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Abstract

I present an elaborated analytical examination of the Green function of an electron scattered
at single-site potential, for both the Schrödinger and the Dirac equation, followed by an
efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic
sphere approximation.

A numerically stable way to calculate the corresponding regular and irregular wave functions
and the Green function is via the angular Lippmann-Schwinger integral equations. These
are solved based on an expansion in Chebyshev polynomials and their recursion relations,
allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear
equations. Gonzales et. al. developed this method for the Schrödinger equation, where it
gives a much higher accuracy compared to previous perturbation methods, with only modest
increase in computational effort. In order to apply it to the Dirac equation, I developed
relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix
into spin spherical harmonics, exploiting certain properties of this matrix. The resulting
method was embedded into a Korringa-Kohn-Rostoker code for density functional
calculations. As an example, the method is applied by calculating phase shifts and the
Mott scattering of a tungsten impurity.
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1 Introduction

A large portion of the technological progress seen over the past decades took place on grounds
of materials research and condensed matter physics. Desired material properties are highly
diverse, ranging from mechanical requirements for a reliably constructed aeroplane, over
electrical specifications in solar cells, up to magnetoelectric properties in hard disk drives –
to name just a few out of endless examples. The second half of the 20th century could be
termed the microelectronics era. During this time, the world witnessed unprecedented and
rapid changes in communication, information processing and information storing, starting
from the earliest transistor up to having impressively powerful microprocessors in our mobile
phones now, which would still have filled a supercomputing centre by the time I saw the
light of day.

Most electronic devices nowadays work with binary digit data transmission, based on the
presence or absence of electric charge (or, in other words, based on electrons and holes).
Apart from the electron charge, another property is exploited: its spin. Storing data in
a hard disk drive by changing the magnetisation of a bit, i.e. one tiny piece of magnetic
material, is an example. This technology experienced a significant progression after the
discovery of the Giant Magnetoresistance effect (GMR) by Grünberg in Jülich [1] and
Fert in Paris [2], allowing a significantly higher information density. Their work, which
was awarded the Nobel prize in 2007, can be seen as the birth of magnetoelectronics, i.e. the
exploitation of magnetic fields in materials for the control of transport in electronic devices,
from which thereafter developed the field of spintronics (short for spin electronics) [3, 4],
which is the field of electronics based on the manipulation of the electrons’ spin orientation.

It is, from my point of view, absolutely fascinating to see that all the electronic properties
in spintronics and also condensed matter research in general emerge from just one single,
small equation: the Dirac equation. Only the large number of particles is what makes it in
practice impossible to solve the equation exactly in realistic solid state physics systems. This
equation describes the behaviour of an electron under the influence of an electromagnetic
potential, consistent with special relativity. It was proposed in 1928, just two years after
the publication of the Schrödinger equation, which does not take special relativity into
account. Ab initio methods aim to start from the Schrödinger or the Dirac equation, i.e.
from quantum mechanical principles, to calculate physical properties from it within certain
approximations but without introducing any adjustable parameters1. Such a method is
Density Functional Theory (DFT), which addresses the problem of the immense amount of
particles by using a density instead of wave functions as a central quantity, and results in
effective single-particle Dirac or Schrödinger equations. Its first solid foundation dates back
to the 1960s, when the Hohenberg-Kohn theorem [5] and the Kohn-Sham equations
were published [6]. The often excellent accuracy with by far lower computational demands
compared to wave function based methods, allowed it to rise from an initially peripheral
position to a standard method in computational solid state physics and chemistry, including
nowadays also fields such as organic chemistry or biochemistry. The Nobel prize in chemistry
that Kohn and Pople were awarded in 1998 acknowledges the significance of the method.

One of the earliest schemes for the solution of the Kohn-Sham equations within DFT is
1The only parameters entering the theory are the electron mass and charge, Planck’s constant and the

speed of light in vacuum.



2 1 Introduction

based on the Korringa-Kohn-Rostoker (KKR) method [7, 8]. Its roots are found even
earlier than the ones of DFT, namely in the late 1940s, when it was developed as a wave
function method for band structure calculations. It received only modest initial attention,
yet when it was extended to a Green function method and embedded into DFT, it unveiled
its full strength. The Green function can, in fact, be seen as the heart of the modern version
of KKR [9, 10], containing all the information about the system and giving direct access to
the electron density simply by an energy integration. It is first calculated for the single-site
problem, i.e. the scattering of one electron at a single atomic potential, and then for the
whole system, utilising a multiple scattering matching condition.

Historically, DFT was based on the Schrödinger equation as it has a simpler form compared
to the Dirac equation, making it computationally less demanding. Notwithstanding, the
Schrödinger equation is a serious approximation which is incapable of describing many
important effects in solid state physics. Most strikingly, electron spin does not occur in the
Schrödinger equation.

