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1 Introduction

Since magnetic storage devices have become indispensable nowadays, the search for suit-
able systems is a thriving field of research both experimentally and theoretically. In the
field of spintronics, which has enjoyed a great success story so far, especially the discov-
ery of the giant magnetoresistance-effect (GMR-effect) by P. Grünberg and A. Fert [1, 2],
awarded the Nobel Prize in physics in the year 2007, led to a significant increase of the
storage density in hard disks and marked a technological breakthrough. Currently, there
are promising attempts to construct non-volatile random access memory based on var-
ious magnetic phenomena such as for example the tunnelling magnetoresistance or the
GMR-effect.
In the magnetic storage devices of this type the physics of low-dimensional systems

plays a crucial role. In general, low-dimensional systems reveal a wide spectrum of inter-
esting magnetic properties. Gaining a better understanding of these magnetic properties
on a microscopic level helps finding appropriate materials for magnetic storage devices
and paves the way to multiple applications in the future generation of spintronic de-
vices. Low-dimensional magnets display a vast phase space of magnetic solutions and
magnetic ground states. Besides the well-known ferromagnetic and antiferromagnetic
collinear spin configurations, many of the representatives of this class reveal a so-called
non-collinear spin-arrangement, such as spin-spirals and skyrmions. While for many
of the observed non-collinear spin states the Heisenberg exchange interactions play a
crucial role, there is another channel for their occurrence, which is gaining more and
more importance in the field of nano-magnetism. It can be attributed to the spin-orbit
coupling (SOC), amplified at surfaces and in low-coordinated magnets, which has to be
added on top of the Heisenberg exchange, leading to the necessity of a more complex
treatment when the spin-orbit-driven non-collinear spin structure has to be considered.

Although the energy scale of the spin-orbit interaction is rather small compared to
other types of interactions, such as exchange, its property of breaking the symmetries in
the system makes SOC very important. One of the most profound effects due to SOC
is the magneto-crystalline anisotropy energy (MCA), which is the energy required to
change the magnetization direction in the crystal. The MCA plays an essential role for
storing data on magnetic storage devices, and therefore normally such devices are made
of materials with large MCA values to guarantee a stable magnetization. An important
class of complex magnetic structures like homochiral spin-spirals or skyrmions can only
be explained considering another important effect of SOC − the Dzyaloshinskii-Moriya
interaction (DMI). Introduced by I. E. Dzyaloshinskii and T. Moriya in the framework
of weak ferromagnetic systems [3, 4], the DMI is essential in non-inversion-symmetric
systems such as surfaces and layered systems. The model Hamiltonian describing the
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DMI in the framework of the extended Heisenberg model [5] is of the following form:

HDM = −
∑
ij

Dij · (Si × Sj) , (1.1)

where Dij is the Dzyaloshinskii-Moriya vector and Si and Sj are the spin moments
at the lattice positions i and j. While HDM favours canted spin structures like spin
spirals, the MCA favours a collinear alignment of the spins. The resulting spin structure
results from a subtle competition between MCA, DMI and Heisenberg exchange. Under
certain conditions, such as symmetry breaking and enhanced spin-orbit interaction, the
role of the DMI in this competition becomes prominent which results in a formation of
a spin-spiral with a unique sense of rotation. Recently such DMI-driven non-collinear
magnetic structures have been observed experimentally and predicted theoretically in
e.g. a double-layer Fe on W(110) [6, 7, 8, 9], Mn/W(110) [10, 11] and Cr/W(110) [12].
The above-listed examples show that it is essential to perform extensive calculations

in order to gain a deeper understanding of the complex physics of magnetism in these
systems. Additionally, the predictive power of such calculations should not be underes-
timated, since in principle they could lead to discoveries of novel materials with desired
properties which could be utilized for future spintronics applications. Nowadays, a large
number of such calculations is performed within the ab-initio approach utilizing the
density functional theory [13, 14], which proved to be very successful for the description
of electronic structure properties of various materials. However, these calculations are
normally expensive computationally and require large amounts of computing time in
order to achieve the accuracy needed for appropriate description of magnetic properties
in these complex systems. In addition, the results of the first-principles calculations are
normally not so easy to interpret. Moreover, owing to the complexity and computational
challenges, systematic studies of the nature of the DMI, its sign and behaviour in dif-
ferent layered systems, for which the effect of this interaction is particularly strong, are
still missing from ab-initio. Thus, it would be desirable to have a simple model, which
contains the essential physics necessary for a description of complex magnetic structures,
powerful enough to enable the possibility for a diverse analysis of the results in terms of
various parameters of considered systems, such as spin-orbit coupling strength, spin po-
larization, electron occupation, degree of hybridization between the electronic orbitals,
various symmetries etc.
The parametrized tight-binding method, implemented, tested and described in this

thesis, is designed for this purpose. The material-specific parameters entering this
method provide an easy way to tune the aforementioned essential quantities. This
method allows to perform a lot of comparatively fast calculations in combination with
a freedom to vary important properties of the magnetic system and is, therefore, well-
suited for performing "numerical experiments”. The tight-binding parameters enter into
the following simple model tight-binding Hamiltonian consisting of four parts:

H = H0 +Hmag +HLCN +HSOC . (1.2)

H0 contains the on-site energies and the hopping elements, with parametrization based
on the Naval-Research-Laboratory tight-binding method (NRL-TB method) [15, 16, 17,
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18], which ensures parameter sets of a high degree of transferability. This means that
a parameter set suited to a particular structure can be used also for a qualitatively
satisfactory description of a different structure. For the description of magnetism a
Stoner model [19, 20] is incorporated via Hmag, which can be straightforwardly modified
for non-collinear magnetic systems. Tuning the Stoner parameters allows to change
magnetic moments and the spin-polarization. The implementation of the Stoner model
allows for a self-consistent calculation of the magnetic moments and charges. In this
self-consistent cycle HLCN assures local charge neutrality. The implementation of the
generalized Bloch theorem [21, 22, 23] ensures that spin spiral calculations for each spin-
spiral vector q can be performed using a small "collinear” unit cell. Even when the effect
of SOC is considered via the Hamiltonian HSOC, the advantage of the generalized Bloch
theorem can be utilized by treating SOC in 1st-order perturbation theory [24, 9]. This
tight-binding model has been successfully used for calculations of magnetic properties in
Fe-systems [25, 26] and Pt-systems [27], which motivated us to apply the tight-binding
method for extensive investigations of the non-collinear magnetism and effects of SOC
in systems consisiting of Fe and Pt atoms of varying dimensionality.

The thesis starts with a detailed description of the theory behind the tight-binding
method in chapter 2. Each part of the Hamiltonian 1.2 is explained in detail (see sections
2.2-2.7). The implementation of non-collinear magnetism is discussed in section 2.8. In
particular we focus on the treatment of spin spirals via the generalized Bloch theorem and
the treatment of SOC within 1st-order perturbation theory. In addition, we discuss the
implementation of the magnetic force theorem (see section 2.9), the extended Heisenberg
model, micromagnetic model and its relevant parameters (see section 2.10). In chapter
3 the magnetism in pure Fe systems like bcc-Fe, free-standing Fe monolayers and free-
standing Fe chains is examined and the results of the calculations are compared to ab-
initio results. We start by evaluating the quality of the tight-binding parametrization for
bcc Fe (see sections 3.2, 3.3), and proceed with calculating the MCA of Fe monolayers of
different crystallographic orientations and the MCA of Fe monoatomic chains in section
3.4. In addition, the magnon dispersions of bcc-Fe and Fe chains are calculated and
compared to ab-initio results. In chapter 4 the necessary Stoner parameters for Pt are
determined with the help of ab-initio calculations. Finally, we investigate the magnetism
in composite Fe/Pt systems in chapter 5. In section 5.2 the MCA of the L10-FePt
structure is calculated as a function of the c/a-ratio. Particular attention is paid to
test the validity of calculating the DMI in the framework of the 1st-order perturbation
theoretical treatment of SOC (see section 5.3.1). At the end, we present a study of the
DMI in Fe/Pt layered systems as a function of different Stoner parameters, number of
Pt layers and band filling (see section 5.3.2).
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2 Theory

2.1 Motivation

The Holy Grail of condensed matter physics is the solution of the eigenvalue problem of
the following Hamiltonian:

H = Te + Tc + Ve−c + Ve−e + Vc−c , (2.1)

with Te = −∑i
1
2
∇2
i the kinetic energy of the electrons, Tc = −∑α

1
2Mα
∇2
α the kinetic

energy of the nuclei, Ve−c = −∑α

∑
i

Zα
|ri−Rα| the Coulomb interaction between the

electrons and the nuclei, Ve−e = 1
2

∑
i

∑
j 6=i

1
|ri−rj | the Coulomb interaction between the

electrons and Vc−c = 1
2

∑
α

∑
β 6=α

Zα·Zβ
|Rα−Rβ| the Coulomb interaction between the nuclei.

It is impossible to solve this problem for many-electron systems without appropriate
approximations. First, it is common to use the Born-Oppenheimer approximation, if
the electron-phonon coupling does not critically affect the electronic structure. Then
the electronic problem is described by the Hamiltonian

He = Te + Ve−c + Ve−e + Vc−c , (2.2)

where the positions Rα of the nuclei enter only as parameters, which are usually chosen
at the equilibrium positions of the lattice. But also this problem is too difficult to solve
without approximations due to the electron-electron interaction. Fortunately, there are
plenty of more or less successful ways to reduce the N -particle problem to an effective
one-(quasi)-particle problem. One of the most prominent ones is the density functional
theory (DFT) of Hohenberg, Kohn and Sham [13, 14], which is implemented in the
majority of ab-initio electronic structure methods. One problem of this highly accurate
method is the required computational time, which remains a challenge even on state-of-
the-art supercomputers.

To reduce this computational time one can use a parametrized tight-binding method,
with the parameters obtained by ab-initio calculations. The tight-binding method de-
scribed and implemented in this thesis is able to reproduce the qualitative behaviour of
physical systems, including their magnetic properties.

A convenient feature of these method is that, by virtue of the Slater-Koster theory,
the Slater-Koster parameters depend only on the type of elements in a material, but not
on its geometry. For example there is a possibility to use the tight-binding parameters
of bcc-Fe to describe a Fe monolayer. Incorporating a model for the description of
magnetism (like a Stoner-like-model , section 2.6) a reasonable description of spin-spiral
states in this Fe monolayer can be achieved. At least theoretically the method could
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be as accurate as the best ab-initio methods, if very accurate parameters for a precise
description of the electronic structure are used. In the next sections the theory of the
tight-binding method is described in detail.

2.2 Basics

The solution of the one-electron Schrödinger equation in a special finite set of basis
functions is searched:

H |Ψ〉 = (T + V ) |Ψ〉 = E |Ψ〉 , (2.3)

where T is the one-electron kinetic energy and V is the effective one-electron poten-
tial within a mean-field approximation. As basis functions atomic-orbital-like functions
|n, i, µ〉 are used, where n denotes the Bravais vector Rn, i is the i-th basis atom with
its position τ i in the unit cell and µ stands for the type of orbital. In this work we
use s-, p- and d-orbitals as basis functions, with their well-known angular dependence
described by the spherical harmonics Ylm(Θ, φ).
Using Ritz’s variational principle, one has to solve the following matrix-eigenvalue

equation:
H · c = ES · c , (2.4)

where c is an eigenvector containing the coefficients for the linear expansion of |Ψ〉:

|Ψ〉 =
∑
n,i,µ

cniµ · |n, i, µ〉 , (2.5)

and H and S are the Hamiltonian and overlap matrix in representation of the atomic
orbitals:

Hmjν
niµ = 〈n, i, µ|H |m, j, ν〉 , (2.6)

and Smjν
niµ = 〈n, i, µ|m, j, ν〉 . (2.7)

In this work periodic structures are considered, therefore Bloch’s theorem can be used.
Thus, we can introduce a new basis of Bloch-waves of the following form:

|Φk,i,µ〉 =
1√
N

∑
n

eik·(Rn+τ i) · |n, i, µ〉 , (2.8)

where N ist the number of unit-cells in the chosen super-cell for the periodic boundary
conditions. In the representation of the Bloch-waves the Hamiltonian appears as follows:

Hjν
iµ (k) = 〈Φk,i,µ|H |Φk,j,ν〉 =

∑
n

eik·(Rn+τ j−τ i) ·Hnjν
0iµ . (2.9)

A completely analogous equation defines the matrix elements Sjνiµ (k) of the overlap
matrix:

Sjνiµ (k) = 〈Φk,i,µ|Φk,j,ν〉 =
∑
n

eik·(Rn+τ j−τ i) · Snjν0iµ . (2.10)
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The Bloch-waves are orthogonal for different k-values in the Brillouin-zone:

〈Φk,i,µ|Φk′,j,ν〉 = 0 , if k 6= k′ . (2.11)

Also the Hamiltonian in representation of the Bloch-waves is block-diagonal with respect
to the k-space, i.e.:

〈Φk,i,µ|H |Φk′,j,ν〉 = 0 , if k 6= k′ . (2.12)

In a parametrized tight-binding scheme the matrix elements Hnjν
0iµ and Snjν0iµ are de-

scribed by a parametrization, which will be introduced in the next section.
To conclude, at the heart of the tight-binding theory lies the use of localized basis

functions as basis representation, and in this work we use atomic orbitals for this purpose.

2.3 Parametrization of the matrix elements

In this section the parametrization for the matrix elements Hnjν
0iµ and Snjν0iµ is described.

First, it is important to take a look at the different types of matrix elements which
appear. For the sake of simplicity only the case of one basis atom is considered.

Hnν
0µ =

∫
dr φ∗µ(r) · (T + V ) · φν(r −Rn)

=

∫
dr φ∗µ(r) · (T +

∑
m

vat(r −Rm)) · φν(r −Rn) , (2.13)

where vat(r−Rm) is the atomic potential of the atom in the m-th unit-cell and φµ(r) =
〈r|n, µ〉. The following types of integrals can be distinguished.

1-center-integrals: ∫
dr φ∗µ(r) · vat(r) · φν(r) (2.14)

µ = ν : typical on-site atomic orbital energies, εµ
µ 6= ν : small contribution if overlap 〈φµ|φν〉 6= 0

2-center-integrals:

(i)

∫
dr φ∗µ(r) ·

∑
n6=0

vat(r −Rn) · φν(r) (2.15)

µ = ν : contribution to the on-site energies due to existence of other atoms
µ 6= ν : “hopping-element” on-site from ν → µ due to existence of other atoms

(ii)

∫
dr φ∗µ(r) · vat(r) · φν(r −R) , R 6= 0 (2.16)

11



Theory 2.3 Parametrization of the matrix elements

px py pz

dxy dxz dyz dx2−y2 dz2

s

Figure 2.1: Atomic s,p,d orbitals | modified fig. from [26]

typical hopping elements, which describe the electronic transition from φν(r − R) to
φµ(r) ; usually only the valence electrons are allowed to hop.

3-center-integrals:∫
dr φ∗µ(r) · vat(r −R) · φν(r −R′) , R 6= 0 6= R′ 6= R (2.17)

These integrals are very small for atomic orbitals φµ(r). Therefore they are usually ne-
glected in theoretical tight-binding descriptions. Also in this work they will be neglected
in the determination of the tight-binding parameters.
The matrix elements of the kinetic energy T with the atomic orbitals are of the same

form as the 1-center-integrals and 2-center-integrals. Therefore the on-site energies and
hopping elements contain also the kinetic energy contribution.

Summing up, one needs a parametrization for the on-site elements and hopping inte-
grals. A common parametrization for the hopping elements is the so-called Slater-Koster
parametrization [28]. The hopping elements of the type 2.16 are related by symmetry
operations which can be exploited to parametrize the hopping elements with a minimal
set of parameters, the Slater-Koster parameters, which are described in this section.
Each hopping element depends on the distance and the direction of the bonding be-
tween the corresponding atoms. Therefore the parametrization of the hopping elements
consists of a angular-dependent description via the Slater-Koster transformations and a
distance-dependent parametrization by Mehl et al. [15, 16].

Slater-Koster parameters The angular dependence of the basis functions φν(r −R)
is described by s-, p- and d-orbitals (see fig. 2.1). Essentially these orbitals are linear
combinations of the (complex) spherical harmonics. Therefore, the hopping elements
consist of the following matrix elements of H with the (complex) spherical harmonic
functions |l,m〉:

Ṽ
(i→j)
ll′m = 〈n, i, l,m|H |n′, j, l′,m〉 (m = m′) , (2.18)

12
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where l, l′ label the angular-momentum quantum number of the orbitals and m the
magnetic quantum number of the orbitals. The magnetic quantum numbers m and m′
of the atomic orbitals have to be the same due to selection rules. Neglecting the 3-center-
integrals, the hopping elements of the Hamiltonian can be described with only 10 types of
Slater-Koster parameters, which are shown in fig. 2.2. The Slater-Koster parameters are
linear-combinations of the matrix elements 2.18, e.g. the Slater-Koster parameter Vspσ is
Ṽ010 or Vppπ is 1

2
(Ṽ11−1 + Ṽ111) (for more information see [29]). From now on the Slater-

Koster parameters are denoted as Vll′m, where l,l′ are the angular momentum quantum
numbers in orbital notation (i.e. s,p,d) and m stands for a σ-, π- or δ-like symmetry of
the bonding. As one can see in figure 2.2 these 10 parameters are sufficient to describe
a system with one atom per unit-cell (i = j) and where only nearest-neighbour coupling
along the z-axis as bonding direction is considered. Then the hopping elements of the
Hamiltonian would take the following form in the (s, px, py, pz, dxy, dxz, dyz, dx2−y2 , dz2)-
representation:

H(R · ez) =



Vssσ 0 0 Vspσ 0 0 0 0 Vsdσ
0 Vppπ 0 0 0 0 Vpdπ 0 0
0 0 Vppπ 0 0 Vpdπ 0 0 0

−Vspσ 0 0 Vppσ 0 0 0 0 Vpdσ
0 0 0 0 Vddδ 0 0 0 0
0 0 −Vpdπ 0 0 Vddπ 0 0 0
0 −Vpdπ 0 0 0 0 Vddπ 0 0
0 0 0 0 0 0 0 Vddδ 0
Vsdσ 0 0 −Vpdσ 0 0 0 0 Vddσ


, (2.19)

where [H ]νµ(R · ez) = Hmjν
niµ with Rn −Rm = R · ez (Rn 6= Rm) the nearest-neighbour

bonding direction and i = j.
In general one needs the hopping elements for arbitrary distances and arbitrary di-

rections of the bondings. Of course the hopping elements and also the Slater-Koster
parameters depend on the chemical type of the basis atoms.

Angular-dependent parametrization Due to the angular dependence of spherical har-
monic functions, all hopping elements along an arbitrary bonding direction R can be
expressed as linear combinations of 10 Slater-Koster parameters. One has to rotate the
matrix H(R · ez) containing the hopping elements for a bonding direction along the
z-axis into the matrix with the hopping elements along the R-direction:

H(R) = U † ·H(R · ez) ·U , (2.20)

where U is the unitary matrix, which changes the representation of the s-, p- and d-
orbitals with the z-axis as quantization axis into the representation with the R-axis
as quantization axis. The matrix U depends on the directional cosines of the bonding
vector R [29]. These transformations are also called Slater-Koster transformations.
The explicit form of all these transformations can be found in the table A.1 in appendix

A. One simple example for a hopping element between two atoms with a s- and pz-orbital
is shown in figure 2.3.
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Figure 2.2: All 10 Slater-Koster parameters. σ, π and δ describe the symmetry with re-
spect to the bonding axis and they correspond to magnetic quantum numbers
m of the angular momentum. | fig. from [26]
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= +
Θ Θ Θ

!R !R!R

Hpz
s (!R) cosΘ · Vspσ sinΘ · Vspπ= +

= 0

z

Figure 2.3: Slater-Koster transformation for s and pz orbital. Hpz
s is a linear combination

of the Vspσ-case and the Vspπ-case, which is zero due to symmetry.

