3G (e) + 1G (e) 153G (¢)),
- _% de f() Tr (0a0-GF()i5GR (e) - 1aGT(£)050-G (¢)

+0aG(e)i30-G* (2) - 1a0-G* ()05G* (¢)) |

-eT de 0. f(2) Tr (0GR ()05GT () + 02 G ()86 (2)),

1y [ 420:F(9) Tr( - 204G (2)05G7 (),
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Thus, the conductivity can be decomposed into three parts, [48]
OaB = O'(Ilob + aabﬁ + O'g/@. (2.138)

In the zero temperature limit, where 0. f(¢) = —=0(¢ — £), the first two contributions read:

2
€ -~ ~
7ty = =5y TG () 05G (1) e
2 (2.139)
0o = = Tr(6aG™(er)0pG  (er) + huc.)e.

47y

Jtllaﬁ and ag’ﬁ have to be evaluated at the Fermi level. The third contribution is a so-called Fermi sea

integral:

€2 e

vl e £(&) Tr(9aGP(e)050-GT (e) - 9,0-GT(e)03G (e) + h.c.).. (2.140)
™ —00

ol -
These three equations constitute the Kubo-Stfeda formula. It is a formally exact equation and allows for
a fully quantum mechanical calculation of the conductivity for the system of non-interacting particles
interacting with an impurity potential. The only approximation has been that of linear response theory
which is applicable to weak perturbing fields only. The drawback of the Kubo-Stieda formula is that it is
far from obvious to decide which parts in the decomposition Eq. (2.138) are important. Usually the part
O'(Ifﬁ is neglected [23], but we will see that for the AHE all parts have to be considered in general.

2.5.1 Weak disorder limit

For the calculation of the intrinsic- and the side jump contribution to the AHE we will consider only
those terms in the Kubo-Stfeda formula which are of the lowest order in the impurity concentration n;.
For this purpose we will need the spectral density A(w) which is defined as follows:

1

=g A =—-2Im w)=-2Im —F—=—.
A(w) 2i[GF(w) - G (w)] = 2Tm GF(w) = -21 pEp— 70y

(2.141)

In the last term of the above equation we omitted the infinitesimal in since the self-energy % (w) is
already a complex quantity. In first order Born approximation the self-energy %% (w) is proportional
to the impurity concentration n; as can be explicitly seen in Eq. (2.118). Let us write A = —Im X% for
the imaginary part of the self-energy. In the weak disorder limit where n; — 0 the imaginary part A
vanishes and the spectral density becomes a delta function:

1
w-¢ex - ReXE(w) —iIm XE(w)

A(w) = -2Im

_ 2A (2.142)
(w-ex-ReXl(w))? + A2

- 210(w - ex —Re 2 (w)) for A 0.

In the last line the real part of the self-energy can be absorbed into the definition of the energy level.
Therefore, in the weak disorder limit we can replace the difference of the advanced and retarded Green's
function with a §-function,

A(w) = i[GF(w) - GMw)] = 276(w - £1). (2.143)
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2.5.2 Eigenstate representation

The Green's function in the basis {|k)} is given by the expression Eq. (2.115),

1
GMw) = R TNt (2.144)
where ¢y is an eigenvalue of the Hamiltonian Hp. In a multi-band system each state is characterized
by an additional quantum number, the band number n. The generalization of G'(w) to such an multi-
band system in equilibrium is denoted with a subscript ¢y. At each point k in the Brillouin zone the
matrix elements of the Hamiltonian in the basis {|nk)} read [ Ho(k)]nm = (nk|Ho|mk) and the Green's
function assumes the matrix form

1

Gl (w) = :
eq(W) o~ Hy(k) ~ 5B () (2.145)
The Hamiltonian is diagonalized by an unitary matrix U which consists of eigenvectors of Hy:
€1k 0
ex = UT(k)Ho(k)U (k) = . (2.146)
0 ENk
€1k, - - -, ENk are the eigenvalues of ro(k). Any operator which is rotated into the basis of eigenstates

of Hy(k) by the matrices U and U is said to be in eigenstate representation. For example, consider the
free Green's function in eigenstate representation:

Sn
G(Ifc(w) = UTG&eq(w)U = Z m, (2.147)

where [S,,]i; = 0i;0in is a diagonal matrix in the band indices. However, unlike the Hamiltonian and

the free Green's function, an arbitrary operator will in general not assume diagonal form in eigenstate

representation. For example, we decompose the self-energy into its diagonal part Eff and its off-diagonal
R

part X7

SHw) = UTSE (w)U = 2f(w) + 2 (w). (2.148)

As usual the real part of the self-energy may be absorbed into the definition of the chemical potential,
Enk = Enk + Re Zg. Hence, only the imaginary part needs to be considered. The formula Eq. (2.118)
for the self-energy can readily be generalized to the multi-band system if we replace the free Green's

function G(If with its correspondent function G(Ifeq. Upon impurity averaging we obtain:

. nﬂ)2 nﬂ}2
Egl(w) = 1Im§3§1(w) = VO zk:ImGgeq(w) = VO ;Im [Uch(w)UT]
_mv s LR (ot pah (oot
= S —[UGF(w)UT -UGH (w)UT] (2.149)
V L2 ’ '
02
= D0 S U Tm [GR(w) ] UT.
k

The imaginary part may be calculated by means of the Dirac identity:

1
T +1n

=P(£) Fimd(x), (2.150)
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where P (%) is the principal part. If we apply Dirac's identity to Eq. (2.147) we directly obtain

2
Egl(w) = —iﬂ'nio > US UTS(w-¢e,x), ImXE q(w) = —nvay(w). (2.151)
nk

It is important to note that the matrix 7(w) does not depend on external parameters:
T 1
(W) = 35 2 USalUT0(w = ene). (2.152)
nk

Next, we define the diagonal Green's function according to

S,
(w- 5nk—zImER (w))?’

GHw) =Y o

7 w—epk —iImXE ()

O Gd (w) = Z

(2.153)

where X% = [2F],,,,. Using the relation [AB]™' = B~ A™! and the fact that U is unitary, the Green's
function in eigenstate representation can be expanded in powers of Gg:

GR(w) = UTGE (w)U = [UT (w -ﬁo(k)—zg(w))U]‘l:[w-ek-zf(w)]‘l
(@) -] =[5 @) - i@ shw)]]

- [1- GRS )] 6Hw)
=GR (W) + GE ()R (0GR (w) + ...

(2.154)

Eq. (2.154) is the Dyson equation for GZ(w). For our calculations we will consider only those contribu-
tions up to the first order in Z L (w).

2.5.3 Derivation of intrinsic contribution

For the derivation of the intrinsic contribution, we directly start from the Bastin formula Eq. (2.136) and
insert the impurity averaged Greens functions into it:

o= 3 [ de HO TG - G0 (E)
~0a0-Gy (e)is[GE () - G4 (e)]}-

For the intrinsic contribution we insert the lowest order approximation of the Green's function and rotate
the velocity operator into eigenstate representation, v, = Uv. U 5

(2.155)

Remember that the advanced and retarded Green's functions are complex conjugate of each other in
frequency space. This yields:

g?g Y Z/daf(s)2ReTr {vca (G4 (e)—Gﬁ‘(a)]ﬁCﬂ@ng(e)}

_ 26_1/ > / dz f(2)2Re Tr {@c,a(—m) S Sub(e - gnk)@cﬁaegg(g)} .

(2.157)
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Using Re(iz) = —Im 2z and Eq. (2.153) this expression can be written as:
ReTr {@C7a(—27ri) > Snd(e - snk)ﬁc’gﬁng‘(e)}

=27 ImTr {@c,a Z Sn(5(6 — 5nk)ﬁc,ﬁaaG§(5)} (2.158)

—QTFImTT{UcaZS d(e - 5"k)vcﬁz(a Emk fé (E))Q}

We keep only terms up to zero order in n;:

Ve,anVc [3‘5’

oh = -2¢”Im — ZZTr{f(énk)—} (2.159)

k nm ( gmk)2
The trace can be evaluated as follows:
Tr Oc,0Sn0e,5Sm = ), ) (alOcalb)(BSnlc)(cloe 5|d)(d] Sm|a)
a,b c,d

= > 2 {al0ealb) Gpedpn {clic,pld) daadam (2.160)
a,b c,d

= (mltc.aln)(nloc,glm)

This yields:
i m‘@c aln){(n|ic,slm)
ot = 22 Tm — f(e ’ ’ 2.161
o Zk: 7; (Enk — Emk)? (2161
For the zero temperature limit we consider the following reformulation:
- 11 (m|c.a|n)(n|Oeglm) — (m|0e gIn){(n|Ocqlm
o= 2L Ly 5 e rlealolcsb)  nleolfcalm)
k nm (Enk - gmk)
(0ol i) I
=2 2 Fen) = fEmi)] S
gr%:n " " (Enk — €mk)?

In the limit of 7" — 0 the valence band will be occupied and the conductance band is empty. Therefore,
the difference f(e,x) — f(€mx) of Fermi functions will be equal to

1,  if n e valence band and m € conductance band,
f(enk) = f(émk) ={ -1, if n € conductance band and m € valence band, (2.163)
0, else.
int

After a few manipulations we obtain the form of '™ in which it is usually written:

mﬁt - % 2 - 11 Z (feip mlﬁc,a|n><n|ﬁc,ﬂ|m) _occemp <m|®c,a|n><n|@c,ﬁ|m)}

1 occ emp <m|{;c’a|n)(n|f}c7g|m> - <n|@c,a|m><m|@0ﬁ|n>

=—2e2§i§22 .

k n m (‘5nk_5mk)2

(2.164)

P (i fm) (mlic i)

1
=2¢*Tm —
‘ mV%% ; (5nk_5mk)2
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2.5.4 Derivation of side jump contribution

For the side-jump conductivity take only the Fermi surface part of the Kubo-Stfeda formula:

Tap = 5 VZ/da@ f(&?)Tr{va ng ( GRng +vaG ”BGeq%’)}

(2.165)
6 ~ A A R ~ R - R
5 %: / de 0. f(e) Re Tr {0a.G 013Gy — DaGay03G oy
Use eigenstate representation again. From the Dyson equation
Gf/A _ G?M + Gf/AEﬂAGf/A . (2.166)
consider the terms containing the self-energy once:
TaB = 5 VZ/daa f(E)ReTr{vca( Gd)vch(IfZ GR}
) (2.167)
e =
=—— ZReTr {wca Z Spé(ep — 5nk)v65Gd E 1G4 } = Y ZReTr:,
k
where
. N ~ Sm R Sm’
2=1 Ve, aSnd(eF = Enk )0
Zn:n;@/ c,aPn (er —€nk) ¢, ek — Emk — 4 Tm Eé{,m nd €nk — Em/k — 1 1Im E(}im,
(2.168)
Diagrammatically speaking, this contribution can be identified with the following diagrams:
2,
® (2.169)