Expanding the Dirac Hamiltonian in powers of 1/c, where c is the speed of light, (cf. section
6.4) enables to detect the leading correction terms compared to the Schrödinger Hamilto-
nian, out of which the most important ones are the relativistic mass increase and spin-orbit
coupling. The latter, in turn, accounts for a long list of phenomena, which are the subject
of current research. In magnetic materials these include, for instance, the magnetocrys-
talline anisotropy2 [11], i.e. the spin alignment in a preferred direction. Understanding this
anisotropy is crucial for the design of efficient data storage devices. The same is true for the
Dzyaloshinskii-Moriya interaction [12, 13], which is an asymmetric spin interaction in
systems with (bulk or surface) inversion asymmetry. In non-magnetic materials having such
an inversion asymmetry spin-orbit interaction is responsible for the Dresselhaus effect
[14] and the Rashba effect [15]. Furthermore, it explains the formation of two-dimensional
or three-dimensional topological insulators. [16, 17] The Rashba effect describes a spin split-
ting which can be observed in semiconductor quantum well structures with a conduction
band building an antisymmetric potential well. The electrons in such a potential well form
effectively a two-dimensional system (called the two-dimensional electron gas, 2DEG) in an
effective electric field, which acts like a magnetic field in the rest frame of the electrons. As
proposed by Datta and Das, by varying the voltage of a gate electrode the spin splitting
can be manipulated which makes this effect so interesting for technological use, e.g. as a
spin transistor. [18, 19, 20]

Quite in general, the spin-orbit interaction is essential for many spin related transport
phenomena. To mention is the spin-relaxation, with the underlying Elliott-Yafet [21]
and Dyakonov-Perel [22] mechanisms. Spin relaxation determines how far the spin-
polarisation of injected spin-polarised electrons can be transmitted in a wire. Besides spin-
orbit coupling is central for all transport phenomena based on transversal conductance, such
as the anomalous Hall effect, the spin Hall effect and the quantised versions of them (quan-
tum anomalous Hall effect and quantum spin Hall effect). A microscopic understanding of
these effects is not only at the forefront of science but also important for their perspective
of technological applications. Proposals for technological use include not only the above
mentioned the Datta-Das transistor [18] based on the Rashba effect, but also quantum

2Apart from the spin-orbit coupling, magnetocrystalline anisotropy is also caused by dipole-dipole inter-
actions.
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computation [23] or spin polarised solar batteries [24], to mention just a few examples.
Whether or not such devices will really be realisable has yet to be seen in the future.
But it is not only in future high tech applications that relativistic effects play a role. Simple
facts, like the colour of gold, can only be explained by relativistic calculations. In this
example, the relativistic mass increase affects the s electrons (which are closer to the nucleus
and thus move faster) more than the d electrons. As a consequence, the 5d–6s transition
energy is decreased, which leads to an absorption of the blue colour, reflecting the part of
the spectrum that is the golden colour we know. For silver the transition line lies in the
invisible ultra-violet range, giving it its typical colour. In a non-relativistic world gold would
have the same colour.
The KKR method was originally developed within the approximation of spherical poten-
tials surrounding the atoms (atomic sphere approximation). Many of the examples above
show, however, that asymmetries play an important role. Especially for structures with low
symmetry or open structures it is important to take the full potential into account. Such
structures include surfaces, interfaces, layered systems including van der Waals crystals,
heterostructures, materials with covalent bonds, point defects, oxides or low-dimensional
solids (graphene). Performing calculations in the atomic sphere approximation here results
in errors in the electronic structure, for instance in the description of the interface or sur-
face dipoles, in the description of split-off states of electrons or the formation energies of
impurities.
To account for the importance of full-potential calculations, KKR (as well as other DFT
methods, e.g. the FLAPW method [25]) was extended to a full-potential scheme [26],
initially only for non-relativistic calculations. On the other hand, to describe relativistic
effects as correctly as possible with an effort comparable to solving the Schrödinger equation,
a scalar-relativistic approach was developed [27, 28], however initially for spherical potentials
only. This approach does not use the full vector Dirac equation but only a scalar equation.
It correctly describes the relativistic mass increase and the Darwin term, however, it does
not include the important spin-orbit coupling. This restriction was overcome later on by the
inclusion of a spin-orbit coupling term. As it remains an approximation, without a reference
it is hard to give an exact answer to the question for which cases it holds and when it does
not. On the other hand there was the development of a fully relativistic KKR scheme [29],
however initially for spherical potentials only.
The history of these developments naturally raises the question if it would not be desirable to
have a fully-relativistic full-potential scheme, or in other words: one scheme that includes
all the requirements and effects mentioned above. Such a scheme would first serve as a
valuable reference to control the applicability of the scalar relativistic or the atomic sphere
approximation, but then, even more importantly, also be able to describe effects beyond the
ones that the approximated schemes include once it has been tested successfully.
Publications approaching this problem are rare [30, 31], even though such implementations
exist. The difficulty in formulating a practically applicable scheme, is an effective and
numerically stable concept and algorithm for the fully-relativistic full-potential single-site
scattering problem. Once this problem is solved, the remaining part of the calculation is
the same as for a spherical fully-relativistic calculation.
In this thesis, I provide an efficient way to solve this problem. Gonzales et al. [32] pre-
sented a technique to compute the single-site scattering problem related to the Schrödinger
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equation. They calculated the wave functions via the Lippmann-Schwinger integral equa-
tions, which they solved by applying Chebyshev quadrature and rewriting the equations
into a system of linear equations. Once the wave functions are known, the Green function
can be calculated simply from a sum (cf. section 10.3). Within the course of this work
we will see that Lippmann-Schwinger equations of formally striking resemblance can also
be formulated for the single-site problem of the full-potential Dirac scattering. The crucial
ingredient in formulating these equations is an expansion of the potential into spin spherical
harmonics, which I developed based on certain properties of the relativistic potential matrix
(cf. section 10.5).