Making use of the Slater-Koster transformations hopping parameters along an arbi-
trary direction can be expressed by 10 Slater-Koster parameters. Of course the strength
of the hopping depends very strongly on the distance between the orbitals. Hence, one
needs also a distance-dependent parametrization for the Slater-Koster parameters.

Distance-dependent parametrization There are many distance parametrizations for
the Slater-Koster parameters [30, 31, 32, 33]. In this work a distance parametrization
by Mehl et al. is used [15]. In this parametrization the distance dependence of each
Slater-Koster parameter Vll′m(R) is described by 4 other parameters all′m, bll′m, cll′m and
dll′m:

V
(i→j)
ll′m = (a

(i→j)
ll′m + b

(i→j)
ll′m ·R + c

(i→j)
ll′m ·R2)︸ ︷︷ ︸

polynomial part

· e−(d
(i→j)
ll′m )2·R︸ ︷︷ ︸

exp.part

·fc(R) , (2.21)

where

fc(R) =

{ 1
1+exp[(R−Rc+5Lc)/Lc]

, R ≤ Rc

0 , R > Rc
(2.22)

is a Fermi-Dirac-like cutoff-function with Rc as the cutoff-radius and Lc as the broad-
ening of the cutoff-function. The distances R are in atomic units and the Slater-Koster
parameters are in units of Rydberg in the Mehl et al. parametrization.
In figure 2.4 one can see the distance-dependent behaviour of some of the Slater-

Koster parameters for Fe-Fe hopping elements. The distance parametrization could lead
to unphysical Slater-Koster parameters in the case of too small distances. An analogous
parametrization is used for the overlap matrix elements.1

Besides the hopping elements also a parametrization for the on-site energies is needed,
which is of the following form in the Mehl et al. parametrization:

εiµ = (αiµ + βiµ · ρ2/3
i + γiµ · ρ4/3

i + χiµ · ρ2
i ) (2.23)

1When adopting the parametrization scheme of Mehl et al. one should take care of the overlap matrix
elements, because there are two slightly different parametrizations [17, 18].
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Figure 2.4: Distance-dependence of selected Fe-Fe hopping elements. While the distance
parametrization provides reasonable Fe-Fe hopping elements for distances
≥ 2 Å, it is not able to reproduce the behaviour for smaller distances.

with
ρi =

∑
j 6=i

e−λ
2
j ·Rij · fc(Rij) (2.24)

as local atomic density at atom i with additional parameters λj , which depends on the
chemical type of the atom j, and Rij = |Ri −Rj| the distance between atom i and j.

In total 80 parameters are needed to describe the hopping elements between chemi-
cally equivalent atoms and another 13 parameters for the on-site elements. In this work
Fe/Pt-systems are investigated, therefore 93 parameters for the Fe-Fe-bondings and 93
parameters for the Pt-Pt-bondings are used. In principle also 112 parameters would be
necessary to describe Fe-Pt-bondings (80 parameters for the Slater-Koster parameters +
4 additional for each Vpsσ, Vdpσ, Vdpπ and Vdsσ), but unfortunately there are no provided
parameters for Fe/Pt-compounds by Mehl et al. Therefore, the following ansatz is used
to describe the Slater-Koster parameters for the Fe-Pt-hopping:

V Fe−Pt
ll′m =

1

2
(V Fe−Fe

ll′m + V Pt−Pt
ll′m ) . (2.25)

Although these parameters are a rough approximations, it can be shown that one can
obtain reasonable results for Fe-Pt cluster systems using equation [34].
The parameter sets of Mehl et al. are fitted to results of ab-initio bandstructures of the

corresponding equilibrium bulk-geometry. Therefore, these parameters provide a proper
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2.4 Electronic structure properties Theory

description of (non-magnetic) Fe-bulk and Pt-bulk systems, but are not as accurate for
Fe/Pt-systems and especially systems, whose geometry is very different compared to the
bulk geometry. This problem is known as transferability problem [35].
It should be mentioned that hopping parameters are not spin-dependent, therefore

an additional model Hamiltonian is needed to describe magnetism (see section 2.6).
Also only valence electrons have the possibility to hop, whereas the energy of the core
electrons is contained in the on-site elements.

2.4 Electronic structure properties

The parametrization by Mehl et al. provides a description of the Hamiltonian Hjν
iµ (k)

and the overlap matrix Sjνiµ (k). After solving the eigenvalue-equation

H(k) ·Ψi,µ(k) = εiµ(k)S(k) ·Ψi,µ(k)

⇔
∑
jν

Hjν
iµ (k) · (Ψi,µ)jν(k) = εiµ(k)

∑
jν

Sjνiµ (k) · (Ψi,µ)jν(k) (2.26)

one can calculate the Fermi energy, the charges and the density of states (DOS) using
the eigenenergies εiµ(k) and the eigenvectors Ψi,µ(k). Starting from now a band index
n is introduced, which replaces the indices i, µ in equation 2.26. This prevents from
misinterpreting εiµ(k) as the eigenenergy of the i-th atom and µ-th orbital.

2.4.1 Fermi energy

The Fermi energy εF is determined via the equation

Ne− =
∑
k,n

f(εk,n, εF ) , (2.27)

where
f(ε, εF ) =

1

exp[β · (ε− εF )] + 1
(2.28)

is the Fermi-Dirac distribution function for the electrons and Ne− is the total number of
valence electrons in the system. A thermal smearing β−1 = kB ·T ≈ 1 meV is introduced
to make the calculation of the Fermi energy numerically more stable.

2.4.2 Density of states (DOS)

The DOS is defined as
D(ε) =

∑
k,n

δ(ε− εk,n) . (2.29)

In this work a Lorentzian-broadening function is used instead of the δ-function:

D(ε) =
∑
k,n

1

π
· Γ

Γ2 + (ε− εk,n)2
, (2.30)
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Theory 2.4 Electronic structure properties

where Γ is the width of the Lorentzian-function. One has to be very careful in choosing
a reasonable Γ: While a very large value smears out fine structure of the DOS, a too
small width leads to many sharp peaks in the DOS.
Besides the (total) DOS, it is also enlightening to take a look at the partial DOS, such

as atom- and orbital-resolved DOS. The partial DOS of the j-th basis atom and ν-th
orbital is calculated as follows:

Djν(ε) =
∑
k,n

δ(ε− εk,n) · (Ψ†k,n)jν · (S(k) ·Ψk,n)jν . (2.31)

If an orthogonal set of basis functions would be used, the eigenvectors would be or-
thonormal: Ψ†n ·Ψm = δnm ∀n,m. In the case of a non-orthogonal set of basis functions,
it can be shown that

Ψ†n · S ·Ψm = δnm , ∀n,m . (2.32)

With eq. 2.32 follows:
D(ε) =

∑
j,ν

Djν(ε) . (2.33)

2.4.3 Band energy

The band energy is defined as follows:

Eband =
∑
k,n

εk,n · f(εk,n, εF ) . (2.34)

This is a contribution to the total energy expression (see section 2.5/2.6), where also
double-counting terms enter.

2.4.4 Charges

In the following sections the self-consistency of the tight-binding scheme is explained in
detail. One fundamental point of the self-consistent cycle is the determination of the
atomic charges. The charge calculation for a non-magnetic system is shown here. The
charge of the j-th atom in its µ-th orbital displays as follows:

nMull
jν = 2 ·

∑
k,n

f(εk,n, εF ) · (Ψ†k,n)jν · (S(k) ·Ψk,n)jν , (2.35)

where the factor 2 arises due to the spin-degeneracy in a non-magnetic system. To be
precise, the above charges are the so-called Mulliken charges. They fulfil the normaliza-
tion condition ∑

j,ν

nMull
jν = Ne− , (2.36)

whereas the so-called net charges

nnet
jν = 2 ·

∑
k,n

f(εk,n, εF ) · (Ψ†k,n)jν · (Ψk,n)jν , (2.37)

18



2.5 Local charge neutrality Theory

D(ε)

εε̄ εF

Figure 2.5: Charge transfer to the surface-atoms in a simple DOS model. Red and blue
filling in the figure represents the filling of the electrons in the bulk DOS
and surface DOS; the area under the two curves and the Fermi energy is the
same, therefore there is more charge on the surface-atom

do not fulfil eq. 2.36. Net charges and Mulliken charges are identical for an orthogonal
set of basis functions.

2.5 Local charge neutrality

In the parametrized tight-binding scheme described in section 2.3 the on-site energies
are fixed. This could lead to problems in calculating the charges for systems of low
symmetry such as slab systems or systems with non-equivalent basis atoms. One can
obtain non-physical results due to large charge transfers and a constraint for the charge
becomes necessary. The reason for the occurrence of these large charge transfers can be
understood in a simple DOS model for a thick slab system. In the following the local
(atom-specific) DOS of a surface-atom and of an atom in the bulk-like middle of the slab
system are compared. For the sake of simplicity the on-site energy of the surface atom
and bulk atom is fixed to the same value and the local DOS is symmetric with respect to
its center value ε. The width of the local DOS depends on the hopping elements and the
number of neighbours. Typically the width of the DOS for the surface atom is smaller
than for the bulk-atom. In figure 2.5 the charge transfer to the surface atoms is clearly
visible. To prevent very large charge transfers, the following ansatz for a constraint is
used:

ELCN =
ULCN

2
·
∑
i

(nMull
i − n0

i )
2 , (2.38)
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Theory 2.5 Local charge neutrality

where nMull
i is the Mulliken charge on the i-th atom, n0

i is the (desired) bulk-value of
the Mulliken charge and ULCN is the local charge neutrality constant. For simplicity
the following derivation is done only for an orthogonal set of basis functions, therefore
ni := nMull

i = nneti . To determine the form of Hamiltonian, which corresponds to the
above energy ELCN, one should minimize the following Lagrange function:

F = E0
tot +

ULCN

2
·
∑
i

(ni − n0
i )

2 +
∑
k,n

αk,n · [|Ψk,n|2 − 1] , (2.39)

where
E0

tot =
∑
k,n

f(εk,n, εF ) ·
∑
µ,ν

∑
i,j

(Ψ†k,n)iµ · (Ψk,n)jν · [H0]jνiµ (2.40)

is the total energy without the constraints and the remaining two terms are the con-
straints. The first constraint is the local charge neutrality term (see eq. 2.38) and the
other one takes into account the normalization of the wave functions.

F =
∑
k,n

f(εk,n, εF )
∑
i,j

∑
µ,ν

(Ψ†k,n)iµ · (Ψk,n)jν · [H0]jνiµ +

ULCN

2
·
∑
i

[∑
k,n,µ

|(Ψk,n)iµ|2 · f(εk,n, εF )− n0
i

]2

+
∑
k,n

αk,n ·
[∑
i,µ

|(Ψk,n)iµ|2 − 1

]

⇒ 1

f(εk,n, εF )
· ∂F

∂(Ψ†k,n)iµ

=
∑
jν

[H0]jνiµ · (Ψk,n)jν + ULCN · (ni − n0
i ) · (Ψk,n)iµ + α̃k,n · (Ψk,n)iµ = 0

The Lagrange parameters −α̃k,n = − αk,n
f(εk,n,εF )

can be identified as bandenergies εk,n of
an eigenvalue problem for the Hamiltonian:

Hjν
iµ = [H0]jνiµ + ULCN · (ni − n0

i ) · δijδµν . (2.41)

What is the physics behind the local charge neutrality constraint?
The constraint for the charge neutrality shifts the on-site energies depending on

(ni − n0
i ). If (ni − n0

i ) < 0 the on-site energy of the corresponding atom is decreased,
so that the charge on this atom increases (see figure 2.5). The parameter ULCN in the
charge constraint has to be chosen large enough to assure ni ≈ n0

i . Theoretically ni is
equal n0

i for ULCN → ∞, but of course this can not be used numerically. A good value
for preventing large charge transfers is ULCN = 5 eV.

With the local charge neutrality term the Hamiltonian depends on the charges and the
charges itself are calculated from the eigenvectors and eigenenergies of the Hamiltonian.
This leads to the possibility to calculate the charges of the system in a self-consistent
scheme. In figure 2.6 the self-consistent scheme is displayed. Besides the above linear
mixing, which converges very slowly, but is very stable, there is also the possibility to
use Broyden mixing [36] for faster convergence.
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Figure 2.6: Self-consistent cycle via the local charge neutrality.

For a system with equivalent atoms the Hamiltonian is fixed to the parametrized
Hamiltonian, which is described in section 2.3. Therefore the self-consistent charge cal-
culation yields no advantages for homogeneous systems. But for systems with inequiva-
lent atoms, the on-site energies are shifted due to the local charge neutrality constraint
until the system reaches a stable equilibrium with respect to the charges.

In the self-consistent scheme with the local charge neutrality, the band energy 2.34
is not the whole part of the total energy and there is a double counting part, which has
to be taken into account. This double counting term is not derived in the following, but
in the section on the Stoner-model (see section 2.6) an additional double counting term
is introduced, which derivation (eqs. 2.55-2.58) shows how one can derive eq. 2.43. The
total energy has the following form:

Etot = Eband −
ULCN

2
·
∑
i

(n2
i − (n0

i )
2) . (2.42)

For systems with identical basis atoms, n0
i = n0, the double counting can be rewritten

as
ULCN

2
·
∑
i

(ni − n0
i )

2 (2.43)

using charge conservation
∑

i ni =
∑

i n0.
All equations throughout this section are valid only for an orthogonal set of basis

functions. For a non-orthogonal set of basis functions the charge ni in the equations
2.41-2.43 has to be replaced by the Mulliken charge nMull

i and the additional charge
constraint in the Hamiltonian has the following form:

ULCN

2
·
(
(nMull

i − n0
i ) + (nMull

j − n0
j)
)
· Sjνiµ . (2.44)
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Figure 2.7: Stoner model in a simple DOS picture. The dashed lines display the DOS
of the non-magnetic case. Due to an exchange splitting introduced by the
Stoner model the DOS is shifted depending on its spin. The band filling,
represented by the red colour, is different in the spin channels. Therefore the
system develops a magnetic moment.

2.6 Stoner model

As mentioned in section 2.3 the parametrization for the hopping elements does not in-
clude magnetism, because the hopping elements are spin independent, i.e. V ↑→↑ll′m = V ↓→↓ll′m

and V ↑→↓ll′m = 0. In this work a simple Stoner model is applied to model magnetism. Here,
an exchange splitting between the electronic majority-bands (↑-bands) and minority-
bands (↓-bands) is introduced in the same way as in the original Stoner model [19, 20].
The exchange splitting depends on the magnetic d-moment of the corresponding atom
and a Stoner parameter I:

εexc
iµ = Iiµ ·md

i . (2.45)

The calculation of the magnetic moments in the tight-binding framework is explained
later. At the moment it is enough to know, that md

i = N↑i,d−N↓i,d for collinear magnets,
where Nσ

i,d (σ =↑ , ↓) is the number of electrons in the ↑- , ↓ -d-bands. In figure 2.7 one
can see the connection between the exchange splitting and the filling of ↑- and ↓ -bands
via a simple DOS consideration.
For the case of collinear magnetism the Stoner-part of the Hamiltonian in spin-space

has the following form:

[Hmag]jνiµ =

(
− Iiµ

2
·md

i 0

0
Iiµ
2
·md

i

)
· δijδµν . (2.46)

Therefore the Stoner-part modifies exclusively the on-site energies of the system. In the
Stoner-part only the magnetic d-moments are used to determine the exchange splitting,
because in 3d-transition metals (like Fe) the magnetism is originated mainly from the
3d-electrons. This can be shown again with the help of a simple DOS-model and the
Stoner criterion: I ·D(εF ) > 1 for ferromagnetic materials, where D(εF ) is the DOS at
the Fermi energy.

22



2.6 Stoner model Theory

ε

s 

d 

D(ε)

εF

Figure 2.8: Simplified DOS of a 3d-transition metal. The partial DOS in the s-states
at the Fermi energy is much lower than the partial DOS in the d-states.
Therefore the d-states dominate the magnetic behaviour.

Essential for the formation of ferromagnetism is the density of states at the Fermi
energy. In figure 2.8 the simplified DOS of a 3d-transition metal is shown. Typically
for transition metals the DOS at the Fermi energy consists mainly of the partial DOS
of the d-orbitals. As a consequence, a small exchange splitting in the d-states lead
to large magnetic d-moments, so that |md| � |ms|,|mp|. Using only the d-moments
to determine the exchange splitting simplifies the below described self-consistent tight-
binding calculation without loosing much accuracy.

The Hamiltonian depends on the magnetic d-moments, which are calculated from the
eigenenergies and eigenvectors of the Hamiltonian. Now one can calculate the magnetic
moments in a self-consistent scheme until convergence is reached. In figure 2.9 the self-
consistent scheme, together with the local charge neutrality described in section 2.5,
is displayed. The local charge neutrality part shifts the on-site energies of the atoms
until the charges are converged as described in detail in section 2.5. The Stoner-model
modifies also the on-site energies of the system, but now an exchange splitting between
the on-site energies of the ↑- and ↓-bands is introduced. This splitting changes during
the self-consistent scheme until the magnetic moments are converged. In the converged
case the system has reached a stable equilibrium with respect to the charges and the
magnetic moments.

Now one should take a look, how these magnetic moments can be calculated. The
magnetic moments and also the (net-)charges can be determined with the help of the
density matrix ρ. The density matrix for the i-th atom and µ-th orbital has the following
form in spin-space with the z-axis as quantization axis:

ρ
iµ

=

(
ρ↑↑iµ ρ↑↓iµ
ρ↓↑iµ ρ↓↓iµ

)
, (2.47)
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Figure 2.9: Self-consistent cycle via the Stoner part and the local charge neutrality

with
ρσσ

′

iµ =
∑
k,n

f(εk,n, εF ) · (Ψ†k,n)σiµ · (Ψk,n)σ
′

iµ . (2.48)

The (net-)charge of the i-th atom and µ-th orbital is the trace of the density matrix:

nnet
iµ = tr[ρ

iµ
] = ρ↑↑iµ + ρ↓↓iµ . (2.49)

In the special case of a non-magnetic system one obtains the result 2.37. The magnetic
moment of the i-th atom and µ-th orbital can be determined for all the three spatial
directions as follows:

(miµ)x = 2 Re[ρ↑↓iµ ] (2.50)

(miµ)y = 2 Im[ρ↑↓iµ ] (2.51)

(miµ)z = ρ↑↑iµ − ρ↓↓iµ (2.52)

These equations can be directly derived from the definition

[miµ]α = tr[ρ†
iµ
· σα] α = x, y, z , (2.53)

where σα are the well-known Pauli-matrices. Similarly to the charges there is a distinc-
tion between magnetic net moments and magnetic Mulliken moments. With eqs. 2.50-
2.52 the magnetic net moments are calculated, whereas the magnetic Mulliken moments
can be determined by

[ρσσ
′

iµ ]Mull =
∑
k,n

f(εk,n, εF ) · (Ψ†k,n)σiµ · (S(k) ·Ψk,n)σ
′

iµ . (2.54)

Normally, one should use here the Mulliken moments. However, using the net moments
instead of the Mulliken moments does not make a big difference in the converged results
and one could stick to the simpler net moments.
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We close this section with a derivation of an expression for the exchange energy con-
tribution to the total energy as promised in section 2.5. The total energy Etot is not
any more only the band energy Eband (see eq. 2.34), there is a double counting term,
which has to be considered. One can show [37], that the total energy of the Hamiltonian
H0 +Hmag is

Etot = E0
tot −

1

4

∑
i,µ

Ii,µ ·mµ
i ·md

i , (2.55)

where
E0

tot =
∑
k,n

f(εk,n, εF ) ·
∑
µ,ν

∑
i,j

∑
σ,σ′

(Ψ†k,n)σiµ · (Ψk,n)σ
′

jν · [H0]jνσ
′

iµσ (2.56)

is the total energy of the non-magnetic system. Easily accessible is the band energy,
which is calculated in the following:

Eband =
∑
k,n

f(εk,n, εF ) · εk,n

=
∑
k,n

f(εk,n, εF ) ·
∑
µ,ν

∑
i,j

∑
σ,σ′

(Ψ†k,n)σiµ · (Ψk,n)σ
′

jν ·(
[H0]jνσ

′

iµσ −
Ii,µ
2
· σ ·md

i · δσσ′δijδµν
)

= E0
tot −

∑
k,n

f(εk,n, εF )
∑
i,µ,σ

|(Ψk,n)σiµ|2 ·
Ii,µ
2
·md

i · σ

= E0
tot −

∑
i,µ

Ii,µ
2
·md

i ·mµ
i . (2.57)

If one compares eq. 2.55 with eq. 2.57, one can determine the double counting:

Etot = Eband +
∑
i

Ii,µ
4
·mµ

i ·md
i . (2.58)

2.7 Spin-orbit coupling

The spin-orbit coupling (SOC) is a relativistic effect with the energy scale well below
0.5 eV. A very important aspect of SOC is the symmetry breaking it causes in a ferromag-
net. Many interesting effects like the Rashba-splitting [38] or the Dzyaloshinskii-Moriya
interaction (DMI) [3, 4], which is introduced in section 2.10 of this thesis, are based on
SOC.
Due to the relativistic nature of SOC one has to examine the Dirac equation to

understand its origin. In a non-relativistic expansion of the Dirac equation the following
expression for SOC can be derived [39]:

HSOC ∝ (∇V (r)× p) · σ , (2.59)

25



Theory 2.7 Spin-orbit coupling

where σ is the vector containing the Pauli-matrices, V (r) is the electrostatic potential
and p is the momentum of the electron. In solids the electric field, i.e. ∇V (r), is
strongest close to the nucleus, where the potential is almost spherical. Therefore using
a spherical potential V (r) = V (r) is a good approximation and the expression 2.59 can
be rewritten:

HSOC = ξ(r) ·L · S , (2.60)

with L = r × p the angular momentum, S = h̄
2
· σ the spin of the electron and the

radial-dependent function ξ(r) = 1
2m2c2

· 1
r
· ∂V (r)

∂r
.