Due to the special form of the S;,-matrices this expression can be simplified considerably. When evalu-
ating the trace we have to sum over matrix elements of the form

AS B Z Aza abBb] Z AiaBbj5ab5na = Aianja (2'170)
ab

and likewise

[S’VLASW’L]’L] = Z[Sn]iaAab[ Z 5za5n1Aab5b]5mb = Azg5zn5mj = Anm(smém] (2_171)
ab

We notice that the matrix S,, extracts the n-th row of a preceding matrix A and the n-th column of a
subsequent matrix B in the above expressions. For the calculation of = we have to evaluate the matrix
elements of E | between S, and S/,

[SmEiSmrLij = [Si Imms Gim S jom (2.172)

Since %%, is an off-diagonal matrix, it follows that terms with m = m’ are identical to zero and do not
give a contribution. For the calculation of the side-jump conductivity we are interested in those terms



44 2. Theory of the AHE

which are of order O(nY). Therefore, we consider in = only the case where n = m or n = m’. We will
see that in the limit n; — 0 they do not depend on disorder:

Sh R Sm
==1 @,S(S(EF_Ek)ﬁ»ﬁ ; d }
n;n c.aSn T ImE M e - e — i ImBF (2.173)
Sm R Sn |
+0 S D0aSnd(eF — nk)d '
n;ﬁb caSnd(er —en)lep Enk — Emi — 1 ImBF nd_iImZé%”

However, we want to replace the off-diagonal self-energy Efd with the full self-energy © for which
we know according to Eq. (2.148) and Eq. (2.151) that

SE=UTSEU = iU [Im2E | U = —injw§UTU. (2.174)

If we sum only over those indices with n # m we can safely replace [21, ],,,,, with [Z5],,,,, but if we let
the sum over indices 7 and m run unrestricted we have to subtract the diagonal parts [£],,,, = [£5],.,,,

d
2.175
= [ShEE (1= S0)Smlij = [Sn(1 = Sn) S Smij- 217
This yields in the limit n; - 0:
_ ~-S,Im¥E  (1-S,)S,
o= ZUCQS 5(€F Enk)vcﬂ - R ( )

i Im[>f ]nn Enk ~ Emk

(2.176)

Sn(1-5,) -ImxEs,

Enk — €mk -1 Im[Zf]m '

+ Y Ve,aSnd(ep — k) 0e 3
nm

Sy, is an idempotent matrix, i.e. 5,5, = S,,. We will see in a later chapter that the diagonal elements of
the velocity can be written as (n|0c o|n) = Ok, enk. Therefore, the conductivity reads

e? Sm
Oaf = T3 ERGTI“Z(SQSF Enk)S 8k55nk (1 S )ZZM
[70]7’1//1 m Enk ~ Emk
s, (2.177)
0
——ZReTrZé(sF enk)ﬁkaenkSanL(l—Sn) )
m €mk ~ €nk [Vc]nn
We define the so-called Berry-connection matrix as follows:
De.3Sm i D.oal 6 .l
[Aslis —ZZL] :Z-Z [ c,,@]zm mi_ [ c,ﬂ]u . (2.178)
m Emk ~ &ik m  Emk ~ ik €jk — €ik
In terms of the Berry-connection matrix we can write:
Ve, 35m Ve 35m Inj
[ZS Y S ] =iy [epSmlns din = [SnAglij
Emk ~ Enk m €mk ~ E€nk
Sm 0 SmUc.ali 0 Ve li
[i Z Mgn] =4 Z M(gm = ZZ M(sm(sim = iﬂ% (2.179)
m Enk ~ Emk ij m €nk ~ Emk m €nk ~ Emk €nk ~ &ik

=iy Mamném iy Brodinbns (o815,

m E€mk ~ Eik m Emk ~ Eik
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and the conductivity simplifies to

e? {88 k7 Oenk gt }
003 =— Y ReTrd(ep—¢, i < (1-S,)A,5, - —=85,A5(1-8, < )
’ v % (er ) 8kﬁ ['Yc]nn ( ) Okq ﬁ( ) ['Yc]nn
(2.180)
The conductivity does not contain diagonal elements of the Berry-connection matrix:
[(1 - Sn)-AozSn]ij = [Aoc]in(snj - 5in|:~’4a]nn5nj = [-Aa]ij(snj(l - 5ij)7 (2 181)
[SnAs(1=Sn)]ij = [Aglnjdin = Gin[Aglnndnj = [Apslijdin (1 - ;).

Since no non-diagonal elements occur, we can just as well set [.A, ];; = 0 and avoid the singularities that
occur in its original definition Eq. (2.178).

d-function as a gradient

Consider the constant energy surface S(e,,) for each band and the unit vector n, perpendicular to the
local surface element,

_ Vien (k)
n, = ’ka‘:n_(k)|’ (2.182)

which allows to rewrite the k—space volume element as

Vien(k)
d®k=dSn, -dk, =dS—"""2 . gk, =dS—————de, (k). 2.183
S Viken(k)] |Vien (k)| () (2189
It follows that the J-function can be expressed as a gradient:
dsS
BkS(Ep —ep(k)) = S 2.184
/ S(Er) |Vien (k)| (2189

With this notation we can write the above formulae for the conductivity like in the paper of Kovalev et
al. [17]. However, note that our expression for the side-jump is manifestly antisymmetric.

2.5.5 Vertex corrections

In this section we make up for the earlier claim that the vertex corrections vanish for an inversion
symmetric system. For that purpose we make the approximation

~®
| (2.185)

In this approximation, the correct velocity v, from the vertex diagram Eq. (2.5) can be written as the
sum of the bare velocity v, and a correction d9,:

D S @ (2.186)

B = Do + OBy, (2.187)

where the corrections consist of a series of so-called ladder diagrams:



46 2. Theory of the AHE

DD D FD-
(2.188)

As usually, the ladder diagrams can be resummed to yield:

= + e
} > > (2.189)

(2,2 = ”0 Za(z)vaa(z ) + 20 ”0 za(z)m(z )G () (2.190)

We replace the Green's functions by their eigenstate representation:

GEA -uaEAUt, gl s it (2.191)
This yields:
00 Ryrtise o » Ayt
5 = 2 UG{U (604 + 0o)UGLU
n;v
0 Kk (2.192)
lZZU i UT (000 +9a)U i A
Ve wp—wp—i[ImEH ], wp = W + [ Im ¥ mm
The only way to get a contribution which diverges like O(1/(n;v)) is for n = m:
1 1 .
wF —wp, — i[Im E(}f]nn Wp —wp +i[Im EdR]nn -
. (2.193)
~ 1 2Im[X5 |nn mo(wp —wp)
2Im[S8 ] (wp—wp)?+ [ImK]2 Im[Sf ]
therefore
5Ua Z/ 3US UT(S(UJF wn)(5va H,@)M
(2 ) n; 0['70]nn (2.194)
&k 0(en —ep)[USUT63,US,UT +US,UT 52 ] '
) Z/ (2m)? 2[e]nnnivg

Vertex corrections %, vanish for an inversion-symmetric system in the Gaussian disorder model. This
is because the inhomogenity g% changes sign when k is changed to —k and gives zero upon integration
over k. The only solution of the self-consistent equation Eq. (2.194) is then v, = 0.
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Chapter 3

ADb initio methods

E have seen that for the computation of the AHE conductivity we need at each point in the Brillouin
‘; \/ zone the eigenvalues of the part of the Hamiltonian which describes the electrons. In other
words, we need information about the electronic structure of the material. In this chapter it will be
explained how the electronic structure of a bulk system can actually be calculated from ab initio, i.e.
exclusively from the fundamental laws governing the physics of its basic constituents, the atoms. Our
method of choice is density functional theory (DFT), which over the years has become the major tool
for the calculation of ground-state properties of many-body systems. DFT usually provides the matrix
elements of some operator in terms of Bloch functions. However, we will use these Bloch functions
to construct a set of Wannier functions and employ the Wannier interpolation scheme to obtain the
electronic structure at an arbitrary point in the Brillouin zone. Thus, by means of Wannier interpolation
it is possible to calculate the AHE conductivity very accurately but at a relatively low computational
cost.

3.1 Density functional theory

3.1.1 Kohn-Sham equations

In general, the many body Hamiltonian of a metallic system consists of five parts: The kinetic energy of
the electrons and nuclei, the interaction between electrons and nuclei and the interaction of the electrons
and nuclei among themselves. The interactions are caused by Coulomb repulsion and attraction. If there
are IV electrons and M nuclei with atomic number Z in the system, the Hamiltonian reads:

N 2 M N M 2
p; 2?[6 1 23]23]6
Hy =S 2iy R ey (3.1)
° ; 2m 3 2M1 ;121 ri - RI! Z Irz - j| 2 1;1 R -Ry|

7,¢]

The corresponding wave function of the system is a function of the N + M position coordinates r for
the electrons and R for the nuclei. For real systems, the number of particles N + M is of order O(10?3)
and the Schrédinger equation becomes way too difficult to solve. However, at this point the fact that the
electrons are o< 104 times lighter than the nuclei comes in handy. We can employ the Born-Oppenheimer
approximation which states that due to the unequal masses of electrons and nuclei their motion is effec-
tively decoupled, i.e. the motion of the nuclei is very inert and in comparison with the electron coordi-
nates {r; } the nuclei coordinates { R} can be considered as stationary. In this picture the kinetic energy
of the nuclei is treated as a perturbation of the Hamiltonian for the electrons H and may be neglected
in zero order approximation. H describes the motion of interacting electrons in the static potential of
the M nuclei and the position coordinates {R;} enter only as parameters:

2
PSS et L @ L ZiZye
1 2m i:11=1|1'i‘R1| 2“|I'i‘rj| 2I¢J|R1_RJ|

1¥]

o (3.2)
=3 T+ V() + §ZW(I'171'J) +C.

i=1 i=1 1]
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For a given set of parameters {R;} a further simplification can be achieved if we try to solve for the
electron density n(r) rather than the electron wave function ¥(ry,...,ry ). This is the key idea of DFT.
Whereas the wave function depends on all the position coordinates of the NV electrons, the density does
not scale with the particle number and is a scalar function only,

n(r) = (¥ 3] 0(r - r;)|¥)
' (3.3)

:/d3r1---/d3rN\I'*(r1,...,rN)Zé(r—ri)\I'(rl,...,rN).