I implemented the method compatible for incorporation into a KKR impurity code that
is currently under development in our group. By this means, direct comparisons between
non-relativistic, scalar-relativistic and fully-relativistic calculations are accessible.

The single-site scattering problem, however, is even interesting on its own, apart from its
significance for KKR and DFT. Using the code I developed, I performed calculations of
the phase shift of electrons scattering at a tungsten impurity in a rubidium host. This
system was chosen motivated by the aim to have a magnetic system with large relativistic
effects: tungsten is a heavy element with strong spin-orbit coupling, rubidium is almost
free-electron like with a low density, hence tungsten is magnetic in this system. The phase
shifts beautifully show the energy splitting of the d states of tungsten. Furthermore, I
calculated the k-vector dependent scattering matrices for this impurity, showing the spin-
dependent asymmetry in scattering, that is one of the so-called extrinsic contributions to
the anomalous Hall effect.

These are just two examples of how the code can help to understand electronic properties
on the atomic scale. This is what ab initio methods aim for. Another aim is to have
predictive power, i.e. to not only reproduce experimental results, but predict properties.
That this has been successful in describing various material properties can be seen in the
fact that there are books successfully listing properties for a comprehensive list of metals
[33] or other materials. By making as few approximations as possible, both concerning the
shape of the potential and relativistic effects, I hope the developed method will show its
potential in future calculations in the interesting field of the quantum theory of materials
and the related field of spintronics.

The thesis is structured into four main parts. The first one describes the DFT and KKR
methods. In the second part the non-relativistic theory is presented, in order to form a
sound basis on which to develop the changes necessary in the relativistic case. The latter is
treated in the following, third part, where I also develop the relativistic Lippmann-Schwinger
equations and the corresponding decomposition of the potential matrix. In the last part
I present the numerical methods used and explain the implemented algorithm. I conclude
with calculations of scattering at a tungsten impurity in a rubidium host crystal.



Part I

Electronic Structure Calculations



2 Density Functional Theory

Density Functional Theory (DFT) it is an ab-initio method for electronic struc-
ture calculations of steadily growing popularity since the start of its development
in the 1960s. From the initial, but in practice not exactly solvable, problem of the
many-particle Hamiltonian of electrons and nuclei, DFT provides an efficient way
to determine a solid’s ground state properties of interest. It has been extended to
include the electron spin (SDFT) and to a fully relativistic treatment (RDFT).

2.1 Quantum Mechanical Description of a Solid

The birth of quantum mechanics is marked by Schrödinger’s groundbreaking publication
[34] from the year 1926. With one single equation he was able to accurately describe
arbitrary systems. After its successful validation for small systems, such as He and H2,
Dirac is said to have explained that “chemistry has come to an end” . The essence is
that this equation allows an ab-initio description, i.e. it is not necessary to introduce any
empirical parameters from experimental measurements. Thus it has not only descriptive but
also predictive power. Shortly after, however, it turned out that, although the Schrödinger
equation correctly describes also large systems, the problem remains how to solve it.

A material consists of atomic nuclei and electrons. Its (non-relativistic) quantum mechanical
description is therefore given by a Hamiltonian that includes the energy terms of all nuclei
and all electrons of the respective material. Both, nuclei and electrons, move, giving them a
kinetic energy contribution. Furthermore, due to their positive charge, there is a repulsive
Coulomb interaction between the nuclei. Similarly, there is also a repulsive Coulomb inter-
action between the electrons due to their negative charge. And finally, between the nuclei
and the electrons there is an attractive Coulomb interaction. Taking all the contributions
together results in the Hamiltonian3

Ĥ(R1, ...,RN ; r1, ..., rn) =

N�
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P̂
2

i

2Mi
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i=1
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i �=j

1

4πε0

ZiZje
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1

4πε0

Zie
2

|Ri − rj|
.

As this is a non-relativistic description, it is already an approximation that contains no
relativistic corrections such as the electron spin, the magnetic field produced by the electrons

3Notation: N is the number of nuclei, n the number of electrons, Mi the mass of the i-th nucleus,
m ≈ 9.109 · 10−31 kg the electron mass, e ≈ 1.602 · 10−19 C the absolute value of the electron charge and
ε0 ≈ 8.854 ·10−12 AsV−1m−1 the electric constant (or vacuum permittivity). The atomic positions are given
by Ri, the electron positions by ri and their momenta by Pi and pi, respectively and the corresponding
atomic number is given by Zi. All variables are given in SI units.
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and the resulting spin-orbit coupling. The corresponding stationary Schrödinger equation
for the combined wave function Ψ(R1, ...,RN ; r1, ..., rn) of all nuclei and electrons is given
by

ĤΨ(R1, ...,RN ; r1, ..., rn) = EΨ(R1, ...,RN ; r1, ..., rn). (2.2)

One of the simplest molecules is H+

2
, consisting of two protons (the nuclei) and one electron.