In representation of the atomic orbitals, using 〈r|iµ〉 = Riµ(r) · Y (i)
µ (Θ, φ) with Riµ(r)

a radial function and Y
(i)
µ (Θ, φ) a spherical harmonic function, the expression has the

following form:

(HSOC)jνσ
′

iµσ = 〈i, µ, σ| ξ(r) ·L · S |j, ν, σ′〉

=
h̄

2

[∫
dr · r2ξ(r)R∗iµ(r) ·Rjν(r)

]
︸ ︷︷ ︸

ξiµ,jν

·

 2π∫
0

π∫
0

dΘdφ sin Θ · [Y (i)
µ ]∗(Θ, φ) · Y (j)

ν (Θ, φ) · 〈σ|L · σ |σ′〉


= ξiµ,jν · 〈µσ|L · σ |νσ′〉 .

The function ξ(r) is usually localized near r = 0, therefore ξiµ,jν ≈ δij ξµν is a reasonable
approximation. The representation of the angular moment L in atomic orbitals, i.e. Lνµ =
〈µ|L |ν〉, can be found in the appendix in A.1. Important to notice is that 〈µ|L |ν〉 is
block-diagonal with respect to s-,p- and d-orbitals. Therefore only three SOC-parameters
per basis atom are necessary for describing SOC in tight-binding:

• ξi,p, SOC-parameter of p-orbitals

• ξi,d, SOC-parameter of d-orbitals

• ξi,f , SOC-parameter of f -orbitals

There is no contribution to SOC from the s-orbital due to l = 0. In this work the
f -orbitals are not used, but usually they have a large contribution to SOC for the rare-
earth metals.

Combining these results leads to the following expression for SOC in representation
of the atomic orbitals in spin-representation with the z-axis as quantization axis:

(HSOC)jνiµ = ξiµ ·
(

(Lz)
ν
µ (Lx)

ν
µ − i · (Ly)νµ

(Lx)
ν
µ + i · (Ly)νµ −(Lz)

ν
µ

)
· δij , (2.61)

where (Lα)νµ are the aforementioned angular momentum components in atomic orbital
representation (see A.1).
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For an arbitrary spin quantization axis the SOC-matrix 2.61 has to be rotated with a
spin-rotation matrix U (see eq. 2.66):

H̃SOC = U ·HSOC · U † . (2.62)

Switching on SOC leads to non-vanishing expectation values for the orbital moments
〈Li〉. The following equation is used to determine the orbital moment of the i-th atom:

〈Li〉 =
∑
k,n

f(εk,n, εF ) ·
∑
µ,ν,σ

(Ψ†k,n)σiµ · (Ψk,n)σiν ·Lνµ . (2.63)

The above moments are net moments. For a determination of the orbital Mulliken
moments one has to include the overlap matrix as in eq. 2.54:

〈LMull
i 〉 =

∑
k,n

f(εk,n, εF ) ·
∑
µ,ν,σ

(Ψ†k,n)σiµ · (S(k) ·Ψk,n)σiν ·Lνµ . (2.64)

2.8 Non-collinear magnetism

2.8.1 Non-collinear magnetism in the unit-cell

Many interesting phenomena appear due to non-collinear magnetism, for example the
Néel-state in magnetic frustrated systems [40] or spin-spiral ground states in Cr/W(110)
[12], 2Fe/W(110) [8] or even Fe(110)-monolayers [41]. Implementing non-collinear mag-
netism in the tight-binding scheme is rather straightforward. In figure 2.10 a magnetic
moment is pointing in an arbitrary direction, which is defined by the angles Θ and φ in
the spherical coordinates representation:

m = |m| ·

cosφ sin Θ
sinφ sin Θ

cos Θ

 . (2.65)

We proceed by defining two frames of reference. The global frame is the representation
of the spins with the z-axis as quantization axis, whereas the local frame is the represen-
tation with the direction of m as quantization axis. The following spin-rotation matrix

U rotates the spin up state |↑〉 =

(
1
0

)
of the global frame into the spin up state |↑〉m of

the local frame [42]:

U(Θ, φ) =

(
e−iφ

2 · cos(Θ
2

) −e−iφ
2 · sin(Θ

2
)

eiφ
2 · sin(Θ

2
) eiφ

2 · cos(Θ
2

)

)
. (2.66)

Therefore it follows:

|↑〉m = U(Θ, φ) |↑〉 = e−iφ
2 · cos

(
Θ

2

)
|↑〉+ eiφ

2 · sin
(

Θ

2

)
|↓〉 . (2.67)
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x

y

z

!m

Θ

φ

Figure 2.10: Magnetic moment in spherical coordinate representation.

The magnetic part of the Hamiltonian has the following form in its local frame (see
eq. 2.46):

[Hmag]jνiµ =

(
− Iiµ

2
·md

i 0

0
Iiµ
2
·md

i

)
· δijδµν

= −Iiµ
2
·md

i · σ · δijδµν . (2.68)

We will show that this expression is, as expected, invariant under spin-rotations. In the
special case of md

i = md
i · ez the local frame and global frame are the same. [Hmag]jνiµ

can be transformed into the global frame using the transformation matrix U :

[Hglobal
mag ]iµiµ = U(Θi, φi) · [Hmag]iµiµ · U †(Θi, φi) , (2.69)

where Θi and φi are the angles defining the direction of the magnetic momentmd
i . This

leads to the following expression:

[Hglobal
mag ]iµiµ =

Iiµ
2
·
(
−md

i · cos Θi −md
i · sin Θi · e−iφi

−md
i · sin Θi · eiφi md

i · cos Θi

)
=

Iiµ
2
·
(

−(md
i )z −[(md

i )x − i · (md
i )y]

−[(md
i )x + i · (md

i )y] (md
i )z

)
= −Iiµ

2
·md

i · σ . (2.70)

The components of the magnetic d-moment (md
i )α are determined via equations 2.50-

2.52. Treating non-collinear magnetism using equation 2.69 increases the number of
variables in the self-consistent scheme (figure 2.9) by a factor of two. For the collinear
case one component of the d-moments [md

i ]α is sufficient, whereas the complete vector
md

i is necessary in the non-collinear case.
Performing self-consistent calculations for a non-collinear case makes it necessary to

use another constraint, in addition to the local charge neutrality term, in order to pin
the directions of the magnetic moments. Following a scheme of R. Gebauer [43], one

28



2.8 Non-collinear magnetism Theory

Θ
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Figure 2.11: Magnetic field Bcon in the constraint.

should minimize the following generalized total energy:

Etot[n(r),m(r)] = E0
tot[n(r),m(r)] + λ ·

∫
dr (m(r)− m̄(r))2 , (2.71)

where E0
tot[n(r),m(r)] is the total energy without the constraint and λ ·

∫
dr (m(r) −

m̄(r))2, with m̄(r) the predefined magnetic moment, a constraint for the direction of
the magnetic moment. In [43] it is shown, that for our purposes the following constraint
is able to pin the Θ-angle of the moments up to a small region around the predefined
direction:

Econ = λ ·
∑
i

(
arccos

(
[md

i ]z
|md

i |

)
−Θi

)2

. (2.72)

The Hamiltonian then has to be complemented with the following expression:

[Hcon]jνiµ = −σ ·Bcon(md
i ) · δijδµν , (2.73)

whereBcon is a magnetic field, which is perpendicular tomd
i (figure 2.11) pointing in the

direction of the chosen angle. The strength of Bcon depends on the difference between
the chosen angle Θi and the current angle arccos

(
[md

i ]z
|md

i |

)
:

Bcon = −
2λ ·

(
arccos

(
[md

i ]z
|md

i |

)
−Θi

)
(

1−
(

[md
i ]z

|md
i |

)2
)1/2

· |md
i |3
·

 [md
i ]z · [md

i ]x
[md

i ]z · [md
i ]y

−[md
i ]

2
x − [md

i ]
2
y

 . (2.74)

The constraint does not fix the absolute value of the magnetic moments due to the fact
that Bcon is perpendicular to md

i .
The application of this constraint leads in some cases to problems, particularly in

fixing small magnetic moments. This also includes the polarized Pt-moments in Fe/Pt
layers, which are discussed in chapter 5.
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Theory 2.8 Non-collinear magnetism

Figure 2.12: Four examples of spin-spirals with spin rotation axis perpendicular (upper
two) and parallel (lower two) to the spin-spiral vector q. For each case two
spirals with cone-angles of Θ = π

2
and Θ = π

4
are shown.

2.8.2 Spin-spirals

Some materials like Cr/W(110) do not show a ferromagnetic ground state, but rather
a spin-spiral structure [12]. A spin-spiral is a periodic magnetic structure, in which the
directions of the spins are determined as follows:

Si =

cos(q ·Rn) · sin Θ
sin(q ·Rn) · sin Θ

cos Θ

 . (2.75)

The cone-angle Θ is the angle between the spins and the rotation axis of the spin-spiral.
In equation 2.75 the rotation axis is defined along the z-axis. The rotation angle of
the spin-spiral is defined via the spiral vector q, which also defines the direction along
which the spins are rotated. The rotation angle of the spin at position Rn is defined as
φn = q ·Rn. In figure 2.12 different spin-spirals with cone-angles Θ and spiral-vectors q
are displayed.
There are two approaches how to treat spin-spiral systems computationally. One

possibility is to describe spin-spirals with rational |q|-values in a super-cell using the
transformation 2.69 for Hmag (see picture 2.13a). A big disadvantage of this method is
the huge amount of computational time needed in particular for small q-values. However,
within this scheme the implementation of SOC can be done in a straightforward way
(see section 2.6).
Another possibility to describe spin-spirals in periodic systems is via the generalized

Bloch theorem (see figure 2.13b , [21, 22, 23]). The Bloch theorem according to eq. 2.9
is not any more valid for a spin-spiral due to the non-periodicity of the potential. But if
one combines a lattice-translation with the corresponding spin-rotation, each unit-cell is
equivalent. Therefore a generalized Bloch theorem remains valid and can be expressed
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a : unit-cell 

(a) 

(b) 

!q

Figure 2.13: Different possibilities of treating spin-spirals: (a) large super-cell for com-
mensurate q-values, (b) generalized Bloch theorem.

as:

U(q ·Rn) · T (Rn) ·
(

Φ↑(k, r)
Φ↓(k, r)

)
= exp(ik · r) ·

(
exp(− i

2
q ·Rn) · Φ↑(k, r)

exp( i
2
q ·Rn) · Φ↓(k, r)

)
, (2.76)

where T (Rn) is a lattice-translation operator, U(q ·Rn) is a spin-rotation matrix with
a rotation angle φn = q ·Rn and the z-axis as rotation axis, and Φσ(k, r) (σ =↑, ↓) is
the σ-component of the Bloch-wave Φ(k, r).
As in eq. 2.8 one can construct Bloch-waves, which satisfy the generalized Bloch

theorem:

|Φ↑iµ(k)〉 =
1√
N
·
∑
n

eik·(Rn+τ i) · |n, i, µ〉 ·
(

e−
i
2
q·(Rn+τ i) · cosΘ

2

e
i
2
q·(Rn+τ i) · sinΘ

2

)
(2.77)

|Φ↓iµ(k)〉 =
1√
N
·
∑
n

eik·(Rn+τ i) · |n, i, µ〉 ·
(
−e−

i
2
q·(Rn+τ i) · sinΘ

2

e
i
2
q·(Rn+τ i) · cosΘ

2

)
. (2.78)

In representation of these Bloch-waves one obtains the following Hamiltonian Hjν
iµ (k):

〈Φσ
iµ|H |Φσ′

jν〉 = [Hjν
iµ (k, q)]σσ

′
=
∑
n

eik·(Rn+τ j−τ i) · [sji (q ·Rn)]σσ
′ ·Hnjν

0iµ , (2.79)

where [sji (q ·Rn)]σσ
′ are phase-factors for the σσ′-components of the Hamiltonian:

(sji (q ·Rn))↑↑ = e−i q
2
·(Rn+τ j−τ i) · cos2

(
Θ

2

)
+ ei q

2
·(Rn+τ j−τ i) · sin2

(
Θ

2

)
(2.80)

(sji (q ·Rn))↓↓ = ei q
2
·(Rn+τ j−τ i) · cos2

(
Θ

2

)
+ e−i q

2
·(Rn+τ j−τ i) · sin2

(
Θ

2

)
(2.81)

(sji (q ·Rn))↑↓ = 2i · sin
(q

2
· (Rn + τ j − τ i)

)
· sin

(
Θ

2

)
· cos

(
Θ

2

)
(2.82)

(sji (q ·Rn))↓↑ = [(sji (q ·Rn))↑↓]∗ (2.83)
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ε

εF

without SOC 

with SOC 
ε0

F

Figure 2.14: Change in the Fermi energy after adding 1st-order SOC contribution. εF is
the Fermi energy with SOC, whereas ε0

F is the Fermi energy without SOC.

In the appendix in A.2 one can find a detailed derivation of these expressions.

Important to notice is that the Hamiltonian [Hjν
iµ (k, q)]σσ

′ of eq. 2.79 is expressed in
representation of the local spin-frame, which originates that the magnetic part of the
Hamiltonian is diagonal in spin (see eq. 2.46). In the local spin-frame the phase-factors
[sji (q ·Rn)]σσ

′ are a bit more complicated than in the global frame (see [26]), whereas
the magnetic Hamiltonian-part is of a simpler structure in the local frame.
The total energy of a spin-spiral system depends on the cone-angle Θ and the spiral-

vector q. A very insightful quantity is the magnon dispersion E(q) of a spin-spiral with
fixed cone-angle. This curve E(q) can be used to determine the Heisenberg exchange-
coupling parameters Jij or the Dzyaloshinskii-Moriya vectorsDij (see section 2.10, equa-
tions 2.102 and 2.104). For DMI SOC is necessary, which brings up the question how
to implement SOC in the framework of the generalized Bloch theorem. SOC breaks
symmetries by introducing a preferred direction for the magnetization, therefore in its
presence the generalized Bloch theorem is not valid. Within the generalized Bloch theo-
rem each unit cell, independent of the direction of the magnetic moments, is equivalent.
Therefore we add an additional energy-contribution induced by SOC after having cal-
culated the spin-spiral energies without SOC with the generalized Bloch theorem. This
is possible if one treats SOC in a perturbation-theoretical way [24, 9]:

εk,n(q) = ε0
k,n(q) + ∆εk,n(q) , (2.84)

where ε0
k,n(q) is the eigenenergy of the spin-spiral without SOC and

∆εk,n(q) = 〈Ψk,n|HSOC |Ψk,n〉 (2.85)

the 1st-order contribution due to SOC.

There is a possibility to calculate the new Fermi energy εF after adding ∆εk,n(q) to
the spin-spiral eigenenergies or to use the old Fermi energy ε0

F of the spin-spiral system
without SOC. In general the Fermi energies can shift considerable as indicated in the
figure 2.14. While ab-initio calculations for Fe/W-systems exhibit, that the new recal-
culated Fermi energy is nearly the same as the old Fermi energy [9], the Fe/Pt-systems,
which will be discussed in the applications of this thesis, show a non-negligible difference
between the old or new Fermi energy.
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2.8 Non-collinear magnetism Theory

For the more detailed discussion of SOC it is intuitive, to take a look at the total
1st-order SOC contribution to the total energy using the new or old Fermi energy:

(a) unchanged Fermi energy:

∆ESOC(q) =
∑
k,n

f(ε0
k,n, ε

0
F ) · (ε0

k,n(q) + ∆εk,n(q))−∑
k,n

f(ε0
k,n, ε

0
F ) · ε0

k,n(q)

=
∑
k,n

f(ε0
k,n, ε

0
F ) ·∆εk,n(q) (2.86)

It can be proven [24] that
∆εk,n(−q) = −∆εk,n(q) . (2.87)

On the other hand, for the eigenenergies of the spin-spiral system without SOC we have

ε0
k,n(−q) = ε0

k,n(q) (2.88)

due to symmetry. Therefore the SOC-contribution fulfils the following relation:

∆ESOC(−q) = −∆ESOC(q) . (2.89)

It is also obvious that ∆ESOC ∝ ξSOC, which can be seen in expression 2.85.

(b) recalculated Fermi energy:

∆ESOC(q) =
∑
k,n

f(ε0
k,n + ∆εk,n(q), εF ) · (ε0

k,n + ∆εk,n(q))−
∑
k,n

f(ε0
k,n, ε

0
F ) · ε0

k,n

=
∑
k,n

[f(ε0
k,n + ∆εk,n(q), εF )− f(ε0

k,n, ε
0
F )] · ε0

k,n +∑
k,n

f(ε0
k,n + ∆εk,n(q), εF ) ·∆εk,n(q)

≈
∑
k,n

[f(ε0
k,n, ε

0
F ) ·∆εk,n(q) + (ε0

k,n(q) + ∆εk,n(q)) ·

(
∂f

∂ε0
k,n

·∆εk,n(q) +
∂f

∂ε0
F

· (εF − ε0
F ))] (2.90)

It is obvious that the relation 2.89 is not any more valid. In the case of εF ≈ ε0
F it is

fulfilled to a good approximation and we can use the old Fermi energy without causing
a significant error.