An important theorem by Hohenberg and Kohn states that the ground state energy of the system is a
functional of the density alone and can be obtained by minimizing the energy with respect to n(r), [49].
The energy functional E{n(r)} can be decomposed into the three parts which arise from the kinetic
energy of the electrons, their potential energy and their interaction energy:

E{n(r)} =(V|H|Y) =T{n(r)} + V{n(r)} + W{n(r)} + C. (3.4)

For a given set of parameters {R;} the interaction energy C' among the nuclei is only a constant, but it
is usually left in the energy functional to describe relaxation and structure optimization. Although the
functional of the potential energy is simply

b N -
V{n(r)}zZ(\I/|V(ri)|\I/)=/d‘5r;V(r)(\If|é(r—ri)|\P):/d‘er(r)n(r), (3.5)

the explicit dependency of the functionals T{n(r)} and W{n(r)} on the density n(r) is not known. For
the functional of the potential energy W {n(r)} the usual approach to this problem consists in separating
the so-called Hartree term Wy {n(r)} from the other quantum contributions Wy {n(r)}. The Hartree
term has the form of the classical electrostatic interaction energy of a charge distribution with density
en(r):

W{n(r)} = % D AUW (s, 1) W) = Wh{n(r)} + Wy{n(r)}

e n(r)n(r’
= 5/d3r/d3r'ﬁ+wﬂ{n(r)}.

A solution for the ground state energy can be found if we assume that the density n(r) is simultaneously
the ground state density of a hypothetic non-interacting electronic system which fulfills the Schrodinger
equation

(3.6)

(-5 7+ V) i) = cavi(e). (37)

2m

In terms of the wave functions 1;(r) of the non-interacting system the complicated expression Eq. (3.3)
for the density at position r is simply the sum of the single particle densities |1/;(r)[2,

N
n(r) = ; \wz(r)\z (3.8)

The functional of the kinetic energy becomes

1 y 3 * 2
Ts{n(r)} = “5 ; d’r; (r) V(). (3.9)
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Although the explicit dependency of the functional T5{n(r)} on the density is still not known it can
be used as a suitable ansatz for the functional of the kinetic energy in Eq. (3.4). For this purpose we
introduce the exchange-correlation functional E,{n(r)}, which contains the corrections to the Hartree
term for W{n(r)} and the corrections to the kinetic energy Ts{n(r)} for T{n(r)}:

E.{n(r)} = [T{n(r)} - Ts{n(r)}] + [W{n(r)} - WH{n(r)}] (3.10)
This leads us to the following exact equation:

1 N . 1 717 je?
E{n(r)} =- %Z; d’ro); (P)V2¢z‘(r)+/d37’V(r)n(r)+§§]ﬁ

+§/d3r/d3r' momn) ’:)_nr(.,jl) + Eyp{n(r)}.

For the ground state density E{n(r)} has to be minimized as a functional of n(r). Likewise we can
minimize with respect to the function 1), under the constraint that it should be normalized. The method
of Lagrange multipliers leads to the expression

(3.11)

Oy

N
E{n(r)} - ¢ (/d?’r\zpj\Q - 1)] = 0. (3.12)
j=1
If we perform the functional derivative and use Eq. (3.8) this leads to a differential equation for the wave
functions 1;(r) [50]:

e’ n(r
[—%W +V(r)+ /dsfr/ - r,|n(r’) + %] Pi(r) = eipi(r). (3.13)

These equations are known as the Kohn-Sham equations. It can be seen by comparison with Eq. (3.7)
that the wave functions ;(r) of the non-interacting system obey a single-particle Schrédinger equation
in the presence of the effective potential

e? n(r
Vs(r) =V (r) + /d3r'—n(r') + M

v —r| dn(r) (3.14)

The potential V;(r) contains not only the periodic potential due to the nuclei but also the interaction
effects of the electrons. For the calculation of V(r) we need the density n(r) which depends on v;(r).
Thus, to know the potential V(r) we must know the wave functions ¢;(r). Since we need the potential
Vs(r) to know the wave functions the Kohn-Sham equations have to be solved self-consistently:

+ We start from a suitable guess for the density n(r) and calculate the corresponding effective poten-
tial from Eq. (3.14). The superposition of atomic densities may provide a suitable starting density
at the very beginning of the self-consistency cycle.

« Then we solve Eq. (3.13) for the wave functions 1;(r) and energies ¢;.
« From the v;(r) we calculate a new density 7(r) = ¥, [1;(r)[*.

« If the densities n(r) and 7(r) do not coincide we set n(r) — n(r) as a new guess for the ground
state density and repeat the above steps until self-consistency is achieved. Then we know the
ground state density ng(r) = n(r) and the ground state energy F{nq(r)}.

In general, the Kohn-Sham eigenvalues ¢; and eigenstates v;(r) are not the true eigenvalues and eigen-
states of the solid but only a tool for the calculation of the density n(r). However, it is common practice
to interpret the ; as one-electron states and obtain the electronic structure from them. This is often a
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very good approximation and in fine agreement with experiment; if not, one has to go beyond standard
DFT techniques.

3.1.2 Plane-wave basis set

We have seen that within the Kohn-Sham scheme the system of interacting electrons can be mapped
onto a system of non-interacting electrons subject to the effective potential V(r). To keep the notation
simple, we drop the index :

(-5 v+ V) ) o) = ). (3.15)

In principle, this equation is exact and allows for a rigorous calculation of the ground state properties
of the system. In a crystal V' (r) is a periodic function with the same periodicity as the Bravais lattice,
i.e., for every lattice vector R we have V(r + R) = V(r). Due to the periodicity of V;(r) its Fourier
transform can be written as a sum over the set of reciprocal lattice vectors G that fulfill the equation
exp(iG-R) =1,

V(r) =% Vg,
) N | (3.16)
Vg = E/dgre_lc""r‘/(r).

We impose periodic boundary conditions on the system. The concrete choice of boundary conditions is
immaterial in the limit VV — oco. Important is the fact that any function obeying the boundary conditions
can be expanded in terms of plane waves [51],

P(r) = Zk: cxe™”. (3.17)

Inserting these expressions into Eq. (3.15) leads to the Schrédinger equation in Fourier space. The kinetic
energy part becomes

1 2 _ k2 ik-r
%V P(r) = zk: 5 ke (3.18)

and for the potential term we obtain

V(r)(r) = 22 G 0Vga = 3 3 e Vaeq a- (3.19)
G k G q

In the last term we change the summation index from q to k again so that the Schrédinger equation
becomes
k2 o o o
Z — e Z Z X Vack-g = Z cce™T. (3.20)
K 2m G k K

Finally we multiply this equation with ¢~ '* from both sides and integrate over the volume V of the
crystal, a procedure which produces a dy .+ so that the summation over the wave vectors yields the
Schrédinger equation in momentum space:

k?

—cr + Y Vock-g = eck. 3.21
5k %:ch Kk (3.21)
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For fixed k in the first Brillouin zone the set of equations for all reciprocal lattice vectors G couples
only those coefficients whose wave vectors differ by a reciprocal lattice vector. Therefore, for each k the
solution is a superposition of plane waves containing only k and the wave vectors which differ from k
by a reciprocal wave vector. For a given k the infinitely many solutions to the set of equations Eq. (3.21)
are labelled with a band index n. Putting this information back into the ansatz of the wave function ¢
we can write

Ynk(r) = %Ck—cei(k_G)'r = ™ U (r), (3.22)

with

Unk(T) = %: Cnk-ge G (3.23)

The u,k(r) are clearly periodic functions because of exp(iG - R) =1,

Ui (r+R) =Y copece "CR) = e qe O = up(r). (3.24)
G G

Since the plane wave energy is o< (k + G)? the expansion series can be truncated after a few terms. The

number of terms can be limited to the number of plane waves with energy lower than an energy cut-oft
EmaX9

(k+ G)? < Epax. (3.25)

The correct choice of Eyax is determined by the desired accuracy of the calculation. A too large energy
cut-off costs a lot of computing time while a too small energy cut-off leads to considerable errors for the
quantities we wish to compute.

3.1.3 FLAPW method

In general, the wave function 1, (r) with Bloch vector k and band index n that solves the Kohn-Sham
equation is sought of as a linear combination of suitable basis functions ¢, (k,r),

Pk (1) = D Cnm (K)dm (K, T). (3.26)

The coefficients ¢;,, uniquely determine the wave function v, (r). The expansion of the wave function
into plane waves ¢,,(k,r) = exp[i(k + G,,) - r] is one out of several possibilities to choose from. In
some respect the choice of plane waves as a basis set is the most natural one. Plane waves are orthogonal
to each other, easy to implement and using Fourier transform it is possible to work with the plane-wave
basis set in momentum space. In particular, the part of the Hamiltonian describing the kinetic energy
becomes diagonal in momentum space and can be computed very efficiently.

However, it turns out that a large number of plane waves is necessary to describe Bloch states accurately.
The electrons must have high kinetic energies in the vicinity of the nucleus in order to compensate for
the Coulomb attraction. Consequently, the wave functions oscillate rapidly in these regions and are not
smooth, i.e., terms of higher order in the plane-wave expansion have to be considered and the energy
cut-off has to be large. The sizable number of basis functions that is required makes the diagonalization
of the Hamiltonian in terms of plane waves computationally demanding for most materials.

An alternative method consists in choosing so-called linear augmented plane-waves as basis set. In this
approach the plane waves are replaced by a linear combination of radial functions and their energy
derivatives in a region near the nuclei. The boundaries where the basis functions have different repre-
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sentations are defined by spheres, which are centered at each atom site. Their radius is often chosen to
be nearly half the distance between nearest neighbor atoms, so that the spheres fill the greatest possi-
ble space that is available without overlap. The regions within the spheres are the so-called muffin-tins
(MTs), while the remaining space is the so-called interstitial region. Accordingly, the basis functions
¢m(k, ) for the expansion of the wave functions 1), assume the form

ikt Gy ). interstitial region,

b (k,T) = (3.27)

Sim [Ap (K)pr(r) + Bt (k)¢i(r) | Vi (F),  muffin-tin sphere.