Even this seemingly trivial three-body problem has no analytical solution in its general form.
For a solid, the number of nuclei has the order of magnitude of 1023. So obviously there is
no chance for an analytic solution, but also a numerically exact solution is impossible even
on today’s most powerful supercomputers. Not only the CPU power is limiting the ability
to perform such a calculation, but also just storing the wave function is a hopeless task.
Hence there is the need for useful approximations and calculation concepts. Just shortly
after the discovery of the Schrödinger equation the first rudimentary predecessor of DFT
was developed by Thomas and Fermi [35, 36].

2.2 Born-Oppenheimer Approximation

On the way towards the DFT description of a solid, the first approximation is to treat
electron and nucleon motions independently, exploiting the fact that their motions take
place in different time scales. In simple words: electrons move a lot faster than the heavy
nuclei. Consequently, it is a reasonable approximation to treat the nuclei as stationary
within the electrons’ reference system. After assuming that the complete wave function can
be written as a product of the nucleus wave functions and the electron wave functions4,
the electron problem can be treated independently from the motion of the nuclei. This
approximation was first proposed in 1927 by Born and Oppenheimer [37] and is also
known as the adiabatic approximation. Before calculating the electron structure, one can
still calculate the energetically optimal nucleon positions (relaxation).

The problem of calculating the electron wave function after applying the Born-Oppen-
heimer approximation is given by eq. (2.1) without the first summand (the kinetic energy
of the nuclei) and with the third summand (the Coulomb interaction of the nuclei) being a
constant.

2.3 Hohenberg-Kohn Theorem

Applying the Born-Oppenheimer approximation yields an equation for the electron wave
function. The first approximative method to solve it was the Hartree method, developed
in the 1930s. The idea in short is to treat the electron-electron interactions in a mean field
approximation, write the nucleus-nucleus contribution as a potential independent from the
electron positions and separate the many-electron wave function into a product of single-
electron wave functions. It was improved by Fock and Slater, such that the Pauli
principle was obeyed, by demanding an anti-symmetric many-electron wave function (writ-
ten as a Slater determinant).

4This approximation neglects terms of the scalar product (of small magnitude) and excited electronic
states.
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The Hartree-Fock method is still used in certain cases. However, results in solids are
often far from being accurate while the computational time scales unfavourably with system
size.
The foundation in the development of the DFT method was laid by Hohenberg and
Kohn in 1964 [5]. They were able to show that for an interacting electron system with
non-degenerate ground state, in the influence of an external potential Vext(r), all ground
state properties can be expressed as a unique functional F [n(r)] of the electron density
n(r). For any such property and its corresponding functional, the energy can be expressed
as E =

´
drn(r)Vext(r) + F [n(r)]. The density minimising the energy yields the correct

ground state energy and ground state density. A generalised proof of this theorem was
given by Levi in 1982 [38].
From the Hohenberg-Kohn theorem emerged the Kohn-Sham equations, effective one-electron
equations that will be introduced in the following section.

2.4 Kohn-Sham Equations

The essence of the Kohn-Sham equations [6] is to describe a many-particle system by single
particle equations. Kohn and Sham split the energy functional E[n(r)] into several contri-
butions:

E[n] = Ts[n] + VH [n] +

ˆ
drn(r)Vext(r) + Exc[n]. (2.3)

The first term Ts[n] is the kinetic energy of non-interacting electrons:

Ts[n] =

n�

i=1

ˆ
drψ∗

i
(r)

�
−

�2
2m

∆

�
ψi(r), (2.4)

where the electron density n(r) is expressed in terms of the single electron wave functions

n(r) =
�

i

|ψi(r)|2 . (2.5)

The second term is the Hartree energy, describing the Coulomb interaction between elec-
trons:

VH [n] =
1

4πε0

e
2

2

ˆ ˆ
drdr�

n(r)n(r�)
|r − r�|

. (2.6)

The third term describes the interaction of the electrons with an external potential. And the
last term describes exchange-correlation effects between electrons. This term is unknown
and can only be approximated, which is the important systematic limitation of DFT.
Varying the total energy and applying the Hohenberg-Kohn theorem yields the expression

Veff(r) = Vext(r) +
e
2

4πε0

ˆ
n(r�)
|r − r�|

dr� +
δExc

δn(r)
(2.7)

for the effective potential and the equations
�
−

�2
2m

∆+ Veff(r)
�
ψi(r) = �iψi(r) (2.8)

for the single-electron wave functions. These equations have to be solved in a self-consistent
manner.
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2.5 Relativistic Spin-Current Density Functional Theory

The correct description of the electron including special relativity was given by Dirac
[39] just two years after the Schrödinger equation had been published. For heavy elements
relativistic effects play an important role. Until today, however, the extension of the original
DFT to a fully-relativistic scheme involves several difficulties concerning the approximation
of the exchange-correlation energy. For this reason fully-relativistic implementations are
rare. For an introduction to the topic cf. [40].