We should remark that treating SOC for spin-spirals in 1st-order perturbation the-
ory does not allow to calculate the magneto-crystalline anisotropy energy (MCA) of the
system. To treat also the MCA, one has to extend the mechanism to 2nd-order pertur-
bation theory [24, 9], which is not implemented in the used tight-binding framework yet.
Instead collinear SOC calculations are used to determine the MCA.
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Theory 2.9 Force theorem

2.9 Force theorem

The self-consistent scheme of the tight-binding method (see figure 2.9) can require a
lot of computational time for systems with many basis atoms. Especially for magnon
dispersions, calculations for a large set of q-values have to be performed. Fortunately
one can spare a lot of computing time using the so-called force theorem [44, 45, 46].
The force theorem can be used in systems, where a small perturbation δH is added

to a system H0, whose self-consistent solution is known:

H = H0 + δH with H0 ·Ψ0
k,n = ε0

k,n ·Ψ0
k,n . (2.91)

For the perturbed system only one iteration is done, which is also known as “one-shot-
calculation”. Of course this one-shot-calculation depends delicately on the starting values
for the magnetic moments and Mulliken charges, therefore reasonable starting values
are necessary. The charges and moments of the converged unperturbed problem should
provide good starting values if the perturbation δH is small.
The force theorem can be expressed by the following relation:

Etot − E0
tot = Eband − E0

band

=
∑
k,n

f(εk,n, εF ) · εk,n −
∑
k,n

f(ε0
k,n, ε

0
F ) · ε0

k,n , (2.92)

where Eband is the band energy of the perturbed system, E0
band is the band energy of

the unperturbed system and Etot is the total energy of the perturbed system for a self-
consistent calculation (including double counting terms). Within the force theorem the
difference of the single particle energies is taken as approximation for the difference of
the total energies.
In the treatment of spin-spirals a self-consistent calculation for q = 0 (ferromagnetic

case) is performed and the converged charges and moments are used as starting-values
for a one-shot-calculation for q 6= 0.
To ensure that the force theorem is a proper approximation, in this case the spin-

spiral for q 6= 0 has to be only slightly different in comparison to the q = 0 -case. This
is definitely true for small cone angles Θ and small q-values, but the validity for larger
cone-angles and larger q-values is examined in chapter 3 and 5.

2.10 Extended Heisenberg model

It is common to use a model-Hamiltonian to describe the magnetic interactions in a
(periodic) system. In the following sections the extended Heisenberg model is described
in detail [5].
In the extended Heisenberg model the following assumptions are taken into account:

• The magnetic moment of each atom is described by a localized (classical) spin-
vector Si at the corresponding lattice position.
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• The magnetic moment has a fixed absolute value, i.e. the absolute value of the
magnetic moment does not change with the q-value, which is an approximation for
larger cone-angles Θ in the spin-spiral case.

The extended Heisenberg model can be written as generalized scalar-product of spins:

Hex.Heisenberg = −
∑
i,j

STi · V ij · Sj . (2.93)

Here, V ij is a 3×3 matrix, which can be divided into a symmetric and an antisymmetric
part, V S

ij and V
A
ij:

V ij =
1

2
(V ij + V T

ij) +
1

2
(V ij − V T

ij) = V S
ij + V A

ij . (2.94)

It is common to divide the symmetric matrix V S
ij into a traceless part and an isotropic

exchange part:
V S

ij = [V S
ij − Jij · I] + Jij · I , (2.95)

with

Jij =
1

3
· tr[V S

ij] . (2.96)

The antisymmetric part can be expressed using a cross-product:

STi · V A
ij · Sj = Dij · (Si × Sj) , (2.97)

where
[V A

ij]nn′ =
∑
l

[Dij]l · εlnn′ . (2.98)

Here, εlnn′ is the Levi-Civita tensor.
Summarizing the extended Heisenberg model consist of the following parts:

Hex.Heisenberg = −
∑
i,j

[ Jij · STi · Sj︸ ︷︷ ︸
symmetric isotropic exchange

+STi · (V S
ij − Jij · I) · Sj︸ ︷︷ ︸

symmetric anisotropic exchange

+

Dij · (Si × Sj)︸ ︷︷ ︸
Dzyaloshinskii−Moriya interaction

] . (2.99)

In many cases the symmetric anisotropic exchange part is neglected except for the di-
agonal part

STi · (V S
ij − Jij · I) · Sj ≈ STi ·Ki · Si · δij , (2.100)

which describes the magneto-crystalline anisotropy (MCA) of the system with the MCA-
matrix Ki.
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2.10.1 Symmetric isotropic exchange

This part is the well-known Heisenberg exchange, which describes a ferromagnetic (Jij >
0) or anti-ferromagnetic (Jij < 0) coupling between the spins Si and Sj. If one considers
only next-neighbour coupling a collinear alignment of the spins would be the ground-
state solution. In general, it can be proven that a solution of the Heisenberg Hamiltonian
in a periodic system is a spin-spiral. For a spin-spiral with a cone-angle Θ, spiral-vector
q and the z-axis as the rotation axis, the Heisenberg model can be rewritten in the
following way using

Si =

cos(q ·Rn) · sin Θ
sin(q ·Rn) · sin Θ

cos Θ

 :

−
∑
m

∑
n∈shell(m)

Jm ·S0 ·Sn = −
∑
m

∑
n∈shell(m)

Jm · [cos2 Θ + sin2 Θ · cos(q ·Rn)] . (2.101)

Here a shell is a set of atoms, which have the same fixed distance from the reference
atom. For example shell(1) includes all nearest neighbours of the reference atom. If one
calculates the magnon dispersion E(q), the Heisenberg exchange-coupling parameters
Jn can be determined via the following equation:

1

sin2 Θ
· [E(q)− E(0)] = −

∑
m

∑
n∈shell(m)

Jm · [cos(q ·Rn)− 1] . (2.102)

The coupling parameters can be calculated via a fitting procedure to quantum-mechanical
results of the energy E(q).
An important quantity is the so-called spin-stiffness constant A, which describes

the pre-factor of the quadratic q-dependence in the magnon dispersion for very long-
wavelength spin-spirals, i.e. very small q-values. This quadratic q-dependence can be
easily seen from eq. 2.102 due to (1− cos(q ·Rn)) ≈ (q ·Rn)2 for small q.

2.10.2 Dzyaloshinskii-Moriya interaction

The antisymmetric exchange part in the extended Heisenberg model is also known as
Dzyaloshinskii-Moriya interaction (DMI) [3, 4]. In contrast to the symmetric exchange
part the energies of the antisymmetric exchange part are in general different for dif-
ferent rotational senses of the spin-spirals. This can be easily seen by rewriting the
antisymmetric part of the Hamiltonian as follows:

EDM = −
∑
m

∑
n∈shell(m)

Dm · (S0 × Sn)

= −
∑
m

∑
n∈shell(m)

Dm ·

 − sin Θ · cos Θ · sin(q ·Rn)
sin Θ · cos Θ · (cos(q ·Rn)− 1)

sin2 Θ · sin(q ·Rn)

 . (2.103)
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Figure 2.15: Different spin-spirals on an isotropic surface. Each case (a), (b) and (c) is
explained in the text. | modified fig. from [8]

In the special case of flat-spirals (Θ = π
2
), the equation simplifies to

EDM(q) = −
∑
m

∑
n∈shell(m)

(Dm)z · sin(q ·Rn) . (2.104)

From this expression it becomes clear that EDM(−q) = −EDM(q). Of course the ex-
pression for the DMI would be of an analogous form for flat-spirals in the x-z or y-z
plane.

In many cases only the first neighbour shell is considered for the DMI, therefore the
DM-constant D := D1 is determined via a linear fit to the magnon dispersion for small
q-values for which sin(q ·Rn) ≈ q ·Rn is valid.

Crucial for the appearance of the DMI is the presence of SOC and a non-inversion-
symmetric environment. Both requirements are needed, otherwise, the energy of a spin-
spiral is independent of the rotational sense due to symmetry arguments, i.e. EDM = 0.
As a deep understanding of the symmetry arguments is crucial for further analyse, we
provide a more detailed explanation.

If SOC is not considered, real-space and spin-space would be independent and a global
spin-transformation would not change the energy of the system. Now there exists a
mirror-transformation applied to a flat-spiral leads to the reversion of its rotation sense.
This mirror-plane is the plane, which is spanned by the spiral vector q and the rotation
axis of the spin-spiral. Since a global spin-transformation does not change the energy in
the system without SOC, it holds EDM(−q) = EDM(q) = −EDM(q) = 0.

The argument for a non-inversion-symmetric environment as requirement for non-
vanishing DMI is a little bit more complicated to understand, because the type of spin-
spiral plays also an important role. Figure 2.15 should help with the explanation. Here,
flat spin-spirals on a surface are displayed. In each case (a), (b) and (c) two spin-spirals
with equal |q| but opposite rotational sense are shown. The only difference among
(a), (b) and (c) is the rotation axis. In the cases (a) and (b) there is a preserved
mirror-plane, which leads to vanishing DMI. In the case (c) there is no mirror-plane due
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to the symmetry-breaking effect of the surface, which leads to a non-vanishing DMI-
contribution. These statements correspond to the case of an isotropic surface. For more
details about the symmetry of the DMI for more general systems the reader is referred
to reference [47].

2.10.3 Symmetric anisotropic exchange

As already mentioned in the extended Heisenberg model only the diagonal part of the
symmetric anisotropic exchange is considered, which can be identified as MCA. The
MCA is important to investigate the occurence of spin-spirals due to DMI, because
eventually the MCA can inhibit the development of a spin-spiral. For example if the
system in figure 2.15(c) has an easy axis perpendicular to the plane of the spin-spiral
and the MCA is strong enough, the system could favour a collinear alignment along the
easy axis over the spin-spiral structure even in the presence of DMI.
The stability of spin-spirals can be most easily investigated with a micromagnetic

model [48, 49]. Without going into details, we note that relations between the spin-
stiffness constant A, the DM-constant D and the MCA give a stability condition for
the development of a spin-spiral in the system. The micromagnetic model is based on
a continuum-theoretical approach for long-wavelength spin-spirals, which leads to the
following equation for the energy E of the spin-spiral in dependence of the spin-spiral
period length λ:

E(λ) = A · λ−2 +D · λ−1 + K̄ . (2.105)

The derivation of the spin-stiffness constant A and the DM-constant D with the help of
the magnon dispersion E(q), is explained in section 2.10.1 and 2.10.2. The connection to
eq. 2.105 can be easily seen by using |q| ∝ λ−1 in eq. 2.102 and 2.104 for small q-values.
The constant K̄ describes the average MCA over an entire period of the spin-spiral. In
section 5.3 the constants A and D are derived for Fe/Pt(001) layers.

38



3 Pure Fe-Systems

3.1 Introduction

Pure Fe-systems are well suited for comparing the results of the TB-calculations with
ab-initio results. Systems like bcc-Fe, Fe monolayers and Fe chains do not need a large
amount of computational time and their simplicity allows for a deeper understanding
of the physics behind our tight-binding scheme. Although the systems are simple, the
whole physics behind the tight-binding Hamiltonian

H = H0 +Hmag +HLCN +HSOC (3.1)

can be tested.
The quality of the Slater-Koster parametrization is examined by comparing non-

magnetic bcc-Fe calculations with corresponding ab-initio results (see section 3.2). There,
the splitting in the band structure due to SOC enables a possibility to test the accuracy
of the SOC-parameters ξFe

µ . The magnetic part of the Hamiltonian, described via the
Stoner model, predicts magnetic moments of the Fe-systems, which are compared to
ab-initio values (see section 3.3 and 3.4). To test the local charge neutrality part of H,
HLCN, a system with non-equivalent basis atoms has to be examined. Here, a multilayer
system of Fe atoms gives us the opportunity to examine the charge transfer to the surface
(see section 3.4).
Interesting properties can be observed in the calculation of spin-spirals in Fe-systems.

In section 3.4 an indication for the Bethe-Slater behaviour [50, 51, 52, 53] in Fe chains is
presented. In section 3.3 the Heisenberg exchange-coupling parameters Jnn′ for bcc-Fe
are compared to ab-initio results. Finally, the magneto-crystalline anisotropy energy
(MCA) is calculated for different systems such as an Fe chain and Fe monolayers of
different crystallographic orientations (see section 3.4).

3.2 Quality of the Slater-Koster parametrization

The parametrization of the hopping elements and on-site energies is explained in detail
in section 2.3. The parameters all′m, bll′m, cll′m and dll′m of eq. 2.21 and the on-site
parameters α, β, γ, δ and λ of eq. 2.23 for Fe can be found in the appendix in the
tables B.1 and B.2. There exists a parameter set for Fe, which is obtained from LDA
ab-initio calculations [15, 16] and one obtained from GGA ab-initio calculations [54, 16].
Experience shows that 3d-transition metals are usually better described within GGA,
therefore the GGA-parameter set for Fe is used in this thesis, unless differently indicated.
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Figure 3.1: Non-magnetic band structure and DOS of bcc-Fe for the LDA case. The
black curve is an FPLO-calculation [55] and the red one a TB-calculation
with the LDA parameter set.

In figure 3.1 and 3.2 the band structure of non-magnetic bcc-Fe without SOC at the
experimental equilibrium lattice parameter a = 2.87 Å is displayed along high-symmetry
directions in the Brillouin zone. We investigate the band structure of non-magnetic
bcc-Fe to evaluate the quality of the paramagnetic Fe parameter sets, while magnetic
calculations would include the Stoner model as an approximate method to describe
magnetism. In figure 3.1 the band structure from a tight-binding calculation with the
LDA parameter set is compared to LDA ab-initio calculations1 [55], whereas in figure
3.2 the GGA parameter set is compared to the GGA ab-initio results2 [56]. For the
TB-calculations of bcc-Fe in the sections 3.2 and 3.3 64000 k-points in the full Brillouin
zone were used. The width of the lorentzian functions in the DOS calculation is 50 meV.
Both TB-parameter sets are in a good agreement with the ab-initio results. This can

be observed in the density of states (DOS), which is presented in the left panel of figure
3.1 and 3.2. The TB-scheme does not reproduce the very sharp peak just above the
Fermi energy εF = 0, due to the slightly stronger dispersion of the bands in this region,
especially for the GGA case. Therefore one can expect a difference in the description of
physical properties of Fe, which have a very sensitive dependence on the Fermi surface.

1Calculation was performed by H. Zhang with an FPLO-code using following computational parame-
ters: Nk = 1728. The basis set consisted of 3s, 3p, 3d, 4s, 4p, 4d, 5s orbitals.

2Calculation was performed by H. Zhang with the FLEUR-code using following computational param-
eters: Nk = 8000, Rmax = 2.28 a.u., kmax = 3.4 a.u.−1, lmax = 6.
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Figure 3.2: Non-magnetic band structure and DOS of bcc-Fe for the GGA case. The
black curve is an FLAPW-calculation [56] and the red one a TB-calculation
with the GGA parameter set.

The band structures are only compared in a region of a few eV around the Fermi en-
ergy. In this region a proper description of the electronic structure is necessary to expect
reasonable results for more complex magnetic structures than bcc-Fe. The conduction
bands far away from εF are not properly described with the parameter sets. This does
not constitute a considerable problem, since these conduction bands hardly influence the
valence electron properties.

The following SOC-parameters, used in [26, 25], lead to a reasonable description of
SOC in Fe-systems:

ξFe
d = 0.06 eV and ξFe

p = 0.18 eV . (3.2)

To test the quality of these parameters, a non-magnetic TB-calculation including SOC
was performed and it was compared to a corresponding ab-initio calculation. In the left
panel of figure 3.3 a zoom into the region 1.5 meV below εF of the band structure around
the Γ-point is displayed. Both band structures in the left panel of fig. 3.3 are calculated
with the LDA parameter set in a tight-binding scheme, but in one case a calculation
without SOC and in the other case a calculation with SOC was performed.
One can clearly observe the splitting of the degenerate bands at the Γ-point into a

two-fold degenerate band and a single split-off band due to SOC. In the right panel
of figure 3.3 the splitting obtained by a tight-binding calculation is compared to the
splitting obtained by an ab-initio LDA calculation. The splitting of about 90 meV is
observed in both cases, therefore ξFe

d and ξFe
p are reasonable values to model SOC in Fe.
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90 meV 

Figure 3.3: Left Panel: Splitting of the bands at the Γ-point due to SOC in non-magnetic
bcc-Fe in a TB-calculation. The black curve is the band structure without
SOC, whereas the red curve is the band structure with SOC. The splitting
is about 90 meV. Right panel: Splitting of the bands at the Γ-point due to
SOC. The black curve is the band structure for an FPLO-calculation and
the red one for a TB-calculation.

The spin-orbit coupling parameter of the p-bands ξFe
p plays a minor role, because mainly

the d-bands have an influence close to the Fermi energy. We have chosen a reasonable
value for the p-SOC-parameter by setting it three times larger than the SOC-parameter
for the d-orbitals, but in principle this value can be varied without changing noticeably
the band structure close to the Fermi energy.

3.3 Magnetism via Stoner model in bcc-Fe

A Stoner model is used to model magnetism in the tight-binding framework. The detailed
theory about this can be found in section 2.6 of the present thesis. We use the following
Stoner parameters for Fe:

IFe
d = 0.96 eV and IFe

s = IFe
p =

IFe
d

10
. (3.3)

In [26, 25] these Stoner parameters provide a good description of magnetism in Fe. As
one can see from the following calculations, we also find that these Stoner parameters
lead to reasonable results. The Stoner model is of course only an approximate method to
describe the magnetic interaction of the band electrons. Therefore one should compare
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Figure 3.4: Band structure of ferromagnetic bcc-Fe including SOC within tight-binding
(red) and FLAPW (black). In the TB-calculation a Stoner model is used to
model magnetism.

the band structure and the corresponding magnetic moment of Fe with ab-initio results3,
presented in figure 3.4.

Overall the tight-binding calculation for bcc-Fe corresponds well to the ab-initio re-
sults. There are some differences near the Fermi energy, which prevent a quantitative
good description of physical properties, sensitive to an accurate description of the Fermi
surface (e.g. conductivities, MCA etc. ). This can be also observed in the orbital-resolved
and spin-resolved DOS in figure 3.5. The magnetic moment of the Fe-atom is 2.30µB in
the ab-initio calculation and 2.34µB in the TB-calculation, which for our purposes consti-
tutes a very good agreement. We are interested in a qualitatively reasonable description
of Fe in Fe/Pt-systems (see chapter 5) or Fe in systems beyond bcc-Fe. Therefore the
accuracy of the band structure via the tight-binding parametrization is sufficient, as we
shall demonstrate.

Further evidence of the good quality of the TB-description can be found by examining
the spin-spiral spectrum of bcc-Fe. The magnon dispersion E(q) is calculated via the
force theorem (see chapter 2.9) for a spin-spiral with a cone angle Θ = 30◦ along high-
symmetry directions in the Brillouin zone. The result is compared to a corresponding
ab-initio calculation4 in figure 3.6. With an exception of the dispersion of larger q-values

3Calculation was performed by H. Zhang with the FLEUR-code [56] using following computational
parameters: Nk = 8000, Rmax = 2.28 a.u., kmax = 3.4 a.u.−1, lmax = 6.

4Calculation was performed by A. Jakobsson with the FLEUR-code [56]. The Jij-calculation was
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Pure Fe-Systems 3.4 Transferability of the tight-binding parameters

Figure 3.5: Spin-resolved and orbital-resolved DOS of ferromagnetic bcc-Fe correspond-
ing to figure 3.4. The result of FLAPW (solid lines) is compared to the TB
result (dashed lines).

the results are in good agreement. Also, the Heisenberg exchange-coupling parameters
Jn in figure 3.6 show overall a good agreement, although the Jn-values for the first two
shells are overestimated in tight-binding.
An important detail which should be discussed is the validity of the force theorem for

different cone angles. In figure 3.7 force theorem calculations for different Θ-angles are
compared to self-consistent calculations. In general the magnetic moment depends on
the q-values, therefore the force theorem is an approximation. But as one can see in
figure 3.7, the force theorem is a reasonable approximation in particular for smaller cone
angles and small q-values for which the magnetic moment hardly differs compared to the
ferromagnetic case. Thus, by default the force theorem will be used for all spin-spiral
calculations in this thesis, unless differently indicated.