In this equation Y},,, (¥) is a spherical harmonic with ¥ = r/r. The function ¢;(r) is the energy derivative
of ¢;(r) that is a solution of the radial Schrédinger equation to the energy parameter &; [52]:

RERANN S

5 ST +V(r)- 51} roi(r) =0, (3.28)

and V(r) is the radial component of the potential V' (r). The appropriate coefficients A?:n, and anrr: in
Eq. (3.27) are determined by the continuity of ¢, (k, r) and V¢, (k, r) at the boundary of the muffin-tin
sphere. This way of dealing with the expansion of the wave functions 1,y is known as the full-potential
linearized augmented plane-wave (FLAPW) method.

By common consensus the FLAPW method is regarded as the most accurate DFT method since no ap-
proximations for the wave functions or the potential are performed [53]. For the computation of the
AHE conductivity we profit from the high accuracy since the ground state properties of transition met-
als like Fe, Co and Ni depend very sensitively on small energy differences due to spin-orbit coupling and
magnetic order.

3.2 Basis sets

3.2.1 Bloch funtions

According to Eq. (3.22), in Dirac notation the Bloch functions provided by DFT can be written as the
product of a plane wave times a factor |u,) that possesses the same periodicity as the Bravais lattice,

[} = €™ [unic). (3.29)
We require the Bloch functions to be normalized with respect to the crystal volume V:

i = | i a(e) = 1. (330)
Then the Bloch functions obey the following orthogonality and completeness relations:

(ki) = OnmOiaers 1= % [Vn1e) (Pl (3.31)
It follows that at each k the periodic part of the Bloch functions is also orthogonal:

<wnk’¢mk> = <unk|umk) ; 5nm5kk = <unk|umk> = 6nm (3.32)
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However, in general we need not require the periodic part of the Bloch functions to be orthogonal at
different points in the Brillouin zone,

(Unk |t ) # Oy Onm.- (3.33)

We have seen that for an eigenstate specified by band index n and wave vector k the Kohn-Sham equation
takes the form of a single-particle Schrodinger equation which reads
p?

. . 1
Hpni) = nkltonk), H=-—+V(8)=-——V>+ V(). (3.34)
2m 2m

Instead of the equation for the |/, ) we can reformulate the equation for the |, ):
oIkt fy eik‘f"| Unic) = Enteltinic)- (3.35)

We define for every operator O(k) = ¢ KT The periodic part of the Bloch functions obeys a
Schrodinger equation with the same eigenvalues ¢, but a modified Hamiltonian H (k) which can be

recast into the form:

1

H(k) = ¢ T = e Ty (ike'™ T + oY) 1+ V(R)
. m 2 (3.36)
= kT (—erik'f + 2ike’* Ty + eik'fVQ) +V(£)= — +k-Vv+H.
2m 2m

Here the velocity is given by v = p/m = —iV/m. In the same way we obtain [13]:

R | o B . k ~ .

V(k):6 zkr_.vezkr: ikr ( ke'kT 4 ZkrV):—-FVZVkH(k). (3.37)
mi mi m

The last expression allows us to express the matrix elements of the velocity operator as matrix elements

of the gradient of the Hamiltonian:

Unm,a = <¢nk’@a’wmk) = (unk’@a(k)lumk) = (unkyvkaﬁ(k)’umk> (3-38)

We use the orthogonality of the periodic part of the Bloch functions at identical k,

Vienk = Vic{Unic[H (K)ttnic) = (k| VieH (K) [tnie) + Ente Vie(Unic|timac) (3.39)
=0
Therefore, the diagonal elements of the velocity operator in the basis {|u,x)} can be written as the
gradient of the ab initio energies €, i.e., Vnn,a = Vi, Enk-

3.2.2 Wannier functions

Bloch functions are inspired by the idea that crystal electrons can be described in terms of plane waves.
This is the nearly free electron picture. A complementary view can be obtained by taking the Fourier
transform of Bloch functions as basis set. Since the Bloch functions are periodic in the reciprocal lattice,
1nk can be written as a Fourier series with wave vectors in the direct lattice [51]:

[Whr) = TR ). (3.40)

vtk

The sum runs over a set of N vectors k. [IW,,r) is the so-called Wannier function at position R and can
be defined for every band n.
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The N vectors R are chosen distributed evenly in the Wigner-Seitz cell around R = 0, which is the most
isotropic choice possible.

Due to their similarity in form to tight binding functions one hopes that the Wannier functions are local-
ized, i.e, the overlap matrix element (W, gr|W,,,g’) of Wannier functions at neighboring lattice positions
is assumed to be small Fig. (4.3). It is easy to show that Wannier functions at different sites or with
different band indices are orthogonal to each other:

1 ik k'R’ 1 ik !/
(WarWore) = 5 32 R i) = G DB = 6mdper. (s.41)
kk’ k

The problem with Wannier functions is that the Fourier transform does not define them uniquely because
the Bloch functions are only determined up to a phase factor exp[i¢(k)], i.e., the physical properties of
the system, which are governed by the electronic structure, are invariant under a gauge transformation

k) > €20 ). (3.42)

While the transformation Eq. (3.42) preserves the electronic structure €,y = (¢nic|H|tni ), it significantly
changes the spatial spread €) of the Wannier functions which is defined as

Q= Z<Wn0|f2|wn0) - <Wn0|f'|Wn0)2- (3.43)

A further problem for the construction of Wannier functions is the necessity to deal with the mixing of
bands at band crossings or at a degeneracy. In general, for a composite set of bands they may be mixed
at each k via a transformation

[nk) = 3 U (K) [thmic)- (3.44)

If the matrix U (k) is chosen to be diagonal, the gauge transformation Eq. (3.42) can be regarded as a
special case of Eq. (3.44).

Wannier functions have not attracted much interest in practical calculations until recently when a
method was devised which minimizes their spatial spread 2. The constraint of maximal localization
eliminates the non-uniqueness of the Wannier functions and determines the matrices ¢ (k) up to a
global phase [54]. Originally, maximally localized Wannier functions could be constructed for the case
of isolated bands only, i.e., for a number of bands that are separated from the others by a finite energy
gap. However, the method was successfully generalized to the case of entangled energy bands that lie
within a specified energy window [55]. The additional input needed for the disentanglement procedure
consists in the overlap matrices (x|t k+b) of the periodic part of the Bloch functions at neighboring
points k and k + b.

In the present work a set of M maximally localized Wannier functions was constructed using the pro-
gram Wannier90 and the interface between FLEUR and Wannier90 [56, 57]. Following the approach of
Ref. [58] in the first step a energy window Ein < €p < Enax was specified which encloses the bands
of interest. Fiy is the lowest energy eigenvalue in the system and the value of Fy,ax is chosen to be
clearly above the Fermi energy level e, typically Eax ~ €p + 10 €V. The disentanglement procedure
then finds the optimally connected M -dimensional subspace in which the maximally localized Wannier
functions are finally constructed. To a certain extent the number M of Wannier functions can be chosen
arbitrarily, the only requirement being that M > Ny, where Ny is the number of states in the energy
window at position k.

The Wannier functions allow for a very efficient interpolation scheme that will be explained in the next
chapter. However, this Wannier interpolation procedure requires having well localized Wannier func-
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FIG. 3.1: Comparison of interpolated electronic structure (red) with ab initio calculation (black) for bec
Fe. Compare with [59].

tions rather than maximally localized ones. In Fig. (3.1) the interpolation of the electronic structure for
bec Fe is depicted. The energy window for disentanglement was chosen to range from the lowest energy
value up to 10 eV above the Fermi energy level. It can be seen that the interpolated values agree perfectly
well with the ab initio calculation in this window.

The great advantage of the Wannier interpolation scheme is that it does not require the full ab initio
calculation for every k-point. For Fe and Ni a set of 18 Wannier functions was constructed each, for Co
and the ferromagnetic alloys FePt and FePd the number M = 36 was chosen since there are two atoms
per unit cell. The interpolation technique is then pretty fast, because only operations on small M x M
matrices are required once the hopping matrix elements ¢,,,,(R) are known. As in Ref. [59],a 8 x 8 x 8
Monkhorst-Pack k-mesh was used for the initial ab initio calculations, because this was found to provide
the best tradeoff between interpolation accuracy and computational cost.
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Chapter 4

Implementation

N the previous chapters the formulae of the intrinsic- and side-jump contribution to the AHE con-

ductivity have been derived. In this chapter it will be explained how these formulae can actually be

evaluated using first principles techniques. Additionally, the problems concerning the convergence of
the Brillouin zone integration and degeneracies are addressed.

4.1 Required quantities

Recall that the expressions for the intrinsic- and side-jump conductivity are given by the equations

n)

)

occ. emp.

aglt 2¢ Im — ZZ Z

g € denk e
Uojﬁ = v %ReTr {5(51: — €nk) [ 81{:: ol (1-5,)A.5, - (< 5)]}

In these expressions, the indices n and m run over all bands. For the side-jump contribution, the imagi-
nary part of the self-energy is taken to be in eigenstate representation, v, = UTyU, where

(n|Oc,alm)(m|ve s

(5nk - 6mk)

(4.1)

7(w) :%ZkUSnUT(S(W_gnk)> (4.2)

U is the unitary matrix that diagonalizes the Hamiltonian,
[UTH(k)U]nm = EnkOnm, (4.3)

Sy, is a matrix that is diagonal in the band indices, [ Sy, ];; = 9;jin, the Berry connection matrix is defined
by

[Aa]y = il (4.4)

9
€jk — &ik

and [Ve.q |nm = [U T0qU ] nm are the matrix elements of the velocity operator 9 = V kaI:I in eigenstate
representation. The evaluation of these expressions requires the knowledge of the energy eigenvalues
€nk at each point k in the Brillouin zone. Since a very fine k-grid is necessary to converge the values for

o™ and 0¥, it would be very cumbersome and time consuming if a full-blown ab initio calculation had to
be performed to obtain these energy values €,x. Moreover, since the information about the connectivity
of the band structure gets lost near degeneracies or avoided crossings, it is not so clear how the required
k-derivatives can be evaluated on a discrete grid.