The basics of relativistic DFT were developed in the 1970s by Rajagopal [41, 42, 43], von
Barth and Hedin [44] and MacDonald and Vosko [45]. In a fully relativistic treatment
the four-vector current takes over the role of the electron density n(r). With this change a
generalisation of the Hohenberg-Kohn theorem is possible5.

In the electrostatic limit, i.e. for a time-independent and purely electrostatic external po-
tential, the four-vector current can be reduced to its time component as the only necessary
variable, which is essentially the charge density. Instead of a covariant four-vector notation
one can also use the electron density n(r) and the current j(r) = (jx(r), jy(r), jz(r)). The
analogue to eq. (2.3) is then given by

E[n, j] = Ts[n, j] + VH [n]−
1

4πε0

1

2c2

ˆ ˆ
j1(r1) · j2(r2)
|r1 − r2|

dr1dr2 +
ˆ

drn(r)Vext(r) + Exc[n],

(2.9)
i.e. there is an additional term for the current-current contribution. This interaction term
is usually negligible for single molecules, but not necessarily in a solid: it is the origin of
the magnetocrystalline shape anisotropy through the spin-dipolar interaction it contains. It
also explains the magnetic force between two (macroscopic) wires. In the non-relativistic
limit the prefactor6

1/c
2 vanishes, and with it the current-current contribution.

The Kohn-Sham equations (2.8), effective one-electron Schrödinger equations, now have to
be replaced by Kohn-Sham-Dirac equations, which are effective one-electron Dirac equa-
tions7: �

cα (p̂ − eAeff(r)) + βmc
2
+ eϕeff(r)I4

�
ψi(r) = �iψi(r). (2.10)

The wave functions ψi (Kohn-Sham orbitals) are now four-component Dirac spinors. The
effective Kohn-Sham scalar and vector potentials ϕeff and Aeff are

ϕeff(r) = ϕext(r) +
e
2

4πε0

ˆ
n(r�)
|r − r�|

dr� +
δExc

δn(r)
, (2.11)

Aeff(r) = Aext(r)−
1

4πε0

1

c2

ˆ
j(r�)

|r − r�|
dr� +

δExc

δj(r)
. (2.12)

The term Aext takes account of an external magnetic field and, accordingly, vanishes if there
is no such external field.

5The uniqueness of the potential is no longer guaranteed in the relativistic case. However, it has been
estimated that the practical consequences of this fact are not significant. For an overview of the discussion
on this complicacy see [46] section 3.4 and references therein.

6The prefactor 1/c2 = ε0µ0/4π has its origin in the Biot-Savart law.
7The Dirac equation is discussed in chapter 6. In order to clarify the notation etc. it might be helpful

to have a brief look at this chapter beforehand.
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2.6 Relativistic Spin Density Functional Theory

Spin-current DFT brings with it the problem of finding a good approximation for the
exchange-correlation contribution Exc. To solve this problem and, furthermore, simplify
the equations to a scheme more similar to the non-relativistic one, spin-polarised DFT is
often used instead. An overview of the field is given for example in [47]. Compared to
spin-current DFT the orbital currents are neglected here.

A Gordon decomposition8 of the current density in the absence of a magnetic field yields

j(r) = jorb(r) +
1

2m
∇× m(r) (2.13)

where jorb is an orbital current, not discussed further here. m(r) is the spin magnetisation
density. Neglecting the orbital currents jorb the Kohn-Sham-Dirac equations take the form

�
cαp̂ + βmc

2
+

≈
V (r)

�
ψi(r) = �iψi(r), (2.14)

where
≈
V is a 4× 4 matrix given by9:

≈
V (r) = eϕeff(r)I4 − µβΣB(r)

=

�
eϕ(r)I2 − µσB(r) 0

0 eϕ(r)I2 + µσB(r)

�
(2.15)

=:

�
V

a
(r) 0

0 V
d
(r)

�
.

The B field and the scalar potential ϕ can be calculated from the above defined potentials
V

a, V d via

ϕ(r)I2 =
1

2e

�
V

d
(r) + V

a
(r)

�
, (2.16)

σB(r) =
1

2µ

�
V

d
(r)− V

a
(r)

�
. (2.17)

Instead of the electron density n(r) in the non-relativistic case or n(r) and j(r) in the
relativistic spin-current case, now the densities n↑↑

(r), n↑↓
(r), n↓↑

(r), n↓↓
(r) are used, defined

as
n
αβ
(r) :=

�

i

ϕ
α†
i
(r)ϕβ

i
(r), α, β ∈ {↑, ↓}. (2.18)

In the method I implemented ϕ
↑
i

and ϕ
↓
i

are calculated by transforming the resulting four-
vector wave function from the (κ, µ) basis into the (l,ml,ms) basis.

8The Gordon decomposition is a field theoretic method developed by W. Gordon [48], which allows
to separate the current into an outer, orbital term and an inner part, depending on the internal state of
the electron (the spin density term). The book by Strange [49] contains a section explaining the physics
behind this decomposition.