3.4 Transferability of the tight-binding parameters

In this section we take a look at the magnetism in Fe monolayers and Fe chains. The
same parameter sets as for bcc-Fe are used, therefore we test the transferability of this
parametrization as mentioned in chapter 2.3.

performed by D. Bauer.
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Figure 3.6: Left panel: Heisenberg exchange coupling parameters Jn of bcc-Fe derived
by least square fit using E(q) of a Θ = 30◦ spin-spiral for 47 q-values in
the irreducible part of the Brillouin zone (see eq. 2.102). The black curve
is the result of an FLAPW-calculation and the red curve is the result of a
TB-calculation. Right panel: Magnon dispersion along high-symmetry direc-
tions of bcc-Fe. The solid lines display the reconstructed magnon dispersion
from the Heisenberg exchange constants, see left panel, whereas the dots are
calculated within the force theorem by the TB-code.
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results using the force theorem and the dashed lines are the self-consistent
results. The calculations were performed for four different cone angles Θ.

46



3.4 Transferability of the tight-binding parameters Pure Fe-Systems

Γ
X

q-path

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
n
e
rg

y
 i
n
 e

V

d=1.90
◦
A

d=1.95
◦
A

d=2.05
◦
A

d=2.10
◦
A

d=2.15
◦
A

d=2.22
◦
A

d=2.22 
◦
A (FLAPW)

Figure 3.8: Magnon dispersion of an Fe chain for different lattice parameters a. The
hexagons are values for the magnon dispersion of the Fe chain with a = 2.22 Å
calculated with an FLAPW method [57].

3.4.1 Free-standing Fe chain

First we investigate magnetism in Fe mono-atomic chains depending on the lattice pa-
rameter a.5 For the calculations 200 k-points in the full Brillouin zone were used. In
figure 3.8 the magnon dispersion of a spin-spiral in a mono-atomic chain is displayed
for several lattice parameters a of the chain. Decreasing the lattice parameter below
the equilibrium value of about 2.22 Å leads to the tendency of forming a spin-spiral
as magnetic ground state. This behaviour is consistent with the Bethe-Slater curve
[50, 51, 52, 53]. This curve builds up a dependence of the exchange-integral J on the
distance between the atoms. For the Fe chain, with the equilibrium lattice parameter
a = 2.22 Å, the value of J is positive, therefore the Fe chain tends to a ferromagnetic
structure. But J is not very large [53], therefore a slight decrease of the lattice pa-
rameter leads to a situation, where the ferromagnetic and anti-ferromagnetic structure
have almost the same energy. In this case, it is known that the system tends to form a
spin-spiral as ground state.

This tendency is well described via the tight-binding scheme, but one should note, that
the used parameter set has been fitted to bulk bcc-Fe properties. Therefore it is not ideal
to describe hoppings in the Fe chain. This problem, also known as the transferability
problem, can be seen by comparing the magnon dispersion for a = 2.22 Å with the
magnon dispersion for a = 2.22 Å calculated via FLAPW6. Therefore the TB-scheme

5Here the LDA-parameter set is used.
6Calculation was performed by F. Schubert with the FLEUR-code [56] using following computational
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Figure 3.9: MCA ∆E = Ez − Ex of the Fe chain depending on the lattice parameter.
The red curve corresponds to the values obtained with the GGA-parameter
set, whereas the black curve was obtained with the LDA-parameter set. Ez
is the total energy of the Fe chain with the magnetization perpendicular to
the chain, whereas Ex is the energy along the chain.

only gives us the possibility to describe the qualitative tendencies for Fe-systems, which
are geometrically very different compared to bcc-Fe.

Another interesting tendency is the dependence of the MCA of Fe chains on the
lattice constant, which is shown in figure 3.9. In this case tight-binding calculations
were performed with the LDA- and GGA-parameter set. Both parameter sets predict the
same qualitative behaviour for the MCA, but the values differ considerably. Furthermore
the magnetic moment of the Fe-atom rapidly drops to zero for lattice parameters under
2.1 Å in the GGA-case, whereas in the LDA-case it drops from large values about 3µB
to moderate values about 1µB. Therefore we can again observe transferability problems
for the parameter sets. The qualitative tendency, that the Fe chain tends to an in-chain
magnetization for larger lattice parameters remains the same for the parameter sets.
The results for the LDA-parameter are also analysed in more detail in [25]. It should be
noticed, that no dipole-dipole interaction is taken into account for all MCA-calculations
within tight-binding in this work.

parameters: Nk = 128, Rmax = 2.1 a.u., kmax = 4.2 a.u.−1, lmax = 8.
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tight-binding ab-initio
d EMCA mMull LMull

↑ LMull
→ EMCA mMull LMull

↑ LMull
→

(001) 2.87 1.3 3.50 0.18 0.13 0.69 3.19 0.14 0.11
(110) 2.49 0.8 3.03 0.10 0.10 0.60 2.92 0.07 0.07
(111) 4.06 5.8 3.99 0.63 0.32 1.15 3.53 0.33 0.26

Table 3.1: The table shows the MCA EMCA = E→ − E↑ (in meV) for Fe monolayers
of different orientations with nearest neighbour distance d (in Å) calculated
within tight-binding and within ab-initio. There E↑ is the total energy for
an out-of-plane magnetization and E→ is the total energy for the in-plane
magnetization along the x-axis. The magnetic (Mulliken-) moment mMull

and the orbital moments for out-of-plane magnetization LMull
↑ and in-plane

magnetization LMull
→ are also shown. They are all given in units of µB. The

magnetic moment does not change significantly upon changing the magnetic
direction.

3.4.2 Free-standing Fe monolayer and Fe slab

Next we investigate the MCA of free-standing Fe monolayers of different orientations and
compare the values to ab-initio results7. In table 3.1 the MCA of a (001)-, a (110)- and
a (111)-monolayer of Fe is presented together with the magnetic and orbital moments.
For this calculation 40000 k-points in the full Brillouin zone were used, which is enough
to ensure an accuracy of about 0.1 meV for the MCA. The convergence with respect to
the number of k-points is presented in the appendix in B.2.

If we compare the MCA of the TB-calculation with the values obtained from ab-initio,
we conclude that the TB-values overestimate the MCA, but in all cases an out-of-plane
magnetization is the favourable one. The results for the (111)-monolayer are surprising,
because the MCA is unexpectedly large and the magnetic moment is nearly of the
atomic value of 4µB. The (111)-surface has the largest nearest neighbour distance of all
three orientations, which is about 4.06 Å. Therefore in the TB-calculation the system
shows tendencies of free Fe atoms due to the exponential behaviour of the distance
parametrization for the hopping elements. But overall the tendencies are described well
within the tight-binding scheme.

Finally, the local charge neutrality part HLCN of the Hamiltonian should be also
examined. For systems with equivalent basis atoms no charge transfer occurs, therefore
we perform a test on a system with non-equivalent basis atoms to investigate the effect
of HLCN. To this end we choose a thick (001)-Fe slab of 30 layers. The atoms at and near
the surface have different surroundings than the bulk-like atoms in the middle of the slab.
The local charge neutrality part should prevent too large and unphysical charge transfers,
as explained in section 2.5. In figure 3.10 the Mulliken charge, the magnetic moment
and the orbital moment for each layer is shown. The closer the atoms are to the surface

7Calculation was performed by B. Schweflinghaus with the FLEUR-code [56] using following compu-
tational parameters: Nk = 1936, Rmax = 2.3 a.u., kmax = 4.0 a.u.−1, lmax = 6.
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Figure 3.10: Magnetic moments (black curve in right plot), orbital moments (red curve
in right plot) and Mulliken charges (left plot) of a 30-layer (001)-Fe slab. For
the bulk-like atoms in the middle of the slab, the values are approximately
those of bcc-Fe, whereas the surface atoms have different values. For the
calculation 6400 k-points in the full Brillouin zone were used.

the larger the moments and the smaller the charges are. The bulk-like atoms in the
middle of the slab-system have moments and charges, which are close to those of bcc-Fe.
Therefore we can conclude, that the local charge neutrality part operates reasonably well
in Fe slab systems. In chapter 5, where the charge transfer in the L10-Fe/Pt structure
is investigated, the local charge neutrality part plays an important role not only for
geometrically non-equivalent basis atoms, but also for chemically non-equivalent atoms.

3.5 Conclusion

The TB-scheme is able to describe all magnetic Fe-systems discussed in this chapter, at
least qualitatively. For bcc-Fe the used parameter sets are well-adapted, therefore the
quantitative description of bcc-Fe is in good agreement to ab-initio results. For free-
standing Fe monolayers and Fe chains the TB-scheme allows us to predict at least their
qualitative magnetic behaviour. These results allow us to expect that the TB-scheme is
able to give a reasonable description of magnetism in Fe/Pt-systems.
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4 Pure Pt-Systems

4.1 Introduction

Pt in its equilibrium bulk fcc structure with the lattice parameter a = 3.92 Å is non-
magnetic. So, why is it nevertheless an interesting element to examine magnetism? The
answer is that Pt has a strong spin-orbit coupling and therefore can lead to very inter-
esting SOC-induced magnetic behaviour in e.g. Fe/Pt-systems, as discussed in chapter
5. In chapter 3 the description of pure Fe-systems via the tight-binding scheme is ex-
amined, whereas this chapter focuses on pure Pt-systems. In section 4.2 the quality of
the Pt-parameter set is examined via a comparison of the TB-band structure with an
ab-initio result. Furthermore the SOC-parameters ξPt

µ are determined with the help of
the band splitting in the band structure. In section 4.3 the Stoner parameters of Pt are
determined.

4.2 Band structure of fcc-Pt

In this thesis a LDA-parameter set for the tight-binding hopping parameters of Pt is
used [15, 16]. The parameter set for Pt is presented in the appendix in the table B.3 of
this thesis. In figure 4.1 the band structure of Pt calculated by the tight-binding scheme
without SOC is compared to the band structure calculated by ab-initio1. For the TB-
calculations of fcc-Pt in the sections 4.2 and 4.3 64000 k-points were used. Overall, the
band structures are in good agreement, but there are some differences around the X-
and L-point at the Fermi energy εF = 0, which could cause problems in determining
sensitive Fermi surface properties such as the MCA.

It is essential to have a proper description of SOC in Pt to expect reasonable results for
magnetism in Fe/Pt-systems. Therefore the SOC-parameters ξPt

p and ξPt
d are adjusted to

the SOC-splitting in the band structure of an ab-initio calculation. To adjust the SOC-
parameter ξPt

d of the d-orbitals a band splitting of pure d-bands is needed. In figure
4.2 one can see such a splitting at the Γ-point, at which the d-orbitals are decoupled
from the p-orbitals. A SOC-parameter of ξPt

d = 0.53 eV leads to a good agreement of
the TB-calculations and the ab-initio results. The SOC-splitting in the p-bands is not
as important as the splitting in the d-bands for Pt, because the unoccupied p-bands lie
too high in energy above the d-bands. Nevertheless, the SOC-splitting of the p-bands
is not as completely negligible as for Fe. A value of ξPt

p = 2.5 eV seems reasonable in

1Calculation was performed by H. Zhang with the FLEUR-code [56] using following computational
parameters: Nk = 6900, Rmax = 2.55 a.u., kmax = 3.9 a.u.−1, lmax = 8.
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Figure 4.1: Band structure and DOS of fcc-Pt for the LDA case, the black curve is
an FLAPW-calculation and the red one is a TB-calculation with a LDA
parameter set. A lorentzian width of 50 meV is used for the DOS-calculation.
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Figure 4.2: SOC-splitting of the d-bands around the Γ-point q = 0. The black curve is
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red curve is the result of a calculation with SOC and the green curve is a
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calculations with different Stoner parameters IPt

d .

comparison to ξPt
d and the bands above the Fermi energy are well described in a region of

about 4 eV. We have chosen this value, because in ab-initio calculations the expectation
value of the SOC-matrix in the p-orbitals is about 5-times larger than the expectation
value in the d-orbitals. The expectation value in the d-orbitals was determined to about
0.56 eV within FLAPW.

4.3 Stoner parameters of Pt

Although fcc-Pt is non-magnetic, we determine the Stoner parameters of Pt for various
reasons. First, Pt becomes magnetic for larger lattice parameters due to an increase of
the exchange energy contribution over the kinetic energy contribution. This behaviour
is described by the Stoner model, because the density of states at the Fermi energy
increases the larger the lattice parameter of Pt becomes. Therefore, the Stoner criterion
is fulfilled from a certain lattice parameter and on. Furthermore, Pt becomes polarized
in Fe/Pt-systems due to the presence of the Fe atoms. There, the magnetic moments of
the Pt atoms strongly depend on the used Stoner parameters of Pt.
We determine the Stoner parameters via the magnetic behaviour of fcc-Pt with in-

creasing lattice parameter. In figure 4.3 the magnetic moment of fcc-Pt in dependence on
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the lattice parameter is displayed. The result of an ab-initio calculation2 is compared to
TB-calculations with different Stoner parameters IPt

d . We always use IPt
s = IPt

p =
IPt
d

10
as

approximation for the s- and p-magnetism. In principle the best agreement is achieved
for IPt

d = 0.6 eV, because fcc-Pt becomes magnetic at about 4.0 Å as in the FLAPW-
calculation. However, the tight-binding calculation with IPt

d = 0.6 eV shows a small
magnetic moment for the equilibrium lattice parameter of a = 3.92 Å due to unknown
reasons, which is the reason why we are using a Stoner parameter of IPt

d = 0.58 eV in-
stead. In the ab-initio calculation the curve shows a plateau at about 4.4 Å before rising
to the atomic value of Pt of 2.0µB for very large lattice parameters. The magnetic
moment in the tight-binding scheme is strictly increasing to the atomic value without
showing a plateau. This different behaviour is based mainly on the parametrization of
the on-site elements for Pt, which is only very accurate in a small region around the
equilibrium lattice parameter.
It should be noticed that the transition region around 4.0 Å to 4.2 Å from non-magnetic

fcc-Pt to magnetic fcc-Pt is very sensitive to starting values, number of k-points and
other properties, which have a strong influence on a self-consistent calculation. In this
region the non-magnetic state and the magnetic state with a certain magnetic moment
have almost the same energy. Therefore a Stoner parameter between 0.55 eV to 0.6 eV
is a reasonable choice. The values of the Stoner parameters of Fe and Pt are in a good
agreement with results obtained by DFT calculations [58, 59]. Whether the Stoner
parameters are able to give a reasonable description of the polarization of the Pt atoms
in Fe/Pt-systems is examined in chapter 5.

4.4 Conclusion

We have determined the SOC-parameters and Stoner parameters for Pt via comparisons
with ab-initio results. Unlike in chapter 3 about pure Fe-systems, we do not present any
results for systems beyond fcc-Pt. Therefore we can not be sure yet, that the parameters
lead to a reasonable description of magnetism in Pt-systems. This examination still
remains to be done in chapter 5.

2Calculation was performed by B. Schweflinghaus with the FLEUR-code [56]. An input generator was
used, which optimized the computational parameters to the following range: Nk = 5280 − 8736,
Rmax = 2.41 a.u. − 3.17 a.u., kmax = 3.3 a.u.−1 − 4.1 a.u.−1, lmax = 8.
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5 Fe/Pt-systems

5.1 Introduction

Why is the magnetism in Fe/Pt systems so interesting and challenging? One could
expect, that the magnetic behaviour of an Fe/Pt layer hardly differs compared to a
pure Fe layer, which is examined in section 3.4. But this expectation is wrong because
of various reasons. First, Pt is a non-magnetic element and becomes polarized in the
presence of Fe mainly due to the hybridization of the Fe d-orbitals with the Pt d-orbitals.
Furthermore, Pt atoms have a strong SOC compared to Fe atoms, therefore SOC-induced
effects, like the Dzyaloshinskii-Moriya interaction (DMI) and the magnetic anisotropy,
play an important role in Fe/Pt systems.

This chapter begins with an examination of the MCA of the L10-FePt structure de-
pending on the ratio c

a
of the lattice constants and the Stoner parameters of Pt and Fe.

The calculation of the L10 structure does not require as much computational time as the
Fe/Pt slab systems and physical properties like the polarization of the Pt atoms, which
play an essential role for the Fe/Pt slabs, can be computed very easily. Furthermore,
ab-initio results exist for the MCA of the L10-FePt structure, which is compared to the
tight-binding results in section 5.2. Therefore the L10-FePt structure is an appropriate
introduction into the Fe/Pt systems. In section 5.3 the DMI in Fe/Pt layers is examined.
Little is known about the DMI in this system, therefore it is enlightening to examine the
dependence of the strength and the sign of the DMI on properties like the polarization
of the Pt atoms or the band filling, which is presented in section 5.3. In the calculations,
the polarization can be controlled via the Stoner parameter IPt

d within the tight-binding
scheme, whereas the band filling is controlled via the number of electrons. Calculating
the DMI in Fe/Pt slabs is computationally very challenging, therefore the numerical
properties of the method and its problems are described in detail in sections 5.3 and 5.4.

5.2 L10-FePt structure

The L10-FePt structure consists of alternating atomic layers of Fe and Pt along the
(001)-direction, which will be referred to as c-axis in the following. The L10 structure
is displayed in figure 5.1. In our tight-binding calculations a lattice parameter of a =
2.721 Å and a ratio of c/a = 1.389 are used to compare the MCA with ab-initio results.
The L10-FePt system shows a large MCA of about 2.7 meV with the easy axis along the
c-axis in ab-initio calculations [60, 61, 62]. A capped Pt-Fe-Pt(001) layer system has
an even larger MCA than the L10 structure [63]. Therefore chemically ordered Fe/Pt
systems are promising candidates for magnetic storage devises.
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Fe 
Pt c

a

Figure 5.1: L10 structure. We use the two-atomic tetragonal unit cell (red dashed lines)
with a = 2.721 Å and c/a = 1.389.

For our tight-binding calculations of the MCA of the L10-FePt structure 64000 k-
points were used, which is enough to guarantee that the MCA is converged to 0.1 meV
accuracy. We find a value of 4.1 meV for the MCA with the c-axis as easy axis, which is
about 50% larger than the values derived via ab-initio, although the direction of the easy
axis is correctly reproduced. The magnetic moment of Fe is 2.15µB and the polarized
Pt atom has a moment of 0.43µB.
We should note that the value for the MCA depends on the on-site energies of Fe and

Pt and there exists no rule which parameter λ should be used in the expression 2.24 for
the local atomic density:

ρi =
∑
j 6=i

e−λ
2
j ·Rij · fc(Rij) . (5.1)

In this thesis λj is used, which can be motivated by the assumption that the local atomic
density of atom i can be expressed as sum over densities coming from neighbouring
atoms. But in principle a new parametrization for the on-site elements and the Fe-
Pt hoppings (see eq. 2.23 and 2.21) would be necessary for more accurate results, as
it is done for some binary compounds in [16, 17]. Therefore to estimate the error,
which occurs due to an inefficient on-site parametrization , we also calculated the MCA
using λi and 1

2
(λi + λj) instead of λj in eq. 2.24. Using λi leads to a MCA of 2.3 meV

with magnetic moments of 2.67µB for Fe and 0.40µB for Pt in good agreement to the
experimental result of a total moment of 3.00µB [64], whereas using 1

2
(λi + λj) leads

to a MCA of 3.3 meV and a magnetic moment of 2.38µB for Fe and 0.42µB for Pt.
Besides the fact that the values are not in nice agreement, therefore the parametrization
is not able to allow a quantitative good description, there is the good message, that
the easy axis is along the c-axis for all cases. This gives us hope that in the same
way as for Fe monolayers, Fe slabs and Fe chains (see section 3.4) a qualitatively good
description is possible for Fe/Pt systems. To underline this statement, the MCA of the
L10-FePt structure is calculated depending on the c

a
-ratio. The results of the MCA and

the corresponding magnetic moments for Pt and Fe can be seen in figure 5.2. For larger
c
a
-ratios the system tends to have its easy axis along the c-axis, whereas for smaller
c
a
-ratios the easy axis is perpendicular to the c-axis. This behaviour is in qualitatively

good agreement with the results in [62, 65]. Furthermore the magnetic moment of the
Pt atom increases with decreasing c

a
-ratio due to a larger hybridization between the Fe
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Figure 5.2: Left panel: The MCA ∆E = E→ − E↑ of the L10-FePt structure depending
on the c

a
-ratio. E→ is the energy for the system with magnetization along

the a-axis, whereas E↑ is the energy for the system with magnetization along
the c-axis. Right panel: The magnetic moments of the Fe (red curve) and
Pt (black curve) atom of the L10-FePt structure depending on the c

a
-ratio.