In this work, the Wannier interpolation scheme has been used to overcome these difficulties. By con-
struction, the Wannier functions exactly reproduce the band structure that has been calculated with
ab initio methods within a specified energy window, so that all the states in this window are properly

59
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FIG. 4.1: Coarse mesh {q} for FIG. 4.2: Dense mesh {k} for FIG. 4.3: Schematic plot of
ab initio calculation. Wannier interpolation. Wannier functions.

described. The only input needed are the matrix elements of the Hamiltonian in the basis of the Wan-
nier functions. The band energies and their derivatives with respect to k can then be evaluated at low
computational cost.

4.2 Wannier interpolation scheme

The Wannier functions allow for a very efficient interpolation scheme of matrix elements of an operator
O, evaluated on a coarse mesh of N uniformly distributed points q in the Brillouin zone Fig. (4.1),

(UnalOldmg) = (ungle ¥ O ung) = (unglO(a)lumg). (4:5)

to another point k on a much denser mesh Fig. (4.2). The starting point are the matrix elements of the
Hamiltonian in the basis of Bloch eigenstates, which are provided from first principles calculations by
FLEUR:

Hnm(q) = (quu}’"‘pqm) = (uqnlﬁ(Q)mqm) = Enqénma (4.6)

Here the electronic structure governed by the eigenvalues €, is that of a real material and not that of a
simple model Hamiltonian. Taking into account Eq. (3.44) the Wannier functions are constructed from

the Bloch like states |¢S;v) ),
W
( ) Zumn(Q)qu) (4'7)

from which the multi-band generalized Wannier functions are constructed according to Eq. (3.40),

[WaRr) = TRy (). 48
f 3 (48)

In the basis of the Bloch like states the Hamiltonian has the matrix elements
HOW (@) = ([ (@fuin)) = > Uk (@) (e H o Uomr (1) o
m/m// 4.9

= [U(a)"H(a)U(Q)]nm

The idea of Wannier interpolation is to begin with the hopping elements t,,,(R) = (Won|H|WinR),
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which are obtained from the above equation via Fourier transform,

HD(R) = £ 3 e W (q) = Ze-"qR o 1 (@)luig)
q
2 Z Z Z;, e—zq R -iq(R'-R )(WnR’|€iqf'e—iqi'ﬁeiqi'€—iqf'|WmR”>
1RR (4.10)

= Z > brerr-r oWy [HIW,m)
R/ R’I
1 N .
== Z W,/ [ HIW,, r/4R) = N( Waol HWinr) D1 = (Wyol HWyr),
RI

and then to interpolate the Hamiltonian from a point q on the ab initio mesh to an arbitrary point k via
the inverse Fourier transform :

HD (k) = %: ARH(R) = %: ¢ Ftom(R). (4.11)

The same steps can be repeated for a general operator O to obtain it in Wannier basis:

(W) (k) Zezk RO(W) (R) (4.12)

Furthermore, diagonalizing the Hamiltonian H W) (k) by finding for each k an M x M unitary matrix
U such that

H (k) = [UT () HMV () U (k) I = £ 8 (4.13)

allows for a direct calculation of the matrix elements of O in the original Bloch representation by un-
rotating with U:

O (1) = [UT 10 (kU K)| 04 (a) = (¥nglOltoma)- (4.14)

The energy values E(Ii) correspond to true eigenstates 5( ) on the ab initio mesh. Due to the spatial
localization of the Wannier functions, away from that grld the interpolation error remains extremely

small [59].

4.2.1 Interpolation of Hamiltonian

As mentioned earlier, in contrast to conventional interpolation schemes, where the information about
the connectivity of the band structure gets lost, the Wannier interpolation technique allows to recover
this information. The ingredients required are the Fourier transform of the matrix elements of the Hamil-
tonian in the basis of the Wannier functions:

Hr(zynv)(k) = Zeik'R(Wn0|ﬁ|WmR>- (4.15)
R

This is the actual form of the Hamiltonian as implemented in our approach. The matrix elements may

be conveniently computed with FLEUR. It is then an easy exercise to obtain the derivative of H,(L)’,LV) (k)
analytically,

Opo Hi (k) = 3 iRae™ (W0 HIWinR). (4.16)
R
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4.2.2 Interpolation of velocity

For the interpolation of the velocity operator, we replace the velocity in eigenstate representation with
the corresponding quantity in the basis of the eigenfunctions:

[Uc,oz]nm - [UTaaH(W) U]n H(H) (4.17)

nm,x?

where we have introduced the notation O™ = UTOW), Strictly speaking, one makes a small mis-
take, because when the velocity operator 0, = Oy, H is rotated the derivative should also act on the

k-dependent basis functions {|u,x)} and the matrix elements Uy, (k) = (u (W)|u 1) respectively. In
Ref. [59] the correct transformation was found to be
0 B, <100~ 0) A 419

where Agm)a(k) = i(u (W)|8 UEnVIZ)> However, the corrections of the velocity which are due to this
additional term are negligible small. Moreover, further approximations would be are inevitably needed

for their evaluation.

4.3 Adaptive broadening
In practical calculations, the §-function which appears in the expression for the side-jump conductivity
is replaced with a Gaussian function of nonzero width w :

1 _(e=ep)?
e s (4.19)

fe) =

2w

For a given grid spacing Ak the width of the Gaussian should be comparable with the level spacing Ae,.

In this work, an adaptive broadening scheme is employed which assigns to each state an individual
broadening width:

Oe nk
ok

85nk
ok

Aepy ~ Ak, Wpk = Cyw Ak, (4.20)

where ¢, is a constant of the order of unity. By virtue of the adaptive broadening scheme, spurious
oscillations of the calculated quantities are avoided which occur for a fixed broadening scheme whenever
the level spacing becomes larger than a preliminary specified Gaussian width [58].

As a test of the broadening schemes, in Tab. (I) the values of the side-jump conductivity in Fe with
magnetization into [001] direction are shown for several choices of the parameter w within a fixed
broadening and for c,, within an adaptive broadening scheme. It appears that a small choice of w leads
to a fast convergence when the number of k-points in the grid is increased. The adaptive broadening
scheme leads to a more uniform convergence. In particular, the values of the calculated conductivity do
not depend on the choice of ¢, for a sufficiently dense grid.

In Tab. (II) the share of the number of points in the Fermi surface on the total number of k-points in
the Brillouin zone calculated with a adaptive broadening scheme is presented. This quantity is closely
related to the density of states (DOS) at the Fermi level. Given a function f(e,k), the DOS D, (¢) is
defined via

1
9 Zk: f(gnk)

o )3/d3kf Enk) = /dsD (e)f(e). (4.21)
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TABLE I: Fixed broadening scheme with width w and adaptive broadening scheme with parameter c,,

for the calculation of the side-jump contribution in Fe [001]. Values are in S/cm.

w [eV] Cw
Grid | 0.01 0.05 0.1 0.8 1 1.2
100° | 366 371 266 277 259 247
2003 | 137 144 144 147 144 142
300 | 111 118 126 122 122 121
400% | 110 113 121 115 115 115
500 | 110 110 121 112 112 112
6003 | 110 110 120 111 111 111

TABLE II: Share of the number of points in Fermi surface on the total number of points in %

Grid | Fe [001] Ni [001] Co [001] FePd [001] FePt [001]
2003 | 1.3281 2.2922 1.2121 0.7423 0.6944
300 | 1.3289 2.2922 1.2125 0.7423 0.6947
400° | 1.3293 2.2916 1.2126 0.7423 0.6948
500% | 1.3295 2.2914 1.2127

600° | 1.3295 2.2914

If we set f(e,x) = d(€,x —€F) and sum over all bands, we get the number of states in the Fermi surface.

This number is proportional to the total density of states at the Fermi energy level:

%25(5}7 —Enk) = Z/daDn(a)é(EF —e)=> Dy(ep).
nk n n

(4.22)

It can be seen that the share of the number of points in the Fermi surface converges far more quickly
than the side-jump contribution. In Ref. [63] the DOS at the Fermi level for Fe, Co and Ni was found to
be ~1.1 [1/eV], ~1.1 [1/eV] and ~1.9 [1/eV], respectively. As it should be, the ratio of these values to each
other corresponds to that of the values in Tab. (II). This is a further test that the broadening scheme has
been implemented correctly.
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Chapter 5

Application and results

N this chapter the results of the calculation of the scattering independent contribution to the AHE are
I presented. The techniques outlined earlier in this work were applied to the ferromagnetic materials
Fe, Co and Ni and the ferromagnetic alloys FePd and FePt. The calculated values for the intrinsic- and
side-jump conductivity are compared to experimental values for the AHE conductivity, from which the
skew-scattering contribution was either explicitly subtracted or safely ignored at higher temperatures.
It is found that the side-jump contribution constitutes a significant proportion to the AHE in most mate-
rials and shows a distinctive anisotropy with respect to the magnetization direction. Furthermore, this
chapter provides an analysis of the Fermi-surface properties of the side-jump contribution in comparison
to the intrinsic contribution.

5.1 Iron and Cobalt

In Tab. (I) the results of the calculations of the intrinsic conductivity o™ and side-jump conductivity o
for Fe and Co for different high-symmetry orientations of the magnetization in the crystal are shown.
As it should be, the values for o' in Fe and Co agree perfectly well with previous calculations. The new
feature is the calculation of o™,

In Fe, taking the side-jump contribution into account significantly improves upon the the prediction of
the AHE, i.e., the sum o™ + 0% is very close to the experimental value for all magnetization directions.
For example in Fe [001], the side-jump conductivity together with the intrinsic conductivity account
for about 85% of the measured AHE. The inclusion of o™ improves the agreement between theory and
experiment by 10% in comparison to o' alone. For polycrystalline iron, the experimental value should
be understood as the average over crystals with different magnetization directions. It is clear from the
values in Tab. (I) that this average value lies somewhere in the interval from 880 S/cm to 1020 S/cm,
which increases the accordance between experiment and theory still a bit.

TABLE I: Anomalous Hall conductivities for bce Fe and hep Co in units of S/cm for selected high-
symmetry orientations of the magnetization. o', ¥ and o™ + ¢ stand for the intrinsic contribution,
side-jump contribution and their sum, respectively. The experimental values are for the scattering-
independent conductivity, the previous calculated values for the intrinsic contribution only.