9cf. section 6.3 for details
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The (physically more intuitive) quantities, electron density n(r) and spin magnetisation
density m(r), can be calculated via

n(r) =

�

α

n
αα
(r) = n

↑↑
(r) + n

↓↓
(r) (2.19)

m(r) =

�

α,β

σαβ
n
αβ
(r) (2.20)

where each σ matrix is written as

σ =

�
σ
↑↑

σ
↑↓

σ
↓↑

σ
↓↓

�
. (2.21)

2.7 Exchange-Correlation Energy Functionals

The exchange correlation energy is generally unknown. The simplest approximation for the
non-relativistic case is the local density approximation (LDA):

Exc[n] =

ˆ
n(r)�xc[n(r)]dr (2.22)

where �xc[n] is the exchange correlation energy per electron of a homogeneous electron gas
that has a constant density n. This quantity has to be evaluated only once and from then
on calculating Exc[n] means only evaluating the integral above. For a homogeneous electron
gas the method is exact, but for other systems it often yields good results, even if their
electron density is (globally) strongly inhomogeneous.

An attempt to improve LDA is the generalised gradient approximation (GGA) that includes
also a gradient term. In some cases, however, GGA does not improve the results but,
surprisingly, even worsens them.

In spin-polarised DFT calculations the local spin density approximation (LSD) can be used10:

Exc[n,m] =

ˆ
n(r)�xc[n(r), |m(r)|]dr. (2.23)

For possible approximations in spin-current DFT see Engel et al. [50]. Apart from an
overview of different relativistic approximations of Exc their accuracy for various systems
is evaluated. However, a reliable approximation for Exc remains a serious complication in
spin-current DFT, also because this quantity plays a more dominant role here than in non-
relativistic DFT. The reason is that the number of electrons in the core region increases with
Z, so that the exchange-correlation contribution to the total energy also increases. Apart
from that, with in increasing density also the electron momentum increases11. Therefore the
speed of the electrons’ motion is high for heavy elements, meaning that relativistic effects
become non-negligible. Consequently, the exchange-correlation functional accounts for an
increasing proportion of the total energy as the atomic number increases.

10Here the non-collinear approximation is shown. In the collinear approximation the projection of the
spin magnetisation m to a certain axis (usually mz) is used instead of the absolute value |m|.

11To make this plausible consider for example the homogeneous electron gas, where the highest possible
momentum is kF =

�
3π2

n
�1/3, for a given (constant) electron density n.



3 Korringa-Kohn-Rostoker Green Function Method

The KKR method is mostly used to calculate the electronic structure within the
DFT formalism. Originally the method already emerged in the late 1940s but re-
ceived only modest attention. It was extended by the Green function formalism, by
incorporating full potentials, by changing the reference system for higher numerical
efficiency (Screened KKR) and by the development of a fully-relativistic scheme, now
making it a powerful electronic structure tool that is of advantage especially when
dealing with systems of broken translational symmetry. This chapter outlines the
main ideas of the multiple scattering Green function theory, as a context in which to
understand the single-site problem, the focus of this work during the chapters that
follow.

3.1 Overview and Historical Development

The Korringa-Kohn-Rostoker (KKR) method for the calculation of the electronic structure
of materials was introduced as a band structure method already in 1947 by Korringa
[8] and in 1954 by Kohn and Rostoker [7]. Accordingly its development started even
earlier than the development of Density Functional Theory (DFT). However, its full strength
became evident only after it was extended to a Green function method and embedded into
the framework of DFT calculations. Good introductions to the methods are given in [51, 52].

The KKR method itself consists of two steps: first the single scattering problem is solved,
i.e. the problem of one electron scattered at a single potential in free space. This problem
is solved for each scattering potential, i.e. for each atom of the system under consideration,
and its solution is described by the t matrix (cf. section 5.4). The second step is to solve the
multiple scattering problem, which means solving the equation of one electron scattered at
many different potentials. In order to do so, starting from the single-site scattering solutions,
one applies the condition that the incident wave at each scattering centre has to be equal
to the sum of the outgoing waves from all the other scattering centres. By splitting up the
problem into these two steps one obtains a separation between the potential and structural
properties of the system.

Originally the KKR method was designed for the simpler case of spherical potentials only.
The generalisation to potentials of arbitrary shape [26, 53, 54] was an important improve-
ment in the method, as the non-spherical contributions play an important role for systems
with reduced symmetry.

Furthermore, even though KKR was originally developed for the Schrödinger equation, it
is possible to formulate it for the Dirac equation, maintaining the structure of the key
equations in the method [31]. This was first done for the spherical case, but then also for
potentials of general shape [30]. Another improvement of the method was the development
of Screened or Tight-Binding KKR. By replacing the free space reference system by a system
of repulsive potentials, the numerical efficiency of the method can be strongly improved [55].
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3.2 Introduction to Green Function Theory

Green functions form the basis of a technique for solving partial differential equations (PDE).
A detailed examination from a mathematical point of view is given in the books by Roach
[56] or Duffy [57], whereas Economou [58] provides a physicist’s point of view. The
aim of this section is to give an introduction pointing out the main concepts and properties
important within the theory of multiple scattering without being mathematically completely
rigorous.