3d-electrons and the Pt 5d-electrons.
Let us try to answer the question, why does the L10-FePt structure show such a

large MCA for a bulk system? First one can take a look to the extreme cases c
a

= 1
and c

a
→ ∞ for which we know the MCA. The case c

a
= 1 describes a cubic system

in the CsCl structure, therefore the MCA is zero (to second order), whereas the case
c
a
→ ∞ describes isolated Fe monolayers, for which we expect a large MCA. Therefore

the uniaxial symmetry is crucial for the large MCA of the L10-FePt structure, which is
also explained in more detail in [61, 66]. Besides the uniaxial symmetry, the large SOC
of the Pt atoms also plays an important role. We have performed a calculation, in which
we have switched off the SOC on the Pt atoms. The MCA of the system with a value
of about 0.4 meV with the c-axis as easy axis is much smaller than the MCA of 4.1 meV
with SOC on the Pt atoms.

Calculations of the MCA of the L10 structure with different Stoner parameters for
Pt and Fe were also performed. The MCA and the magnetic moment of Pt is almost
independent of the Stoner parameter of Pt, if the Stoner parameter is not increased to
values, where Pt becomes magnetic even without the presence of the Fe atoms. On the
contrary, the Stoner parameter of Fe has a big influence on the MCA and the magnetic
moment of Pt. This is an indication, that the magnetic moment of Pt is mainly coming
from the hybridization between the Fe states and Pt states.

Therefore we come to the conclusion, that the large MCA of the L10-FePt structure
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is based on the uniaxiality of the system and the large SOC of Pt in combination with
the hybridization with the Fe states. After all the tight-binding scheme seems to be
able to describe also binary systems like Fe/Pt systems, at least qualitatively, although
the used parametrization is not suited to binary systems and we had to improvise with
eqs. 2.24 and 2.25.

5.3 Examination of the Dzyaloshinskii-Moriya
interaction

The Dzyaloshinskii-Moriya interaction (DMI) is a quite recent field of research, although
the corresponding symmetries were examined in the 1960’s by Dzyaloshinskii and Moriya
in weak ferromagnetic systems [3, 4]. Recently a spin-spiral ground state with a unique
rotational sense has been found in Mn/W(110) using spinresolved STM-measurements
[10, 11], which can be theoretically explained by the DMI. Therefore a calculation to
obtain the strength and the sign of the DMI is very interesting. Computationally the
DMI is very challenging due to its small energy scale of at most a few meV. Furthermore,
slabs consisting of several layers of transition metals are typically examined in order
to compare the results with experimental studies. Therefore we are confronted with
the problem of having to use a lot of k-points for describing a large system. Some
of these numerical problems are discussed in section 5.4 and the delicate numerical
behaviour depending on the number of k-points is examined in this section. Afterwards
the qualitative behaviour of the DMI depending on the thickness of the slab, the Stoner
parameter of Pt and the band filling, is examined. The calculations are performed using
some approximations as the 1st-order perturbation theoretical treatment of spin-orbit
coupling so that use can be made of the generalized Bloch theorem. First, however, we
study the validity of this approximation using a very simple test system.

5.3.1 Validity of the 1st-order SOC approximation

First of all it should be mentioned, that spin-spirals of the type (c) in figure 2.15 are used
to examine the DMI. Therefore the phase factors (sji (q ·Rn))σσ

′ of the form A.12 are
used for the calculations using the generalized Bloch theorem (see section 2.8). All the
calculations in section 5.3.2 use the force theorem (see section 2.9) and a 1st-order SOC
description (see section 2.8) to utilize the computational advantages of the generalized
Bloch theorem. The DMI is analysed for Fe/Pt-slabs, therefore it has to be discussed if
the 1st-order SOC description is sufficient for a system, where one has to deal with a large
SOC strength. In the following, a supercell calculation with full SOC (see fig. 2.13a) is
compared to a corresponding calculation in a small unit cell using the generalized Bloch
theorem and 1st-order SOC to obtain the DMI (see fig. 2.13b). Due to the small q-values
we are going to focus on, we use one of the simplest systems with non-vanishing DMI,
which is an Fe/Pt zigzag chain (see fig. 5.3). For this system the values obtained by the
tight-binding method are not very reliable due to the very different structure compared
to the Fe and Pt bulk structure. Nevertheless the system should be sufficient to evaluate
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Figure 5.3: Fe/Pt zigzag chain with a lattice parameter of a = 2.22 Å. The Fe atoms are
indicated in red and the Pt atoms are blue.
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Figure 5.4: Magnon dispersion of the Fe/Pt zigzag chain without SOC along the way
0 ≤ q ≤ 0.1. The red diamonds display the results for the non-collinear
160-atom supercell calculation, whereas the results for the 2-atomic unit cell
using the generalized Bloch theorem is depicted by the black circles.

the quality of the 1st-order SOC description. For all calculations for the zig-zag chain
the force theorem1 is used, unless differently indicated.

For the calculation of the 1st-order SOC contribution in the frame of the generalized
Bloch theorem a 2-atomic unit cell with a lattice parameter of a = 2.22 Å, containing one
Fe and one Pt atom, is used. A large number of 3200 k-points guarantees that the DMI
is converged even in the region of the small q-values, where one has to handle very small
energy differences of about 10−4 eV. To allow a comparison for small q-values between
the 1st-order SOC calculation and the full SOC calculation, a 160-atomic supercell with
40 k-points is used. Therefore the smallest q-value (besides q = 0), which can be treated
in the supercell, is q = 0.0125.

In figure 5.4 the magnon dispersion of the Fe-Pt chain for the supercell calculation (red
diamonds) and the generalized Bloch theorem calculation (black curve) are displayed in

1The force theorem needs a reasonable starting density, which is the converged density for the fer-
romagnetic case without SOC using 3200 k-points for the small unit cell and 40 k-points for the
supercell, unless differently specified.
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a region of 0 ≤ q ≤ 0.1. In these calculations no SOC was considered, therefore the two
methods should lead to the same results, as shown in the figure. The magnon dispersion
starts remarkably flat from q = 0, which can be explained again by the Bethe-Slater
curve as indicated in figure 3.8.
In figure 5.5 the pure SOC contribution to the band energy is displayed in dependence

of q for several different calculations . For the 1st-order SOC calculation in the framework
of the generalized Bloch theorem, ∆ESOC(q) via eq. 2.86 (black curve) and 2.90 (green
solid curve) are displayed. In the first case the Fermi energy remains unchanged after
adding the 1st-order perturbation theoretical contributions from SOC, whereas the sec-
ond case considers the change in the Fermi energy due to the shifts in the band energies
(see fig. 2.14). As discussed in section 2.8, there is a non-negligible difference between
∆ESOC(q) determined with or without recalculated Fermi energy even for the smaller
q-values. Using a starting density for the force theorem calculations, which is based on
a ferromagnetic system with consideration of SOC, leads to the blue curve for the case
of recalculated Fermi energy. Therefore also the choice of the starting density leads to
differences, which is also examined in [12]. Nevertheless the linear behaviour near q = 0
is the same in all three cases. Thus, if we are only interested in the determination of the
DM-constant2 D, it is not necessary to recalculate the Fermi energy after adding the
SOC-contribution in 1st-order perturbation theory. But it should be emphasized again,
that the pure SOC contribution could differ drastically for the different calculations for
larger q-values, as long as the starting density is ferromagnetic.
The red markers in figure 5.5 display the pure SOC-contribution depending on q for the

160-atom supercell, considering full SOC. The presented data is the difference between a
full SOC calculation and a calculation without SOC, therefore (ESOC(q)−Eno−SOC(q))−
(ESOC(0)−Eno−SOC(0)). For the calculation with full SOC, the density of the correspond-
ing ferromagnetic system with SOC was used as starting density for the force theorem
calculation. In contrast the green hexagonal markers are the results, if we use the dif-
ference between spin-spirals of opposite rotation-sense, i.e. 1

2
· [ESOC(q) − ESOC(−q)],

motivated by ∆ESOC(−q) = −∆ESOC(q) for small q. It is not quite clear which of
the curves should be used to compare the SOC-contribution to the band energy of a
full SOC calculation with a corresponding calculation using the 1st-order perturbation
theory approach. The curve obtained by the difference between spin-spirals of oppo-
site rotation-sense is in a better qualitative agreement with the 1st-order perturbation
theoretical calculations. But in both cases, there are again non-negligible differences
compared to the 1st-order perturbation theoretical treatment, except for very small
q-values.
As conclusion one can say that all methods are in a good agreement concerning the

determination of the DM-constant D. Nevertheless for q-values larger than q = 0.02
all methods predict somewhat different results, which can even differ in sign, as can be
observed in figure 5.6, showing the DMI over half of the Brillouin zone. Despite this
large numerical differences, there are some similarities in the curve behaviour, e.g. the

2This constant becomes important in the framework of a micromagnetic model [48, 49] (see also section
2.10).

60



5.3 Examination of the Dzyaloshinskii-Moriya interaction Fe/Pt-systems

0.00 0.02 0.04 0.06 0.08 0.10
qx in 2 /a

0

-2

-4

-6

-8

E
S
O
C
/F

e
 a

to
m

 i
n
 m

e
V

1st order (eq. 2.86)

1st order (eq. 2.90)

1st order (eq. 2.90, diff. nstart)

full SOC | (ESOC(q)
−Eno−SOC(q)) 

full SOC | ∝(ESOC(q)
−ESOC(
−q)) 

Figure 5.5: The pure SOC-contribution to the band energy from several calculations
for the Fe/Pt zigzag chain. The black, blue and green solid curves are the
results using 1st-order perturbation theory to treat SOC for spin-spirals. For
the black curve eq. 2.86 is used, whereas the green curve is the result using
eq. 2.90. For the blue curve eq. 2.90 is also used, but a different starting
density nStart is used (more details in text). The green hexagonal markers
and the red markers are the results using the supercell with full SOC. For
the red markers ESOC(q)− Eno−SOC(q)− (ESOC(0)− Eno−SOC(0)) is used to
obtain the pure SOC-contribution, whereas 1

2
· [ESOC(q)−ESOC(−q)] is used

for the green hexagonal markers.
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Figure 5.6: The pure SOC-contribution of the Fe/Pt zigzag chain in half of the Brillouin
zone. The red hexagons display the results for the 160-atom supercell cal-
culation, whereas the results for the 2-atomic unit cell using the generalized
Bloch theorem are represented by the black curve. The squares display the
results of corresponding self-consistent calculations.

single sign-change of the DMI and the amplitude of the DMI. Whether these large
numerical differences are only due to the different treatments of SOC or if the force
theorem approximation plays also an essential role was examined as well. This was
done by comparing the self-consistent results of the supercell considering full SOC and
the 2-atomic unit cell with the 1st-order perturbation treatment of SOC for selected
q-points. Before adding the 1st-order SOC-contribution, the spin-spiral without SOC
was calculated self-consistently for these certain q-values. Calculations for q = 0.1,
q = 0.125, q = 0.2, and q = 0.25 were performed, which are presented as squares in
figure 5.6. The black markers are the results for the 1st-order perturbation theoretical
treatment on top of the self-consistent spin-spiral calculation and the red markers display
the self-consistent results for the full SOC treatment in the supercell. The results of the
force theorem calculations are in good agreement with the corresponding self-consistent
results for smaller q-values. Therefore the differences between the 1st-order perturbation
theoretical treatment of SOC and the full SOC calculations in figure 5.5 occur due to the
different treatment of SOC and not due to the force theorem approximation. For larger
q-values the difference between the self-consistent results and the force theorem results
increases as one would expect from figures like 3.7 or 5.13. There is no comparison
between self-consistent results and force theorem results for values q > 0.25 for the full
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Figure 5.7: Left panel: DMI of the Fe/Pt(001) slab, consisting of 3 layers Pt, for different
number of k-points Nk. Right panel: DMI of the Fe/Pt(001) slab, consisting
of 7 layers Pt, for different number of k-points Nk.

SOC treatment in the supercell due to convergence problems, as the constraint is not
working well for these cases (see section 5.4.2).

5.3.2 Dzyaloshinskii-Moriya interaction in Fe/Pt(001) slabs

The comparison in 5.3.1 between the full SOC calculation in a supercell and the 1st-order
perturbation theoretical treatment of SOC for the Fe/Pt zigzag chain has yielded, that
the 1st-order perturbation theory treatment is sufficient to determine the DM-constant
D. Even more the qualitative behaviour of the SOC-contribution of the band energy is in
a satisfactory agreement for q ≤ 0.1 (see fig. 5.5). Therefore the magnon dispersion and
the SOC-contribution to the band energy for the Fe/Pt(001) slabs is examined only in
the region of 0 ≤ q ≤ 0.1 using 1st-order perturbation theory for SOC. The Fe/Pt(001)
slab consists of one mono-layer Fe and several layers Pt with the crystallographic (001)
orientation of an fcc lattice. In the following a lattice parameter of a = 2.77186 Å of the
quadratic Bravais lattice is used and as distance between the layers a value of 1.96 Å is
used.

Convergence with the number of k-points: Due to the small energy scale of the
DMI, we have to use a lot of k-points in the force theorem calculations to guarantee
converged results and a smooth curve behaviour. In figure 5.7 the convergence of the
DMI with the number of k-points for an Fe/Pt(001) slab, consisting of 3 layers Pt (left
panel) and 7 layers Pt (right panel), are presented. The system with 3 layers converges
much faster than the system with 7 layers. For a reliable treatment of the DMI more
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than 7 layers are required, and therefore together with some memory-storage problems,
explained in section 5.4, it was not possible to obtain a smooth curve behaviour for the
DMI for the Fe/Pt slabs in a reasonable amount of computational time. However one
can see in fig. 5.7, that the overall slope is consistent for all presented k-point numbers,
so that the DM-constant D could be even found by a fit in the case using 6400 k-points.
All following calculations are done with 19600 k-points.
This numerical problem to obtain a smooth curve behaviour is not present for the

magnon dispersions without SOC. Due to their larger energy scale in the interval 0 ≤
q ≤ 0.1, the curves are sufficiently smooth for 19600 k-points.

Dependence on number of Pt layers: We investigate the magnon dispersion with and
without SOC in Fe/Pt(001) slabs depending on the number of Pt layers. We compare
the results for 3, 5, 7, 9 and 11 layers Pt and determine the spin-stiffness constant A
and the DM-constant D for each case using linear regression. As explained in section
2.10.1 and 2.10.2, we can determine D by using linear regression on the antisymmetric
part of the magnon dispersion E(q), i.e. the SOC-contribution ∆ESOC(q). To obtain
the spin-stiffness constant A, one can use a quadratic fit to the magnon dispersion
(E(q) − E(0)) of the Fe/Pt slab without SOC. But of course also a linear regression,
which is used in this thesis, applied on

√
E(q)− E(0) can be used to derive A as long

as E(q)− E(0) ≥ 0. Due to the fact that the linear behaviour of the DMI is only valid
for small q-values, as assumed in the micromagnetic model (see eq. 2.105), we use only
the values for q ≤ 0.02 to determine D. In our case this corresponds to 5 q-points, which
are used for the linear regression. The quadratic behaviour of the magnon dispersion
without SOC is valid over a wider range, as one can see in the left panel of fig. 5.8 and
therefore we use all q-values up to 0.05, i.e. 10 q-points, to determine the spin-stiffness
constant A. The error, which is automatically calculated within the linear regression
strongly underestimates the ”real“ error. Therefore to estimate a rough error for A and
D, linear regressions with a few more or less q-points were performed to compare the
values for A and D.
In figure 5.8 the magnon dispersion without SOC (left panel) and the SOC-contribution

to the band energy (right panel) is displayed for Fe/Pt(001) slabs, consisting of different
numbers of Pt layers. For the magnon dispersion without SOC a convergence concern-
ing the number of layers is recognizable, starting with 7 layers of Pt. This can be also
observed in the spin-stiffness constant A, which is displayed in the table 5.1. But for the
DM-constant D, which can be seen in table 5.1, a clear convergence with the number of
Pt layers is not observed yet. This could be caused by the long-ranged behaviour of the
DMI. Therefore more Pt-layers are needed to obtain convergence concerning the number
of layers.
Nevertheless one can observe a tendency to a similar behaviour of the DMI for the

systems with 7, 9 and 11 Pt layers. The systems with 3 and 5 layers of Pt behave very
differently compared to the systems with 7, 9 or 11 layers of Pt due to the symmetry-
breaking effect at the Pt surface and the long-ranged DMI. This symmetry-breaking
effect at the Pt surface is the reason, why the layer-decomposed DMI has a large con-
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Figure 5.8: Left panel: Magnon dispersion without SOC for several Fe/Pt slabs con-
sisting of different number of Pt layers n. Right panel: SOC-contribution
to band energy via eq. 2.86 for several Fe/Pt slabs consisting of different
number of Pt layers n.

nLayer 3 5 7 9 11
A in meV · nm2 78 ± 10 96 ± 5 120 ± 10 113 ± 5 125 ± 15
D in meV · nm -10.7 ± 1.0 1.4 ± 0.5 -4.1 ± 0.7 -7.8 ± 0.8 -5.9 ± 0.9

Table 5.1: The spin-stiffness constant A and the DM-constant D of Fe/Pt(001) slabs,
consisting of one Fe layer and nLayer Pt.
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Figure 5.9: Upper panel: Layer-decomposition of the DM-constant D into layer-
decomposed contributions Di for the Fe/Pt(001) slab, consisting of 9 layers
Pt. The symmetry-breaking effect on the Pt-surface leads to a large con-
tribution to the DMI. Lower panel: Layer decomposition of a symmetric
Fe/Pt(001) slab, consisting of 7 layers Pt. The layer-decomposed contribu-
tions Di of the atoms Pt2 and Pt8 are about 0.02meV · nm, therefore not
observable on this scale. The layer-decomposed contribution to the atom Pt5

is zero, due to symmetry reasons.

tribution at the Pt surface even for the system with 11 layers of Pt. In the upper panel
of figure 5.9 the contribution to the DM-constant from each layer of the Fe/Pt(001)
slab, consisting of 9 layers Pt, is presented. To determine the contribution from each
layer, the SOC-contribution to the band energy is layer-decomposed straightforwardly
via eq. 2.85. One can obtain the layer-resolved DM-constants by using linear regression
on these energy-contributions. The DMI should decay with increasing distance from the
Fe surface, but in our calculations of the Fe/Pt slabs no decaying behaviour is observ-
able, reflecting the quantum confinement that is still present for 9 layers. We suppose,
that we need a lot more layers to properly describe the layer dependence of the DMI.
To avoid the large contribution to the DMI from the Pt-surface, a symmetric Fe/Pt

slab can be used. The total DMI in a symmetric Fe/Pt slab is zero due to the presence of
inversion-symmetry, but the layer-decomposed DMI does not vanish. In the lower panel
of figure 5.9 the layer-decomposed DMI of a symmetric Fe/Pt(001) slab, consisting of 7
layers Pt, is displayed. For the first 5 layers, consisting of 1 Fe layer and 4 Pt layers,
the spin stiffness constant has a value of (101± 6) meV · nm2 and the DM-constant has
a value of (−9.2± 0.3) meV · nm. A remarkable result of the layer-decomposed analysis
is the low DMI in the Pt layers, which are adjacent to the Fe layers. This is in contrast
to the finding that the largest contribution to DMI comes from these adjacent layers in
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Figure 5.10: Left panel: Magnetic (Mulliken-)moments of Pt in the converged ferro-
magnetic Fe/Pt(001) slab, consisting of 9 layers Pt in dependence of the
Stoner parameter IdPt. Negative values of the magnetic moments correspond
to magnetic moments pointing along the −z-direction. Right Panel: Spin
stiffness A (black curve) and DM-constant D (red curve) in dependence of
the Stoner parameter of Pt. The error-bars show the roughly estimated
errors for A and D (see text).