Fe [001] [111] [110] Co c axis ab plane
Prev. [15] 751 Prev. [35] 481 116

gint 767 842 810 oint 477 100

o 111 178 141 o 217 -30

o™ 4 o8 878 1020 951 o™ 408 694 70

Exp. [34] 1032 Exp. [36] 813 150
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TABLE II: Anomalous Hall conductivities for L1y FePd and FePt in units of S/cm for selected high-
symmetry orientations of the magnetization. o™
side-jump contribution and their sum, respectively. The experimental values are for the scattering-
independent conductivity, the previous calculated values for the intrinsic contribution only.

, 0% and o™ + o stand for the intrinsic contribution,

FePd [001] [110] FePt [001] [110]
Prev. [26] 133 Prev. [26] 818

gint 120 280 oint 833 409
o 263 280 o 128 220
ot 4o 383 560 o™ 4 g8 961 629
Exp. [26] 806 Exp. [26,60]  900-1267

In Co, with an value of 217 S/cm the side-jump conductivity along the c axis is almost half as large as o™,

and the scattering independent contribution to the AHE conductivity agrees within 85% to the experi-
mental value like in Fe. On the contrary, in the basal ab plane ¢ is small and negative, even changing
the agreement with experiment to the worse compared to o™ alone. It should be noted, however, that
the experimental values for the conductivity from Ref. [36] are available at room temperature only. This
disadvantage clearly limits the comparison with the calculated scattering independent contribution.

The values presented in Tab. (I) demonstrate that the intrinsic- and side-jump contribution change
their magnitude with magnetization direction. This phenomenon is the manifestation of the magneto-
crystalline anisotropy. In Fe, '™ varies from 842 S/cm to 767 S/cm for different magnetization directions,
which makes a difference of about 10 %. Interestingly, o appears to be considerably more anisotropic,
since its rate of change with the magnetization direction is nearly four times larger. The anisotropy of
0% is even more pronounced in Co, where it changes sign when the magnetization is switched from the
c axis to the basal ab plane. However, it is not surprising that the anisotropy in Co is more distinct than
in Fe, since the hcp crystal structure of Co is uniaxial, as opposed to Fe.

5.2 Ferromagnetic alloys FePd and FePt

Even in the more complex case of the L1j ordered ferromagnetic alloys FePd and FePt the inclusion of
the side-jump contribution improves systematically on the theoretical prediction of the AHE. As follows
from Tab. (II), the calculated values for the intrinsic contribution are again in good agreement with pre-
vious known results. With regard to the comparison of '™ + ™ to experiments, including the side-jump
contribution in FePd improves the prediction of the AHE by 30%. However, provided that the experimen-
tal value of 806 S/cm can be assumed to be exact, a certain discrepancy between theory and experiment
remains. By all means, the universal side-jump contribution is not the only scattering independent con-
tribution to the AHE and in FePd one might fail to describe it with a Gaussian disorder model alone.
On the other hand for FePt, adding the calculated side-jump contribution to the intrinsic contribution
brings the total AHE conductivity within the range of experimentally observed values for samples of
thin [001]-magnetized L1j films of FePt. For a high degree of ordering and different sample thicknesses,
values between 900 S/cm and 1276 S/cm for the AHE conductivity were obtained in recent experiments
[26, 60], which perfectly match the theoretical prediction of 961 S/cm. In these experiments, measure-
ments of the AHE were performed by explicitly taking a temperature varying saturation magnetization
M into account.

It appears that the side-jump mechanism is especially important in FePd. For magnetization along [001]
direction, o is twice as large as the intrinsic contribution, while for magnetization along [110] direction,
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FIG. 5.1: U-dependence of the AHE conductivity in FIG. 5.2: U-dependence of the AHFE conductivity in
Ni calculated with GGA+U. Ni calculated with LDA+U.

0¥ is of equal strength as o™, These findings reinforce the earlier indirect prediction of Ref. [26], where
the side-jump contribution was obtained from measuring the AHE conductivity and subtracting the
calculated value for 0. In doing so the authors of Ref. [26] concluded that o dominates the AHE in

FePd, which is verified by its explicit calculation in the present work.

While the AHE in FePd is mainly due to the side-jump contribution, in ferromagnetic FePt alloys the
situation is just the other way round. According to Tab. (II), for FePt the intrinsic contribution is much
larger than in FePd and for FePt with magnetization along [001] direction, o* is only half the the value
of that in FePd. This is again in agreement to Ref. [26], in which such a crossover between the intrinsic
and side-jump conductivity in the two materials was explained by the different spin-orbit interaction
strength of atomic Pd and Pt.

The L1j structure can be viewed as a tetragonal distortion of the fcc lattice, with less symmetry than
a genuine fcc lattice. Therefore, the AHE conductivity '™ + 0¥ in FePd and FePt is supposed to be
more anisotropic than in Fe. Indeed, the change of the AHE conductivity with respect to magnetization
direction is around 30% for FePd and FePt, a value that is larger than in Fe (~10%), but smaller than in
hep Co (x90%). While the value of 0™ for FePd [001] increases only a little when the magnetization
is changed into [110] direction, the value of o™ in FePd [110] is more than twice as large as in FePd
[001] and then amounts to 50% of the total AHE. This behavior is in sharp contrast to FePt, where '™ is
roughly cut in half when the magnetization is changed from [001] direction to [110]. Additionally, o™
does not remain constant but is nearly twice as large in FePt [110] than in FePt [001].

5.3 Nickel

The calculation of the AHE conductivity in fcc Ni is especially difficult, since it is a transition metal in
which the correlation effects between 3d electrons become important. Although these correlation effects
are only moderate in strength, their accurate description plays a vital role in many phenomena which
are caused by spin-orbit interaction (SOI). Unfortunately, standard DFT methods with the generalized
gradient approximation (GGA) or the the local density approximation (LDA) do not treat the 3d electron-
electron interaction correctly and yield inaccurate values for SOI-induced quantities in some transition
metals. For example, it is well known that LDA fails to predict the magnetocrystalline anisotropy energy
and the correct easy axis in Ni [61]. In the present work, the value of the intrinsic AHE conductivity,
which is also caused by SOL is much larger than the experimental value would suggest, implying a
sizable side-jump contribution which is much larger than the calculated 0. In the following, the results
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of GGA+U/LDA+U calculations are presented, which indicate that the 3d correlation effects should be
properly dealt with in order to get suitable values for o™™*.

5.3.1 GGA+U/LDA+U approach

The correlation effects which are not captured by standard DFT methods in Ni are incorporated into the
calculation of the AHE by taking the so-called intra-atomic repulsion U and the intra-atomic exchange
J into account [64, 65]. The computation of these quantities has already been implemented within DFT
and the FLAPW method by identifying atomic like orbitals in which interactions of electrons are treated
in a non-LDA manner [66].

In and Tab. (III) the calculated conductivities '™ and o in Ni within the GGA+U approach are shown.
In line with the method of Ref. [61] for several values of the parameter U in the interval from 0 eV up to 4
eV the parameter J was chosen in such a way that the magnetic moment in Ni stays roughly constant. For
U =0eVandJ =0eVthe GGA+U approach gives values for the intrinsic contribution which lie between
—2500 S/cm for Ni with magnetization along [001] direction and -2000 S/cm for the other magnetization
directions are obtained. These results are in good agreement with previous results published in Ref.
[37], where o™ was stated to be —2073 S/cm for [111] magnetized Ni and a value of —2203 S/cm was
calculated with an alternative method originally suggested by Haldane [67]. However, the experimental
value for the scattering independent AHE in Ni is much smaller and amounts to only —637 S/cm [30].
The calculated values for the side-jump contribution are much smaller than o™ and even negative in
sign for Ni [111]. Therefore, taking the side-jump contribution into account only within standard GGA
cannot explain the large discrepancy between theory and experiment in fcc Ni but correlation effects
have to be included.

As can be seen from our calculations, presented in Tab. (III) and Fig. (5.1), the values of the intrinsic
contribution change drastically with U. For all magnetization directions, the absolute value of o™
reduces significantly with increasing U and approach a value of =800 S/cm for U = 3.9 eV. Recently,
this observation was confirmed in another GGA+U study by Fuh and Guo [68]. On the other hand,
the values of the side-jump contribution show a completely different course as can be seen in Tab. (III)
and the inset of Fig. (5.1). For magnetization into [001] direction o™ does almost not change and shows
a non-monotonous behavior within the range of 100 S/cm up to 300 S/cm in the absolute value as a
function of U for the two other magnetization directions.

In previous works, intricate properties of Ni such as the magnetocrystalline anisotropy energy and easy
axis, among others, were correctly predicted within LDA+U for U = 1.9 eéV and J = 1.2 €V [61]. In
practice, precisely this pair of parameters for U and J is often treated as an empirical value that improves
the Fermi surface of Ni without changing the magnetic moment too much [63]. In the present work, it
was found that a slightly smaller value of J =1.1 eV is even better adapted to GGA+U. Indeed, for U = 1.9
eV and J = 1.1 the computed conductivity o™ + ¢% = =707 S/cm for magnetization in [001] direction
agrees with the experimental value within 35%.

Although still consistent with experiment, it turns out that the magnetic moments in Ni calculated with
GGA+U are a bit too large, being consistently larger than the experimental value of 0.60 115 [62]. There-
fore, additional calculations of the AHE conductivity using LDA+U and the MJW functional were per-
formed as well. As Tab. (IV) shows, without the additional parameters U and J, i.e., for U = 0 eV and
J =0 eV, the LDA succeeds in predicting the correct magnetic moment for Ni straight away. However,
the absolute value of ¢'"* obtained in LDA is again very large, even exceeding the values of GGA by
250 S/cm on average. For magnetization in [111] direction, o™ is less than 5% of the calculated AHE
conductivity and of opposite sign with regard to the corresponding value in GGA.

As U increases, the magnetic moment increases as well. In particular, for the above mentioned pair
of parameters U = 1.9 eV and J = 1.2 eV, the magnetic moment is in perfect agreement to previous
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TABLE III: AHE conductivity for fcc Ni in units of S/cm for selected high-symmetry orientations of the
magnetization using GGA+U and the PBE functional. The values of U and .J were chosen in such a way
that the magnetic moment (MM) is kept roughly constant.

int

sj

(o2 (o2
UleVl J[eV] MM [ug] | [001] [110] [111] [001] [110] [111]
0.0 0.0 0.6317 | -2517 -1970 -2015 362.0 61.7 -92.0
0.7 0.3 0.6532 | -1532 -1590 -1563 456.6 102.4 -149.0
1.4 0.7 0.6674 | -1231 -1324 -1319 417.2 50.8 -223.1
1.9 1.1 0.6755 | -1108 -1196 -1209 400.6 42.7 -243.3
2.4 1.9 0.6755 | -1020 -1086 -1134 389.1 108.2 -229.8
2.9 2.2 0.6880 | -946 -987 -1065 397.5 162.9 -205.5
3.4 2.5 0.7044 | -883 -920 -1015 412.3 220.0 -163.2
3.9 2.6 0.7327 | -806 -856 -926 452.8 236.0 -92.3

Experimental value for the scattering-independent conductivity:

Previously calculated value of intrinsic contribution:

~1100 S/em [31] + =637 S/cm [30]
~2073 S/cm + —2203 S/cm [37]

TABLE IV: The same as in Tab. (II) using LDA+U and the MJW functional.