For our purposes we need inhomogeneous linear first order (in the case of the Dirac equation)
or second order (in the case of the Schrödinger equation) PDE in three (or four, in the
time-dependent case) dimensions. Such a PDE can be expressed by a differential operator
L = L(r, ∂

∂x
,

∂

∂y
,

∂

∂z
,

∂
2

∂x2 ,
∂
2

∂x∂y
, ...,

∂
2

∂z2
) and a source term f(r) as

Lu = f, (3.1)

where u(r) is the (unknown) solution of the PDE and r = (x, y, z). It would be convenient
if one could invert the differential operator and solve the equation directly as u = L

−1
f . If

L is a differential operator, obviously L
−1 has to be an integral operator. That is exactly

the philosophy of the Green function method. By the use of an auxiliary function G(r, r�),
namely the Green function, the integral equation can be written as

u(r) = L
−1
f(r) =

ˆ
G(r, r�)f(r�)dr. (3.2)

The Green function G is also called the kernel of the integral operator. As it is generally
unknown and also depends on the boundary conditions, the problem of solving the PDE
is transformed into the problem of finding the Green function and afterwards calculating
the integral. However, G does not depend on f , and that is the main advantage of the
method – once the Green function for a certain differential operator L is known, solving the
inhomogeneous equation requires only the evaluation of an integral.

A useful tool within the Green function theory is the Dirac δ function. As LL
−1

= I, one
may formally write

u(r) = LL
−1
u(r) = L

ˆ
G(r, r�)u(r�)dr� =

ˆ
LG(r, r�)u(r�)dr�. (3.3)

The δ function, which in fact is not a function but a distribution (also called a generalised
function), is defined as the kernel of the integral above, i.e. it fulfils

u(r) =
ˆ

δ(r� − r)u(r�)dr�. (3.4)

The concept of distributions makes it possible to differentiate (generalised) functions at
points where they are classically not differentiable. For example also the δ function is the
derivative of a function (the Heaviside step function).

From equation (3.3) and the definition of the δ function (3.4) we obtain the relation

u(r) =
ˆ

δ(r� − r)u(r�)dr� =
ˆ

LG(r, r�)u(r�)dr�. (3.5)
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Thus, using the δ function, a Green function can formally be defined by the equation

LG(r, r�) = δ(r� − r). (3.6)

With the Green function method we can determine a particular solution u
part of a non-

homogeneous differential equation. The full set of solutions {ui} is then given by the set of
the solutions {u0

i
} of the homogeneous equation Lu = 0, plus the particular solution, found

with the Green function method:

{ui} = {u
part

+ u
0

i
}. (3.7)

The differential operator which will first be of interest here is L = ∆+ k
2, where ∆ denotes

the Laplace operator ∆ =
∂
2

∂x2 +
∂
2

∂y2
+

∂
2

∂z2
. The corresponding differential equation is the

Helmholtz equation �
∆+ k

2
�
u = 0 (3.8)

in the case of no source term (i.e. no potential) or, in the general case with a source term
�
∆+ k

2
�
u = f. (3.9)

In the setting we will examine it will be u = ψ and f = V ψ. We will see in chapter 4 how
this equation emerges from the physical setting and how to determine its Green function.

3.3 Green Function and Electron Density

The Schrödinger equation for an electron in a potential (see eq. (4.2)) is an equation of
the form Lu = f (cf. eq. (3.1)) and it can thus be solved using Green functions. The
same applies for the Dirac equation. In that way the calculation of all the eigenvalues En

and corresponding eigenfunctions ψn can be avoided. The Green function contains all the
information that the eigenfunctions contain, in particular the electron density (see eq. (2.5))
can be calculated as an integral of the Green function12:

n(r) = −
2

π
Im

ˆ
EF

−∞
G

full
(r, r, z)dz, (3.10)

where the factor 2 arises from the spin degeneracy. Here G
full is the Green function of the

complete system, which is calculated from the single-site Green functions G as described
in the following section 3.4. To increase the numerical efficiency, the analytical properties
of a Green function are used by introducing a complex energy z = E + iΓ and solving
the integral by a contour integration in the upper half of the complex plane. This avoids
the singularities of the Green function on the real axis and thus leads to accurate results
already for low numbers of quadrature points. The contour runs over all occupied states,
i.e. it starts at an energy Eb below the bottom of the valence band and runs up to the Fermi
energy EF . Close to the Fermi energy the integration mesh should be chosen denser than
the rest of the contour, since a higher accuracy is required here to obtain good results.

12This expression holds for non-relativistic calculations and scalar relativistic calculations without spin-
polarisation.
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3.4 Multiple Scattering

As it is the focus of this work, the single-site problem will be discussed in great detail in the
following chapters. This section will give a short overview on how to proceed in obtaining
the Green function for the full system using multiple scattering theory, once the single-site
Green functions for all sites are known. All equations will be given for the relativistic case.
However, they hold for the non-relativistic case, too, when replacing the index Λ = (κ, µ)

by L = (l,m).