Cr/W slabs or Fe/W slabs [12]. Possibly this again reflects the quantum confinement in
the slab.

Dependence on the Stoner parameter of Pt: One would expect a delicate depen-
dence of the polarized Pt moments on the Stoner parameter IdPt of Pt. But in the exam-
ination of the L10-FePt structure in section 5.2, a surprising result was obtained, that
the magnetic moment of Pt was almost independent of the Stoner parameter. Therefore
it would be interesting to examine the influence of the Stoner parameter on the polar-
ized Pt moments in an Fe/Pt(001) slab, consisting of 9 layers Pt. In the left panel of
figure 5.10 the magnetic (Mulliken-)moments of the Pt atoms are displayed for different
Stoner parameters IdPt. There one can clearly observe a delicate dependence of the mag-
netic moments on the Stoner parameter. For a smaller Stoner parameter the magnetic
moments of Pt decrease stronger with increasing distance from the Fe layer. But the
magnetic moment of Pt does not vanish for a Stoner parameter of zero, due to a strong
hybridization between Fe and Pt. For a Stoner parameter of IdPt = 0.7 eV Pt becomes
magnetic even without the presence of Fe, which is the reason why the Pt moments
behave very different compared to the other cases.

Due to the strong dependence of the magnetic moments on the Stoner parameter, one
can expect also a large influence on the spin-stiffness constant A and the DM-constant
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D. In the right panel of figure 5.10, A (left scale) and D (right scale) are displayed versus
the Stoner parameter IdPt. The spin-stiffness constant increases with increasing Stoner
parameter, which can be simply understood by taking into account the behaviour of the
magnetic moments. As long as the Stoner parameter does not exceed the value, where Pt
becomes strongly magnetic, A seems to be linearly dependent on the Stoner parameter.
The absolute value of the DM-constant D has also the tendency to increase for increasing
Stoner parameter, but as soon as Pt becomes strongly magnetic the absolute value of D
is diminished.
At this point we should come back to the determination of the Stoner parameter

IdPt via the lattice parameter dependence of the magnetic moment in fcc-Pt as it is
done in section 4.3. Due to the sensitivity of the magnetic moment of Pt, especially in
the transition region between non-magnetic fcc-Pt and magnetic fcc-Pt, this method is
probably not the optimal method to determine IdPt. In addition, the parameter set of
Pt [15, 16] only ensures an accurate description of the electronic structure for a small
area around the equilibrium lattice constant of fcc-Pt. A more appropriate method
to determine IdPt, in particular for the treatment of Fe/Pt slabs, could be based on the
polarization of the Pt atoms in Fe/Pt slabs, as it is presented in the left panel of fig. 5.10.
An FLAPW-calculation of the polarization of the Pt atoms in an Fe/Pt slab could be
used to obtain the specific Stoner parameter, for which the polarization is well described.

Dependence on the band filling: An interesting examination, which can be done very
easily within the tight-binding scheme, is to examine the behaviour of A and D with
respect to a change in the band filling. The band filling in an Fe/Pt(001) slab, consisting
of 9 layers Pt, is changed by varying the number of electrons of the Pt atoms3. In the
following the number of electrons vary between 9.0 and 11.0 in 0.25-steps. A Pt atom
consists of 10 valence electrons, therefore if we change this number, our slab does not
describe an Fe/Pt slab any more. For example the case of 11 electrons models the band
filling in a Fe/Au slab, whereas the case of 9 electrons models the band filling in a Fe/Ir
slab. It should be noted, that Au and Ir are not properly described only by adjusting
the band filling. In principle the hopping parameters, the Stoner parameters and the
SOC-parameters have to be also adjusted, which is not done in the following.
In figure 5.11 A (black curve) and D (red curve) are displayed depending on the num-

ber of electrons per Pt atom. For A an increasing tendency for increasing occupation
number can be clearly observed, although there are fluctuations after 10.5 electrons. In
[67] the Heisenberg exchange coupling parameter J was examined for a material consist-
ing of two sorts of atoms with a number of localized electrons N1 and N2. Depending on
these numbers N1 and N2 the Heisenberg exchange coupling parameter was displayed,
which tendencies resemble the behaviour of A depending on the occupation number.
For the DM-constant D it is difficult to determine a tendency, due to the aforemen-

tioned numerical problems, which can be also observed in the large estimated errors on
D. Nevertheless there seems to be a sign change of D for larger occupation numbers,

3The band filling is enforced by the local charge neutrality constraint during the self consistent calcu-
lation to obtain an appropriate starting density for the force theorem.
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Figure 5.11: Spin stiffness A (black curve) and DM-constant D (red curve) of an
Fe/Pt(001) slab, consisting of 9 layers Pt, depending on the valence electron
number of the Pt atoms. The error-bars show the roughly estimated errors
for A and D (see text).

which would lead to an interesting possibility to switch the rotation sense of a spin-spiral.
Surprisingly the SOC-contribution to the band energy looks much smoother for larger
occupation numbers than 10, which is reflected in the smaller errors of D. This is an
indication, that the numerical problems are based on the relative position between the
d-orbitals of Pt and the Fermi energy. Therefore the numerical problems vanish, if the
Fermi energy lies above the d-states.
To conclude we have to face some numerical problems to treat the DMI in Fe/Pt

slabs, which makes the predictions for the DMI in these systems not completely reliable.
Nevertheless some results show an expected behaviour, which would justify a deeper
examination via ab-initio codes or via an improved tight-binding scheme. The sign
change in the DM-constant D within changing the electron occupation number is an
appropriate starting point to gain a deeper understanding of the DMI. The results for
the spin-stiffness constant A, for which we do not have to face these numerical problems,
seem to be reliable.

5.4 Numerical aspects

Calculating complex magnetic structures is computationally very challenging. Usually
very small energy differences have to be resolved, which makes it necessary to use a dense
k-mesh and small Fermi broadening. Therefore one has to deal with large computational
times and difficulties to obtain converged results. Of course the tight-binding method
has the same problems, but due to its simplicity the computational time is drastically re-
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nLayer 3 5 7 9 11 13
t (in min) 1.0 2.5 5.0 8.0 12.5 17.0

Table 5.2: The time t is the computational time for one iteration of a self-consistent cal-
culation for the ferromagnetic structure of an Fe/Pt slab with nLayer Pt(111)
layers (Nat = nLayer + 1). For this calculation Nk = 6400 k-points were used
and the calculations were performed on 1 CPU.

duced compared to ab-initio methods. In this section the computational time needed by
the tight-binding method is analysed and compared to some ab-initio methods. We will
also discuss the improvements, which can be included into the program. This includes
the discussion about some remaining numerical problems of the tight-binding method
and the present status of our code.

5.4.1 Computational time

One of the biggest advantages of the tight-binding method is its simplicity and therefore
the reduction of the computational time compared to ab-initio methods. Before we
present values of the computational time, we should analyse which numerical steps take
the most part of the computational time. Roughly one can say, that diagonalizing the
Hamiltonian H and the calculation of the expressions S(k) ·Ψn(k) (see eq. 2.35) take
almost the whole computational time. The DOS-calculation needs also some time, but it
will be not considered in the following. If we consider each iteration step, there are two
important parameters, which have a strong influence on the computational time. These
are the number of basis atoms Nat in the system and the number of k-points Nk. The
computational time for diagonalizing H is proportional to N3

at ·Nk, whereas the matrix
vector multiplication scales with N2

at · Nk. Therefore one should try to define the unit
cell of the system as small as possible and using more k-points instead (e.g. the red unit
cell in figure 5.1 instead of the blue one).
In table 5.2 the computational times for one iteration step in a calculation for the

total energy of Fe/Pt slabs consisting of one monolayer Fe and nLayer of Pt with (111) as
crystallographic orientation, are presented. Compared to ab-initio methods, the tight-
binding method is much faster. For example an FLAPW-calculation4 (with the massively
parallelized FLEUR code [56]) of a Cr/W(110)-slab with 7 layers of W takes about 6
minutes per iteration using 512 k-points on 16 CPUs. Therefore in a rough estimation
the tight-binding calculation is about two orders faster than FLAPW.
The code, which is based on the tight-binding scheme, is not MPI-parallelized yet,

therefore the advantage in the computational time could be strengthened to treat very
large systems on state-of-the-art computers. The parallelization could be easily applied

4The calculation was performed by B. Zimmermann with following computational parameters: lmax =
6, kmax = 3.8.
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Figure 5.12: Magnon dispersion of a free standing mono-atomic Fe chain (a = 2.22 Å)
for a cone angle of Θ = 0◦ depending on the number of k-points Nk. All
curves show an oscillatory behaviour due to numerical reasons, but the
oscillations for Nk = 1000 are too small to see on this scale.

to the k-points in the diagonalization of H and the energies ε for the DOS-calculation
D(ε). This parallelization would also solve a memory-storage problem of the code, due
to the eigenvectors, which occupy a huge amount of memory space. There is already the
possibility to write the eigenvectors on the hard-disc, but this will drastically increase
the computational time.

5.4.2 Numerical problems of the tight-binding method and the
code

Numerical noise in spin-spiral calculations: As is known, one always has to take care
of using enough k-points in the calculations. A remarkable ”effect“, which arises due to
not enough k-points, is displayed in figure 5.12. In this figure the magnon dispersion
of a spin-spiral for a free standing mono-atomic Fe chain with a cone angle of Θ = 0◦

is displayed for different number of k-points. For a spin-spiral with a cone angle of
Θ = 0◦, we expect no dispersion. But depending on the number of k-points, we obtain
an oscillatory behaviour with an amplitude, which is strongly decreasing for increased
k-point number. Therefore it is clear, that the oscillations are numerical. Using a large
number of k-points guarantees that the amplitude of the oscillations is much smaller
than the energy differences between neighbouring q-points in the magnon dispersion.
Unfortunately these oscillations obey no simple equation, so that one can not simply
subtract the oscillations for Θ = 0◦ from the actual spin-spiral calculation to avoid the
usage of a dense k-mesh. This problem appears also in the FLAPW-method and is
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Figure 5.13: Magnon dispersions of an Fe/Pt(001) slab containing of 3 layers Pt.
The black curves are calculations performed with the force theorem (FT),
whereas the red curves present the results for a self-consistent (SC) calcu-
lation. The solid lines are calculations with Θ = 30◦, where the constraint
becomes necessary for the SC calculation, whereas the dotted lines are cal-
culations with Θ = 90◦. All curves are in pretty nice agreement especially
for smaller q-values like in the case for bcc-Fe (see figure 3.7). Therefore
the constraint is working well, if the system converges.

discussed in [12].

Problem with MKL-library: In this work the following library5 is used to take ad-
vantage of increasing the number of threads to speed up the calculations. Depend-
ing on the size of the system, one can face a various amount of problems when using
more than one thread with this library. Therefore to be sure a test calculation with
OMP_NUM_THREADS = 1 should be performed for each system.

Problems with the constraint for the magnetic moments: The constraint in eq. 2.73
is used to fix the Θ-angle of a magnetic moment m, which is the angle between the
z-axis and m. Fixing magnetic moments becomes necessary for self-consistent calcula-
tions, e.g. when the magnetic moments should not point along high-symmetry directions.
If the magnetic moments are not too small and the structure is not too complex, the
constraint method is working well. For very small magnetic moments (|m| ≤ 0.1µB)
however, the constraint is not able to properly fix them. This is no problem, as long
as the system converges (cf. in figure 5.13), because the small magnetic moments do
not have a large influence on the energy. But sometimes the convergence fails due to

564-bit version of the Math Kernel Library (Version: 11.1.059)
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the small magnetic moments, because they will change their direction in every iteration
step. To avoid this, one can set the small magnetic moments rigorously to zero or pin
them after each iteration step into the desired direction, but this is not really a satisfying
solution.
Another problem appears for calculations of highly complex magnetic structures, in

which the constraint should fix all magnetic moments. It should be mentioned, that the
constraint of the form 2.73 is not able to pin the magnetic moments exactly, but only
for a small region around the desired direction. As a consequence, it is very difficult to
obtain convergence, if the system is too complex.

Another constraint in form of a magnetic field along the desired direction of the
magnetic moment instead of a perpendicular one (as in eq. 2.73) could perhaps solve
these problems.
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6 Conclusions

We report the development of a parametrized tight-binding code able to treat complex
magnetic structures including the effect of spin-orbit coupling (SOC). The most obvi-
ous advantage of this method compared to ab-initio techniques is the reduction of the
computational time, which allows to perform many calculations with different setups in
a short time. In addition, the parametrization within this tight-binding method allows
to perform “numerical experiments” in a simple way, in order to gain a deeper under-
standing of the physics behind the complex magnetic structures. Our parametrized
tight-binding method is based on the NRL-TB parametrization scheme [15, 16, 17, 18],
but also allows the possibility to use alternative parametrizations, e.g. considering only
nearest-neighbour hoppings to simplify the model at the expense of accuracy. The mag-
netism is described via a Stoner model [19, 20], which allows to control the magnitude
of the magnetic moments by tuning the Stoner parameters. Within this Stoner model
the code is able to calculate charges self-consistently. In doing so, a constraint assures
local charge neutrality, but the constraint can be also used to adjust the charges to de-
sired values. SOC is considered by implementing a SOC matrix in the basis of localized
atomic orbitals of each atom, which depends on SOC-parameters allowing to adjust the
SOC strength. The treatment of non-collinear magnetism also includes the possibility
to use the generalized Bloch theorem [21, 22, 23] for spin-spiral calculations. Using the
1st-order perturbation theoretical approach for SOC [24, 9], we are able to consider the
effect of SOC within the generalized Bloch theorem.

The results of the thesis demonstrate that the parametrized tight-binding method can
be successfully used to describe the behaviour of various structures at least qualitatively
correctly.

In this thesis we have focused on systems consisting of Fe and Pt atoms. First, we have
considered pure Fe systems within the tight-binding method and compared the results
to ab-initio calculations. As long as one does not need an extremely accurate description
of the electronic structure, the conventional Fe parameter sets provide good grounds for
the description of magnetism in various Fe systems. For example the distance depen-
dence of the Heisenberg exchange-coupling parameters of bcc-Fe is in a nice qualitative
agreement with corresponding ab-initio results. And although the tight-binding param-
eters are not fitted for the description of free standing Fe monolayers and free standing
Fe chains, the results for these systems also show a reasonable behaviour. The calcula-
tion of the magneto-crystalline anisotropy energy (MCA) in Fe monolayers of different
crystallographic orientations yielded the same tendencies as the ab-initio values. This
demonstrates that the tight-binding method is able to successfully describe such delicate
properties as the MCA.
To treat Fe/Pt systems, it was necessary to determine the SOC-parameters and the

75



Conclusions

Stoner parameters of Pt. This was done by fitting to ab-initio results. An appropriate
SOC-splitting in the band structure of fcc-Pt was used to determine the SOC-parameters.
To fix the Stoner parameter the lattice constant dependence of the magnetic moments
in fcc-Pt from an FLAPW calculation was compared to corresponding tight-binding
results. The method to determine the Pt Stoner parameter exhibits some difficulties
(see section 5.3.2 for more details), which should be solved in the future to improve the
accuracy of the magnetic description within the tight-binding method.
We have investigated magnetic properties of complex structures consisting of Fe and

Pt atoms, starting with the MCA of the L10-FePt structure and its dependence on the
degree of uniaxiality, i. e. the c

a
-ratio. The MCA is increasing with increasing c

a
-ratio,

which is in a nice qualitative agreement with corresponding ab-initio results [62, 65].
However, we have observed that the parametrization of binary systems within eq. 2.24
and 2.25 is not accurate enough to predict quantitatively reliable results for such delicate
quantities as the MCA. In fact the on-site element parametrization via eq. 2.24 is only
intended for describing systems consisting of one chemical atom type and therefore by
changing already the parameter λ the MCA of the L10 system can change by 100%.
Nevertheless the tendencies of the MCA are well reproduced within this parametrization.
The Dzyaloshinskii-Moriya interaction (DMI) has been examined in this thesis for Fe

overlayers on Pt and Fe/Pt zigzag chains. Although the Fe/Pt zigzag chain is a strongly
idealized model one can learn a lot about the DMI in this system due to its simplicity. In
this work the 1st-order perturbation theoretical approximation of SOC in the framework
of the generalized Bloch theorem has been compared to a full SOC treatment in a large
supercell of an Fe/Pt zigzag chain to evaluate the validity of this approximation. It turns
out that the approximation is sufficient to determine the strength of the DMI around a
small region of the spin-spiral vector q = 0. This small region is the relevant region for
computing the DM-constant D and the spin-stiffness constant A of the micro-magnetic
model. These constants have been calculated for Fe/Pt(001) layers with varying number
of Pt layers. For the spin-stiffness constant a convergence concerning the number of layers
could be observed, whereas the convergence was difficult to achieve for D, possibly due
to effects of quantum confinement. This fact is also reflected in the layer-decomposed
analysis of the DMI in which a large contribution was found to be coming from the
farthest-from-Fe layer of Pt. Therefore additional calculations of Fe/Pt layers with a
larger number of Pt layers or investigations of symmetric Fe/Pt layers would be desirable.
Technically the calculation of the DMI in Fe/Pt layers presented some difficulties

concerning the number of k-points necessary to obtain a smooth DM-contribution as
a function of q. These difficulties seem to be based on the relative position of the d-
orbitals and the Fermi energy. A k-point parallelization of the code would allow to
increase the number of k-points without a drastic increase in the computational time.
Additionally, the tetrahedron method [68] could be applied in order to improve the
k-point convergence.
The spin-stiffness and the DMI dependence on the Stoner parameter and the electronic

occupation number has been also examined in these systems. The possibility to perform
calculations of these type is one of the most important advantages of the tight-binding
method. The order of magnitude of the spin-stiffness constant with about 100 meV ·
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nm2 and the DM-constant with about 10 meV · nm are comparable to the values in
2Fe/W(110) [8, 9] and Cr/W(110) [12] systems. The spin-stiffness constant increases
with increasing Stoner parameter and with increasing occupation number, which is an
expected behaviour. The strength of the DMI increases monotonously with increasing
Stoner parameter as long as the Stoner parameter does not exceed the value for which
the Pt atoms become intrinsically magnetic. In the case of a larger Stoner parameter
the strength of the DMI drastically decreases. The DMI dependence on the occupation
number shows a rather interesting sign change from an Fe/Pt layer to an Fe/Au-like
layer. Understanding this behaviour could be a keystone for a better understanding of
the DMI in this type of systems.
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A Appendix

A.1 Angular moment operator in atomic orbital
representation

Calculating the angular moment operator L = r × p in representation of the atomic
orbitals |µ〉 is done straight forward by using the following equations for Lz and the
ladder operators L±:

Lz · |l,m〉 = m · |l,m〉 (A.1)
L± · |l,m〉 =

√
l · (l + 1)−m · (m± 1) · |l,m± 1〉 , (A.2)

where |l,m〉 are the eigenfunctions of L2 and Lz, which are the complex spherical har-
monics in real space representation.