O.int O'Sj
Ulev] J[eV] MM [ug] | [001] [110] [111] [001] [110] [111]
0.0 0.0 0.6059 | -2623 -2246 -2394 243.8 77.3 96.6
0.7 0.3 0.6247 | -2545 -2080 -2254 355.3 72.2 -63.7
1.4 0.9 0.6334 | -1794 -1809 -1771 456.7 105.6 -128.8
1.9 1.2 0.6469 | -1513 -1572 -1570 442.9 93.0 -183.0
2.4 1.7 0.6529 | -1345 -1417 -1439 413.2 77.6 -227.8
2.9 2.2 0.6594 | -1231 -1295 -1348 390.6 87.0 -249.4
3.4 2.5 0.6705 | -1151 -1201 -1279 382.9 103.7 -251.1
3.9 2.8 0.6823 | -1093 -1126 -1228 386.9 153.1 -230.5
Exp. MM. [62]:  0.60 up
Ref. [63]: 0.61 pup for LDA
Ref. [63]: 0.65 pup for U=1.9 eV, J=1.2 eV

TABLE V: AHE conductivity for bce Fe in units of S/cm using GGA+U and the PBE functional. The
values of U and J were chosen as in Ref. [61]. The experimental value of the conductivity stands for the

scattering-independent contribution only.

oint oS
Ulev] J[eV] MM [ug] | [001] [110] [111] [001] [110] [111]
0.0 0.0 2.2295 | 767 811 842 115 141 178
1.2 0.8 2.1988 | 822 875 902 147 187 209
Exp. MM. [62]: 22 up
Exp. [34]: 1032 S/cm
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FIG. 5.4: (left) Angle-resolved conductivity do/dS)
in units of S/cm as a function of direction in the
Brillouin zone. The value of do/d) corresponds
to the sum of all contributions to the conductiv-
ity from inside the inner sphere in the Brillouin
zone within the solid angle element df). The out-
side frame is the boundary of the Brillouin zone.

TR
U AN

Energy [eV]
Nel
oo

oS Ni [110 si Fe [001 intrinsic ———
(L0} o% e [aot] 3500 sidetju'np |
; 2500
FIG. 5.3: (right) Intrinsic conductivity vs side-jump g‘ 1500
conductivity along high symmetry lines in atomic £ 5| )E |
units in Fe [001]. The upper panel shows the cal- S ol “ ol
culated electronic structure near the Fermi energy. 7
. -1500
Compare with [15]. r H P N T H N T P N

LDA+U calculations [63]. Most interesting is the fact that for this choice of U and J the total AHE
conductivity o™ + ¢ = ~1070 S/cm coincides with the experimental value of ~1100 S/cm measured at
low temperatures [31]. This suggests that the main reason for the discrepancy between the values of the
AHE conductivity obtained from DFT and experiment might lie in the improper description of electronic
structure from first principles, which is corrected by taking correlation effects into account.

Within LDA+U, the side-jump conductivity depends more sensitively on the intra-atomic repulsion U
than within GGA+U, even exhibiting a sign change for magnetization into [111] direction. However,
comparing Fig. (5.1) with Fig. (5.2) it can be observed that GGA+U and LDA+U calculations share the
same feature that the intrinsic contribution appears to approach a common value for all magnetization
directions with increasing U, albeit this common value is somewhat lower in LDA+U than in GGA+U.
On the contrary, 0 remains anisotropic when U increases, with distinct values for distinct magnetiza-
tion directions.

GGA+U approach for Fe

For comparison, GGA+U calculations were also performed for Fe using U = 1.2 and J = 0.8 as empirical
parameters [61]. Applying the GGA+U approach reduces the magnetic moment a bit, just below the
experimental value of 2.2 pp [62]. However, for Fe the AHE conductivity does not change as drastically
as in Ni. Rather, the intrinsic contribution and side-jump contribution are shifted evenly by up to ap-
proximately 60 S/cm and 30 S/cm, respectively, for all magnetization directions, bringing thus the total
value of the calculated AHE conductivity even closer to experiment, see Tab. (V).

5.4 Fermi surface properties

In this section it shall be explained why '™ and o exhibit such a different behavior in Fe and Ni within
the GGA+U/LDA+U approach. To begin with, in Fig. (5.4) the angle-resolved conductivities for the



5.4 Fermi surface properties 71

TABLE VI: AHE conductivity for Ni [001] with Mfee parameter —0.3 €V.

O.int O-Sj

[001] [110] [111] [001] [110] [111]
GGA | -1971 -1772 -1781 349 114 -36
LDA | -2311 -2071 -2259 270 118 116

intrinsic contribution and side-jump contribution in the Brillouin zone are depicted. For that purpose,
all the contributions to the conductivity over all bands and all sheets of the Fermi surface are summed
over. The color of each surface point in Fig. (5.4) corresponds to the sum of all the contributions from the
center of the Brillouin zone, the I'-point, until the surface of the sphere is reached. The sum goes along
the direction indicated by the position of each particular surface point and the conductivity is weighted
with the solid angle df2 each point occupies.

It is known from previous works that the intrinsic conductivity has large contributions along the hot
loops in the Brillouin zone, which are situated in the vicinity of the intersections between different
sheets of bands [69]. Away from these regions there is a smooth, albeit small background of o' that
is also significant and fills nearly the entire Brillouin zone [59]. This feature can be indirectly observed
in Fig. (5.4) as well, since the negative intrinsic contribution for [001] magnetized Ni covers most of the
sphere.

On the contrary, Fig. (5.4) illustrates that the main contributions to the side-jump conductivity in Ni and
Fe come from isolated dots in the Brillouin zone. These dots are rather sparsely scattered over the Fermi
sphere, and 0 decays very quickly with the distance from such dots. However, the position of the dots
is not random. Rather, large and significant contributions to the side-jump conductivity occur in the
same regions where the absolute value of o' is large as well. For Ni [001], the sign of ¢¥ in the dot at
the pole of the sphere coincides with that o'™, whereas o in the dots that appear around the equator
of the sphere are mainly opposite in sign to the corresponding value of o'™. Since the dots change
their position and magnitude with magnetization direction, as can be seen by comparing the angular
distribution of o™ for Ni [001] and Ni [110] in Fig. (5.4), the anisotropy of the side-jump conductivity
can be intuitively understood.

The difference in the distribution of the side-jump conductivity and intrinsic conductivity on the Fermi
Surface arises from the effective magnetic monopole nature of the intrinsic contribution near avoided
band crossings [70], whereas the side-jump does not contain such singularities near those crossings.
This view is supported by Fig. (5.3), where o'* and ¢ for Fe are shown. The path in the Brillouin zone
was chosen as in Ref. [15], and the intrinsic contribution shows the same behavior as in that work. For
example, '™ has sharp peaks near the high-symmetry point H, where the Fermi level lies within a gap
of two spin-orbit coupled bands, while ¢ does not peak in this regions. On the other hand, the same
behavior as for the angular distribution of o™ and ¢ in Ni [001] in Fig. (5.4) can be observed again,
namely that whenever o™ is large, o™ is large as well and in the special case of Fe [001] of equal sign.

5.4.1 Exchange splitting

It turns out from the values presented in Tab. (IV) above that the magnetic moment for Ni calculated
within LDA is in fine agreement with experiment. Likewise, the electronic structure of the sp-bands
calculated within LDA is consistent with data obtained from photoemission spectroscopy. However, the
predicted width of the occupied 3d-bands is about 30% too large [71]. Moreover, the density of states
(DOS) at the Fermi level and the exchange splitting are also not correctly reproduced. While experiments
show that the exchange splitting in Ni is small and highly anisotropic with values from 0.2 eV to 0.3 €V, the



72 5. Application and results

2 T T
GGA ——
15+ Mfee -0.3 eV ——
1 L
= 05 =
3 o
= 55}
g O 0
el
A .05 &
=
-1 53]
-1.5
2 L L L L L
-6 -5 -4 -3 -2 -1 0 1

Energy - Eg [eV]

FIG. 5.5: Change of DOS in Ni by Mfee calculation. FIG. 5.6: Band structure of Ni calculated with GGA

Positive and negative values of DOS refer to major- and GGA+U with Coulomb repulsion parameter
ity and minority spin electrons respectively. U = 1.9 eV and exchange parameter J = 1.1 eV.

LDA vyields a rather large and almost isotropic splitting of 0.6 €V (see Ref. [63] and references therein).

It was found out that the inclusion of correlation effects within LDA+U enhances the anisotropy, but on
the other hand the LDA+U scheme is associated with an increase of the average exchange splitting as
well, depending on the choice of the values of the parameters U and J [63]. As far as the computation
of the AHE conductivity is concerned, it is hard to tell from the outset whether the corrections of the
Fermi surface by LDA+U or this scaling of the exchange splitting is the reason for the improvement of
the prediction of o™ within LDA+U.

For this purpose, supplementary calculations of the AHE conductivity were performed in which the
exchange splitting was adjusted by hand using the so-called Mfee feature in FLEUR. In these Mfee cal-
culations the potentials for spin up and spin down energy bands were shifted with respect to each other
such that the exchange splitting was reduced by 0.3 eV, a value that gave good results in a previous work
on the computation of magnetic excitations in Ni [63]. As can be seen in Fig. (5.5), the reduction of the
exchange splitting leads to a somewhat larger DOS around the Fermi energy level.

In Tab. (VI) the calculated values for 0™ and ¢ within the Mfee approach are shown. Like in GGA+U/-
LDA+U calculations, the magnitude of o' decreases, which resembles the desired behavior of bringing
the theoretical prediction of the AHE conductivity closer to the experimental value. The side-jump
contribution appears to be less affected by the scaling of the exchange splitting than by the choice of
U. In particular, the sign of ¢ for Ni [111] remains positive within LDA, while it is negative for both
LDA+U and GGA+U even for small U. However, the agreement to experiment is worse than it is in
the case for GGA+U/LDA+U calculations with U=1.9 eV. Presumably both the Fermi surface and the
exchange splitting have to be adjusted to get an even better value of the AHE conductivity in Ni.

5.4.2 Energy dependence

In Fig. (5.6) the calculated band structure of fcc Ni using GGA and GGA+U is displayed. It can be
seen that within GGA the eighth band of Ni touches the Fermi level from below, giving rise to very
small pockets on the Fermi surface at the X points in the Brillouin zone [37]. However, these so-called
Xy pockets cannot be observed in experiments [72]. When taking correlation effects into account by
adopting GGA+U, the main effect is that the energy of the d-dominated energy bands is decreased. As
a result, the eighth band is shifted entirely under the Fermi energy level, in accordance to experiment
and to other GGA+U studies [68]. A band-by-band analysis revealed that band eight gives only a very
small contribution to the intrinsic contribution and including the X5 pocket or not affects the value of
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FIG. 5.7: Change of the AHE conductivity in Ni [001] (left) and in Fe [001] (right) as the Fermi energy
level is altered by hand. The vertical lines indicate the position of the true Fermi energy level.

o™ very little [59]. The data presented in Sec. 5.3.1 suggests that this observation also applies to the
case of 0¥, because the side-jump contribution does not change much in GGA+U, when the X5 pocket
is absent, compared to pure GGA, when the X5 pocket is present.

In Fig. (5.7) the dependence of ¢'"* and o™ in Ni and in Fe on the Fermi energy level is shown. The steep
oscillations of the intrinsic conductivity, which are especially visible in Fe, are spurious and result from
numerical instabilities in the program code that was written in the context of the present work. More
precisely, the numerical instabilities are due to the limited resolution of the step function ©(e,x — er)
that needs to be evaluated for the calculation of '™ to decide whether a state with energy &, is occupied
or not. These oscillations do not occur for o because in this case the sharp step function is generically
replaced by a smoother function that allows for partial occupancies at the Fermi energy level e .

For Nij, the intrinsic conductivity has a pronounced minimum at the true Fermi energy level with a value
of —2600 S/cm. Its magnitude becomes very small when e is manually raised by 0.5 eV. On the other
hand, if the Fermi energy is lowered, o™ changes its sign around 8.84 eV and then rapidly increases
to the huge value of 4000 S/cm at 8.44 €V. If the Fermi energy level is further lowered, o'™* decreases
again. It should be pointed out, however, that all these findings were obtained within GGA and are in
qualitative agreement to Ref. [68], where the GGA+U approach with parameters U = 1.9 eV and J = 1.2
eV was adopted. In Fe, o™ resides in the interval from 600 S/cm up to 800 S/cm around ex. The sign
change of ¢'™ occurs in Fe as well, albeit at a considerably lower energy below the true Fermi energy
level compared to Ni.

For Ni and Fe, the side-jump contribution appears to depend much less sensitively on ¢ than the in-
trinsic contribution, which again is a result of the singular behavior of ¢'™ near avoided band crossings.
Within the rigid band approximation, adding or subtracting an electron to Ni changes the position of
the Fermi energy level only. Of course this is a very crude approximation, but interestingly it was found
out in Ref. [68] that shifting the position of the Fermi energy level by -0.71 €V to 8.43 €V or by -1.02 eV
to 8.12 eV in Ni involves that the number of valence electrons is changed from 10.0 to 9.0 like in Co or
to 8.0 like in Fe respectively. As can be read off from Fig. (5.7), '™ is predicted to be positive for both
energy values, in accordance to the experimental and theoretical findings in these materials.

5.4.3 Band resolved conductivity

In Fig. (5.8) the side-jump conductivity is plotted as the color-code on the Fermi surface of Fe [001],
Co [001], Ni [001] and Ni [110]. For each material, the Fermi surface has been decomposed into its
constituent Fermi sheets which are defined as the set of k-points in the Brillouin zone at which ¢, = e
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FIG. 5.8: Side-jump contribution to the AHE conductivity plotted on the Fermi surfaces for Fe [001]
(upper left), Co [001] (upper right), Ni [001] (lower left) and Ni [110] (lower right) in arbitrary units. The
outside frame is the boundary of the Brillouin zone.
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FIG. 5.9: The same as in Fig. (5.8) for the Fermi surfaces of band 9 in Fe (left), band 20 in Co (middle) and
band 11 in Ni (right) using a different color code.

is satisfied for a particular band n. However, as explained in Ref. [37], in some cases the Fermi sheets
are rather small and for convenience only the largest ones are shown in Fig. (5.8).

As in Ref. [37], the shape of the Fermi sheets in Ni is rather spherical, while in Fe their surfaces are
non-trivially connected and reveal a complex structure. Like in Fig. (5.4), the side-jump contribution
shows itself as isolated dots on the Fermi sheets and rapidly goes to zero everywhere else. Moreover,
such dots are always distributed symmetrically in the Brillouin zone. In some cases, especially for Ni,
regions in which o™ is of opposite sign are surprisingly close together and lead to large but mutually
canceling contributions to the total side-jump conductivity. As the magnetization direction changes, the
alteration of the Fermi sheets is very small and one cannot distinguish between the Fermi surface of Ni
[001] and Ni [110] in Fig. (5.8). However, the distribution of the dots changes and with it the contribution
of each Fermi sheet to the side-jump conductivity.

In order to illustrate the singular behavior of o, in Fig. (5.9) a finer color grading was chosen for some
selected bands. Clearly the value of o™ is nearly constant at the flat areas of the Fermi sheets, but varies
at their edges that occur whenever two or more Fermi sheets intersect each other. This might be a hint
why the GGA+U/LDA+U approach has no great effect on the calculated value of 0¥, because the Fermi
surface is presumably modified at those positions in the Brillouin zone where the side-jump conductivity
is small in any case.
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Chapter 6

Conclusions

This work® explains how a self-contained theory of the AHE can be derived that accounts for all the
scattering independent contributions to the AHE conductivity. In previous works, solely the intrinsic
contribution has been calculated and values for the side-jump contribution were available for simple
model Hamiltonians only or were obtained indirectly by extrapolating to the zero disorder limit in dis-
ordered alloys. On the contrary, the new approach presented in this work allows for a direct calculation
of the side-jump conductivity for the wide class of real materials which can be accessed via DFT.

By taking the side-jump contribution into account, this work shows that one succeeds in predicting
a scattering independent part of the AHE conductivity which agrees with experiment to a level that
has been unprecedented so far. For materials such as Fe, Co and FePt, oS brings the calculated oint
consistently nearer to the experimental value. Moreover, it could be demonstrated that the side-jump
contribution shows a distinct anisotropy with respect to magnetization direction and shows itself as
isolated dots on the Fermi sphere. This behavior is in sharp contrast to o™,

In practice, the AHE conductivity can be computed using the Wannier interpolation scheme, which
makes the computation fast. Nevertheless, it turns out that a high number of k points is needed to
converge the value of 0%, The only input required is the electronic structure of the material which is to
be investigated, and besides the Gaussian disorder model no assumptions about the scattering strength
or impurity content have to be made.

In some materials, such as FePd, one fails to describe the side-jump contribution within the Gaussian
disorder alone. In these cases, the deviations of the calculated values o™ + o¥ from the experimental
ones are larger. It would then be desirable to go beyond Gaussian disorder and apply a more realistic
model of scattering processes, for example by taking scattering universality classes into account [73].

Especially in Ni, some of the disagreement between theory and experiment seems to be due to the lack
of accuracy of common DFT functionals. However, adopting a GGA+U/LDA+U approach one obtains
the correct AHE conductivity.

In summary, calculating the side-jump contribution provides valuable insights into the physics of the
AHE. For future applications, the findings of this work might perhaps help to turn the AHE into a probing
tool of complex electronic structures [74].

See also Ref. [74]
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Appendix A

Appendix: Lattices

A.1 Internal coordinates

When performing a Brillouin-zone integration one usually does not want to bother about the concrete
shape of the Brillouin-zone. It can be a rather complicated shape in general. It is therefore convenient
to introduce the concept of internal coordinates. They are defined as follows:

r=AR,
(A1)
k = BK.
The matrix A = (p;, P2, P3) contains the primitive translation vectors as columns. Due to
BT =oxA7! (A.2)
one can thus write:
k-r=(BK)"(AR) =K"BTAR = 27K -R (A.3)

A.2 Brillouin Zones

TABLE I: Position of neighbor k-points and

critical points in the Brilloiun zone of the fcc
lattice in units of 27 /a.
n X y z
1 -1 -1 -1 P X y z
2 1 -1 -1 r 0 0
3 -1 1 -1 X 1 0 0
4 1 1 -1 L 172 1/2 1/2
5 -1 -1 1 W 172 1 0
6 1 -1 1 K 3/4 3/4 0
7 -1 1 1 U 1 1/4 1/4
8§ 1 1 1

FIG. A.1: Brillouin zone of fcc lattice
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TABLE II: Position of neighbor k-points and
critical points in the Brilloiun zone of the bcc
lattice in units of 27/a.

n x y z

1 -1 0 -1

2 1 0 -1

3 0o -1 -1

4 0o -1 1 P X y z
5 -1 -1 0 T 0 0
6 -1 1 0 H 0 1 0
7 -1 0 1 N 1/2 1/2 0
8 1 0 1 P 1/2 1/2 1/2
9 0o 1 -1

1o 0 1 FIG. A.2: Brillouin zone of bec lattice
11 1 -1

12 1 1

TABLE III: Position of neighbor k-points and
critical points in the Brilloiun zone of the hcp
lattice in units of 27r/(a\/3) (Basal and height
parameters. Ideal: ¢/a = 1/8/3 ~ 1.633).

n X y z

1 V3 0

2 V3 1 0

3 0 2 0

4 /3 1 0

5 V3 -1 0

6 0 -2 0

7 0 V3-a/c

8 0 —V3-a/c

p X y z
r 0 0 0
A 0 0 1/2-V3-afc FIG. A.3: Brillouin zone of hcp lattice
H 2/3-V/3 0 1/2-V3-a/c
K 2/3-V/3 0 0
L 1/2-V3 12 1/2-/3-afc
M 1/2-V/3 172 0
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