With Lx = 1
2
·(L++L−) and i·Ly = 1

2
·(L+−L−) we derive the following expressions for

the angular moment in atomic orbital representation (s, px, py, pz, dxy, dxz, dyz, dx2−y2 , dz2):

[Lx]νµ =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −i 0 0 0 0 0
0 0 i 0 0 0 0 0 0
0 0 0 0 0 −i 0 0 0
0 0 0 0 i 0 0 0 0

0 0 0 0 0 0 0 −i −i
√

3
0 0 0 0 0 0 i 0 0

0 0 0 0 0 0 i
√

3 0 0


(A.3)

[Ly]νµ =



0 0 0 0 0 0 0 0 0
0 0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0 0
0 0 0 0 0 0 i 0 0

0 0 0 0 0 0 0 −i i
√

3
0 0 0 0 −i 0 0 0 0
0 0 0 0 0 i 0 0 0

0 0 0 0 0 −i
√

3 0 0 0


(A.4)
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Appendix A.2 Derivation of the phase factors

[Lz]
ν
µ =



0 0 0 0 0 0 0 0 0
0 0 −i 0 0 0 0 0 0
0 i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2i 0
0 0 0 0 0 0 −i 0 0
0 0 0 0 0 i 0 0 0
0 0 0 0 −2i 0 0 0 0
0 0 0 0 0 0 0 0 0


(A.5)

To obtain the SOC-matrix in atomic orbital representation, one has to use the equation

HSOC ∝ L · S (A.6)

with S = h̄
2
· σ.

A.2 Derivation of the phase factors

The Bloch-waves

|Φ↑iµ(k)〉 =
1√
N
·
∑
n

eik·(Rn+τ i) · |n, i, µ〉 ·
(

e−
i
2
q·(Rn+τ i) · cosΘ

2

e
i
2
q·(Rn+τ i) · sinΘ

2

)
(A.7)

|Φ↓iµ(k)〉 =
1√
N
·
∑
n

eik·(Rn+τ i) · |n, i, µ〉 ·
(
−e−

i
2
q·(Rn+τ i) · sinΘ

2

e
i
2
q·(Rn+τ i) · cosΘ

2

)
(A.8)

satisfy the generalized Bloch theorem [21, 22, 23] and they form an orthonormalized set
of basis functions. The Hamiltonian displays as follows in representation of these Bloch
waves:

〈Φσ
i,µ|H |Φσ′

j,ν〉 =
1

N

∑
n,n′

eik·(Rn+τ j−Rn′−τ i) · (χ̃σn′,i,µ)† · (Hj,ν
i,µ )σσ

′
(Rn′ −Rn) · χ̃σ′n,j,ν

with

χ̃σn,i,µ = U · χσn,i,µ

=


(

e(−i/2·q·(Rn+τ i) · cos(Θ/2)
e(i/2·q·(Rn+τ i)) · sin(Θ/2)

)
if σ =↑(

−e(−i/2·q·(Rn+τ i) · sin(Θ/2)
e(i/2·q·(Rn+τ i)) · cos(Θ/2)

)
if σ =↓

, (A.9)

where U is the spin transformation matrix from eq. 2.66 with φ = q · (Rn + τ i). The
χσ are the ↑- and ↓-spins in the global frame, therefore (1, 0)T and (0, 1)T. Therefore it
holds:
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(Hj,ν
i,µ )σσ

′
(k, q) =

1

N
·
∑
n,n′

eik·(Rn+τ j−Rn′−τ i) · (χσn′,i,µ)† · [U †(Θ, q · (Rn′ + τ i)) ·

(Hj,ν
i,µ )σσ

′
(Rn′ −Rn) · U(Θ, q · (Rn + τ j))] · (χσ

′

n,j,ν) . (A.10)

H0 and HLCN is proportional to the unit matrix in spin-space. With ti,µ→j,ν(Rn′−Rn)
the hopping element of the Hamiltonian from the state i, µ to the state j, ν, it holds due
to the independence of the hopping elements of the spin:

[H0]jνiµ =

(
ti,µ→j,ν 0

0 ti,µ→j,ν

)
.

The magnetic partHmag in global presentation transforms into the local frame due to the
spin transformation 2.69. In this local frame the magnetic part of the Hamiltonian is also
diagonal in spin space. Therefore the expression U †(Θ, q ·(Rn′+τ i)) ·U(Θ, q ·(Rn+τ j))
yields the specific phase-factors (sji (q ·Rn))σσ

′ :

(sji (q ·Rn))↑↑ = e−i q
2
·(Rn+τ j−τ i) · cos2

(
Θ

2

)
+ ei q

2
·(Rn+τ j−τ i) · sin2

(
Θ

2

)
(sji (q ·Rn))↓↓ = ei q

2
·(Rn+τ j−τ i) · cos2

(
Θ

2

)
+ e−i q

2
·(Rn+τ j−τ i) · sin2

(
Θ

2

)
(sji (q ·Rn))↑↓ = 2i · sin

(q
2
· (Rn + τ j − τ i)

)
· sin

(
Θ

2

)
· cos

(
Θ

2

)
(sji (q ·Rn))↓↑ = [(sji (q ·Rn))↑↓]∗ (A.11)

For a spin-spiral of the type (c) in fig. 2.15, which has to be used to obtain non-
vanishing DMI in the systems examined in chapter 5, the phase-factors are a little bit
different. In an analogous way one can derive the phase factors for these ”flat-spirals“ as
follows:

(sji (q ·Rn))↑↑ = cos
(q

2
· (Rn + τ j − τ i)

)
(sji (q ·Rn))↓↓ = cos

(q
2
· (Rn + τ j − τ i)

)
(sji (q ·Rn))↑↓ = −sin

(q
2
· (Rn + τ j − τ i)

)
(sji (q ·Rn))↓↑ = [(sji (q ·Rn))↑↓]∗ (A.12)
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Hs
s = Vssσ

Hx
s = lVspσ

Hx
x = l2Vppσ + (1− l2)Vppπ

Hy
x = lmVppσ − lmVppπ

Hz
x = lnVppσ − lnVppπ

Hxy
s =

√
3lmVsdσ

Hx2−y2
s = 1

2

√
3(l2 −m2)

Hz2

s =
[
n2 − 1

2
(l2 +m2)

]
Vsdσ

Hxy
x =

√
3l2mVpdσ +m(1− 2l2)Vpdπ

Hyz
x =

√
3lmnVpdσ − 2lmnVpdπ

Hxz
x =

√
3l2nVpdσ + n(1− 2l2)Vpdπ

Hx2−y2
x = 1

2

√
3l(l2 −m2)Vpdσ + l(1− l2 +m2)Vpdπ

Hx2−y2
y = 1

2

√
3m(l2 −m2)Vpdσ −m(1 + l2 −m2)Vpdπ

Hx2−y2
z = 1

2

√
3n(l2 −m2)Vpdσ − n(l2 −m2)Vpdπ

Hz2

x = l
[
n2 − 1

2
(l2 +m2)

]
Vpdσ −

√
3ln2Vpdπ

Hz2

y = m
[
n2 − 1

2
(l2 +m2)

]
Vpdσ −

√
3mn2Vpdπ

Hz2

z = n
[
n2 − 1

2
(l2 +m2)

]
Vpdσ +

√
3n(l2 +m2)Vpdπ

Hxy
xy = 3l2m2Vddσ + (l2 +m2 − 4l2m2)Vddπ + (n2 + l2m2)Vddδ

Hyz
xy = 3lm2nVddσ + ln(1− 4m2)Vddπ + ln(m2 − 1)Vddδ

Hxz
xy = 3l2mnVddσ +mn(1− 4l2)Vddπ +mn(l2 − 1)Vddδ

Hx2−y2
xy = 3

2
lm(l2 −m2)Vddσ + 2lm(m2 − l2)Vddπ + 1

2
lm(l2 −m2)Vddδ

Hx2−y2
yz = 3

2
mn(l2 −m2)Vddσ −mn [1 + 2(l2 −m2)]Vddπ +mn

[
1 + 1

2
(l2 −m2)

]
Vddδ

Hx2−y2
xz = 3

2
nl(l2 −m2)Vddσ + nl [1− 2(l2 −m2)]Vddπ − nl

[
1− 1

2
(l2 −m2)

]
Vddδ

Hz2

xy =
√

3lm
[
n2 − 1

2
(l2 +m2)

]
Vddσ − 2

√
3lmn2Vddπ + 1

2

√
3lm(1 + n2)Vddδ

Hz2

yz =
√

3mn
[
n2 − 1

2
(l2 +m2)

]
Vddσ +

√
3mn(l2 +m2 − n2)Vddπ − 1

2

√
3mn(l2 +m2)Vddδ

Hz2

xz =
√

3ln
[
n2 − 1

2
(l2 +m2)

]
Vddσ +

√
3ln(l2 +m2 − n2)Vddπ − 1

2

√
3ln(l2 +m2)Vddδ

Hx2−y2
x2−y2 = 3

4
(l2 −m2)2Vddσ + [l2 +m2 − (l2 −m2)2]Vddπ +

[
n2 + 1

4
(l2 −m2)2

]
Vddδ

Hz2

x2−y2 = 1
2

√
3(l2 −m2)

[
n2 − 1

2
(l2 +m2)

]
Vddσ +

√
3n2(m2 − l2)Vddπ

+1
4

√
3(1 + n2)(l2 −m2)Vddδ

Hz2

z2 =
[
n2 − 1

2
(l2 +m2)

]2
Vddσ + 3n2(l2 +m2)Vddπ + 3

4
(l2 +m2)2Vddδ

Table A.1: Slater-Koster transformations for s, p and d-orbitals. The matrix elements
Hν
µ(Rn) of the real-space Hamiltonian depend on the direction cosines l =

(Rn)x
|Rn| , m = (Rn)y

|Rn| and n = (Rn)z
|Rn| of the bonding vector Rn. The table is

separated in s-s, s-p, p-p, s-d, p-d and d-d matrix elements by horizontal
lines.
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B Appendix

B.1 Parameter sets for Fe and Pt

The following parameter sets in the tables B.1, B.2 and B.3 are obtained by Mehl et al. by
fitting the TB-bands to LDA/GGA-ab-initio band structures. The results are published
in [15, 16, 54]. The parameters are necessary for the description of the Hamiltonian and
the overlap matrix via eq. 2.21 and eq. 2.23.
Some informations about the parameters:

• The distance R is in atomic units and the Slater-Koster parameters are in Rydberg
in the Mehl et al. parametrization. Therefore the parameters are in following units:

[a] = Ry, [b] = Ry · (a.u.)−1, [c] = Ry · (a.u.)−2, [d] = (a.u.)−0.5

[α] = Ry, [β] = Ry, [γ] = Ry, [χ] = Ry, [λ] = (a.u.)−0.5 .

• The on-site contributions for the overlap matrix are 1.0.

• The parameters c and χ are zero in some of the presented parameter sets, but in
general they are not.

• No difference between the t2g- and eg-states is introduced in the parameter sets.

• The parametrization of the overlap matrix is via the old parametrization scheme
of Mehl et al. [17].
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Appendix B.1 Parameter sets for Fe and Pt

Rc = 16.5 a.u. Lc = 0.5 a.u. λ = 1.61591889336E+00

orbital α β γ χ
s 3.13939258386E−01 -1.50340969449E+02 5.60131523543E+04 0.0
p 7.50228117251E−01 1.32173351946E+02 -4.83053227618E+03 0.0
d 6.79135670479E−02 1.80487939584E+01 -1.71453585941E+03 0.0

Vll′m a b c d
Vssσ 4.55043825222E−01 -1.21734123013E+00 0.0 9.14314863459E−01
Vspσ 8.72706208251E−01 -2.65085983323E−03 0.0 6.78102167954E−01
Vppσ 1.02661455604E+00 4.62878498635E−02 0.0 6.49770224489E−01
Vppπ -3.61138626592E+01 8.18233539363E+00 0.0 1.17142147452E+00
Vsdσ 5.06145301841E−01 -3.03407375680E−01 0.0 8.23582443933E−01
Vpdσ 3.62443449178E+00 -1.20097178354E+00 0.0 8.70891888071E−01
Vpdπ -1.23170095125E+00 8.46861596670E−01 0.0 9.92415550868E−01
Vddσ -1.30200356145E+00 9.13566450579E−02 0.0 7.96761216755E−01
Vddπ 3.03158415211E+00 -2.29519971304E−01 0.0 9.29910152711E−01
Vddδ -2.42866093686E+00 3.43810222548E−01 0.0 1.01267224138E+00

Vll′m a b c d
Vssσ 2.08691737655E+00 1.50951711074E+00 0.0 9.38172864034E−01
Vspσ 6.61324794182E+00 -2.39708289279E+00 0.0 8.42816286968E−01
Vppσ 7.79047201212E+00 -2.24565537971E+00 0.0 7.63650075929E−01
Vppπ -5.28178851021E+00 1.65816689927E+00 0.0 8.02822184386E−01
Vsdσ -6.29773771311E+02 1.71528662797E+02 0.0 1.30437406994E+00
Vpdσ -3.79544838869E+00 7.64597367732E−01 0.0 8.45424416578E−01
Vpdπ 1.21878943829E+02 -4.37849569870E+01 0.0 1.33895185420E+00
Vddσ -4.33296538382E+00 4.93979871821E+00 0.0 1.19874436110E+00
Vddπ -1.03641263737E+00 1.93977003741E−01 0.0 8.98115322198E−01
Vddδ 4.62136029975E+00 -1.26354179980E+00 0.0 1.05391660677E+00

Table B.1: Fe LDA-parameter set: The first table contains the necessary parameters
for the on-site energies, the second table contains the parameters for the
Hamiltonian matrix elements (hopping elements), whereas the third table
contains the parameters for the overlap matrix.
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Rc = 16.5 a.u. Lc = 0.5 a.u. λ = 0.167876018007E+01

orbital α β γ χ
s .111237776825E+00 .157472037798E+03 .279493598875E+06 -.886322891071E+08
p .512530808853E+00 .305694624645E+03 -.627918805139E+05 -.526504629561E+07
d .956141408199E−01 -.229757020621E+02 .131512865599E+05 -.854972223057E+06

Vll′m a b c d
Vssσ .428297660344E+00 -.736375016998E+00 .242575588592E−02 .858600612943E+00
Vspσ .817564285855E+00 -.114712495851E−02 .571303916419E−02 .713729903579E+00
Vppσ -.624426913703E−01 .169380062153E+00 -.133925020299E−01 .531763011628E+00
Vppπ .457554537257E+03 -.268469067026E+02 -.213983975589E+02 .146261128932E+01
Vsdσ .490269004091E+00 -.381292939420E+00 -.236890354241E−02 .816265910951E+00
Vpdσ .380280165519E+01 -.116865592373E+01 .245781494444E−02 .853580010894E+00
Vpdπ -.170292010391E+01 .789563902306E+00 -.347134872764E−01 .955500742639E+00
Vddσ -.112692175412E+01 .906852484661E−01 -.110402112411E−01 .811112962492E+00
Vddπ .628847411766E+01 -.136259655000E+01 .979967718827E−01 .931326036079E+00
Vddδ -.643123923582E+03 .359148848319E+03 -.546524202557E+02 .147480783649E+01

Vll′m a b c d
Vssσ -.130030306848E+02 .373133347375E+01 .641105326253E+00 .102602926730E+01
Vspσ .105130415274E+02 -.357406235042E+01 -.229978575757E+00 .966897827380E+00
Vppσ .151286790032E+02 -.335893499630E+01 -.246789283219E+00 .849462577539E+00
Vppπ -.255301615149E+01 .154908422778E+01 -.108991538227E+00 .758944165379E+00
Vsdσ -.596211016918E+03 .158217370850E+03 -.132981350821E+01 .128158963555E+01
Vpdσ -.520996890837E+01 .163409810874E+01 -.490336116995E−01 .762616604972E+00
Vpdπ -.449930772185E+02 -.114818134979E+02 -.313846669042E+01 .136886120058E+01
Vddσ .267625592154E+02 -.123743969604E+02 .154936323562E+01 .974949432957E+00
Vddπ -.137179418998E+01 .163248717151E+00 .281060705718E−02 .717618717462E+00
Vddδ .105113669588E+02 -.450600002662E+00 -.395000205694E+00 .101542781750E+01

Table B.2: Fe GGA-parameter set: The first table contains the necessary parameters
for the on-site energies, the second table contains the parameters for the
Hamiltonian matrix elements (hopping elements), whereas the third table
contains the parameters for the overlap matrix.
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Rc = 16.5 a.u. Lc = 0.5 a.u. λ = 1.48637407133E+00

orbital α β γ χ
s 5.83155590317E−03 2.05115875626E+02 -2.04104996463E+04 0.0
p 8.17822535174E−01 5.89749525600E+01 1.12389938450E+04 0.0
d 4.98287869238E−02 -4.47348238061E+00 6.15745074751E+02 0.0

Vll′m a b c d
Vssσ -1.38284631122E+00 -1.20674487008E−01 0.0 8.13944927710E−01
Vspσ 1.83353981972E+00 5.86126500009E−01 0.0 8.45134159397E−01
Vppσ 1.26085142803E+00 1.03890170253E+00 0.0 8.31224712555E−01
Vppπ 2.05175594909E+02 -3.96379653812E+01 0.0 1.13164516026E+00
Vsdσ -2.89294520731E+00 2.44945737996E−01 0.0 7.98201020712E−01
Vpdσ 1.58551087829E+00 -6.94618881904E−01 0.0 8.07843642691E−01
Vpdπ 8.60594193094E−01 -3.28209927985E−02 0.0 8.59013576224E−01
Vddσ -1.75160317524E+00 -3.17276845523E−01 0.0 8.74768883496E−01
Vddπ 7.04207263761E+00 -3.61062702293E−01 0.0 9.55737743700E−01
Vddδ -1.19554932632E+00 1.68459650181E−01 0.0 8.73327306708E−01

Vll′m a b c d
Vssσ 8.48032304726E+00 -1.21344187855E+00 0.0 8.73588630500E−01
Vspσ 2.07665691775E+03 -4.87117198609E+02 0.0 1.42827779253E+00
Vppσ -1.59104408799E+04 3.39006655850E+03 0.0 1.46844841218E+00
Vppπ -4.68565688171E+02 1.29049135927E+02 0.0 1.24800847008E+00
Vsdσ -1.88027778797E+00 4.33067941947E−01 0.0 7.48675014457E−01
Vpdσ 1.40632324463E−01 -1.08623564920E−02 0.0 4.30679519174E−01
Vpdπ -2.32135126063E+00 3.29353331687E−01 0.0 7.81550208218E−01
Vddσ 7.85664648549E−01 -4.01900709200E−02 0.0 7.02103011484E−01
Vddπ -3.26443115027E+00 5.45024650243E−02 0.0 9.05925825725E−01
Vddδ 1.65626596755E+03 -2.95917301165E+02 0.0 1.32876007979E+00

Table B.3: Pt LDA-parameter set: The first table contains the necessary parameters
for the on-site energies, the second table contains the parameters for the
Hamiltonian matrix elements (hopping elements), whereas the third table
contains the parameters for the overlap matrix.
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Figure B.1: Left panel: MCA ∆E = E→ − E↑ of a (001)-Fe monolayer depending on
the number of k-points Nk. The Fermi smearing is about 1 meV. Right
panel: Difference in the magnetic moments ∆m = m→−m↑ (red curve) and
orbital moments ∆L = L→ − L↑ (black curve) depending on the number of
k-points. ↑ stands for out-of-plane magnetization and→ stands for in-plane
magnetization.

B.2 Convergence of the MCA

In this section the convergence of the MCA with the number of k-points is examined
using the example of a (001)-Fe monolayer. In the left panel of figure B.1 one can clearly
observe that the MCA is converged to regions of about 0.1 meV for more than 1000 k-
points. In the right panel of figure B.1 the difference m→ −m↑ between the magnetic
moment for out-of-plane magnetization m↑ and for in-plane magnetization m→ and the
difference in the orbital moments L→ − L↑ depending on the number of k-points are
displayed. The difference in the magnetic moments is very small with an order of about
10−4 µB, therefore the convergence with the number of k-points is not as obvious as
for the orbital moment. In section 3.4 we have chosen 40000 k-points for the MCA-
calculation of the Fe monolayers, therefore the MCA with the corresponding moments
is sufficiently converged for our purposes.
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