In terms of wave functions ψi at the different sites i the multiple scattering condition (a
detailed mathematical discussion gives [59]) says that the incoming wave at one site should
be equal to the outgoing waves from all the scattering centres. This is schematically shown
in figure 3.1, the corresponding formula is:

ψ
inc

i
(r) =

�

j �=i

ψ
sc

j
(r). (3.11)

From this condition one can derive a formula for the Green function of the whole system
G

full
(r, r�,W ) from the single-site Green functions at the different sites Gi

(r, r�,W ), namely13

G
full

(r + Ri
, r� + Rj

,W ) = δijG
i
(r, r�,W ) +

�

Λ

R
i

Λ
(r)

�

Λ�

G
ij

ΛΛ�R
j

Λ�(r�), (3.12)

where W denotes the relativistic energy (cf. eq. (8.10)). The formula contains the wave
functions R

i

Λ
of all sites i in an angular momentum basis, that are determined from the

Lippmann-Schwinger equation14 . The wave functions depend on k (or, equivalently, on
the energy W ), however, this dependence is suppressed here to simplify the notation. Fur-
thermore the formula contains the so-called structural Green functions G

ij

ΛΛ�(W ) that are
also k-dependent (or, equivalently, energy-dependent) expansion coefficients. They can be
calculated from the t matrix by the Dyson equation:

G
ij

ΛΛ� = g
ij

ΛΛ
� +

�

Λ��

�

n

g
in

ΛΛ��

�

Λ���

t
n

Λ��Λ���G
nj

Λ���Λ� . (3.13)

This is a system of linear equations that can be solved e.g. by Gauß elimination. t
n

ΛΛ� are
the single-site t matrices that can be calculated from the wave functions R

i

Λ
(cf. eq. (5.34)

in section 5.4 for the non-relativistic case or eq. (10.66) in section 10.4 for the relativistic
case, see also [30, 60]). The coefficients g

ij

ΛΛ� are, for fixed scattering centres, constants
independent of the potentials, i.e. they only depend on the structure of the system under
consideration. The index Λ = (κ, µ) denotes the quantum numbers in an angular momentum
basis for the relativistic case (see section 7.5) and has to be replaced by L = (l,m) in the
non-relativistic case (see section 4.2).

A detailed derivation of the equations can be found in [26] for the full-potential Schrödinger
case.

13Overlined letters, such as R
j
kΛ� , denote left-hand side solutions. For details see chapters 8 and 10.

14cf. eq. (5.12) and eqs. (10.13) to (10.16) for the non-relativistic and relativistic case, respectively
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Figure 3.1: Schematic picture of the multiple scattering condition. (a) An incoming wave ψ
inc
3

is

scattered at the potential V (r+R3). The scattered wave strikes the other potentials. (b) Scattering

at the other three potentials yields three scattered waves. Further orders, i.e. scattering of these

waves, will be neglected in this schematic picture. (c) The scattered waves hit on the potential

V (r + R3). According to the multiple scattering condition, the incoming wave for this potential

must be equal to the scattered waves from all the other potentials.
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3.5 Full Potential

In the original form of the KKR method one could only treat spherical potentials. Let us
first consider the non-relativistic case. The restriction to spherical potential means that in
a potential expansion of the form (cf. sections 5.2 and 5.3)

V (r) =
�

L

VL(r)YL(r̂) (3.14)

only the first component with L = (0, 0) is taken into account. Here r is the radial coordinate
and r̂ = (θ,φ) denotes the angular coordinates, YL(r̂) are spherical harmonics15. This
simplifies the calculations significantly, as instead of systems of coupled equations only
decoupled single equations have to be solved (see section 10.8 for a detailed discussion in
the relativistic case). The equations of the previous section 3.4 also become simpler when
using spherical potentials only.

The generalisation to potentials of arbitrary shape [26], however, showed that the additional
effort for calculations using the full potential scales only linearly with the number of non-
equivalent atoms. As it is important for systems with broken symmetry, this modest increase
in computational effort is totally acceptable and only in the full-potential scheme KKR shows
its full strength in comparison to other electron structure methods. Such systems include
surfaces, impurities in bulk material or on surfaces, tunnel junctions or interfaces. Also
when calculating forces and lattice relaxations a full-potential treatment is required, as for
these problems the spherical approximation fails completely [10].

Whereas in spherical potential calculations the Wigner-Seitz cells are approximated by
spheres, in the full-potential treatment these spheres are replaced by the exact Wigner-
Seitz cells, i.e. by space-filling and non-overlapping cells. This is realised by convoluting all
integrals with shape functions Θ(r). They equal 1 inside a Wigner-Seitz cell and 0 outside.
The shape functions are expanded in spherical harmonics, just like the potential:

Θ(r) =
�

L

ΘL(r)YL(r̂). (3.15)

This type of expansion will also be applied to the wave functions, thus separating radial
and angular parts of the equations, e.g. of the Lippmann-Schwinger equations.

In the relativistic case the idea remains unchanged. However the potential here is a 4 × 4

matrix, expanded in spin spherical harmonics. I derive an expansion for the potential in
section 10.5, based on the hermicity of the 2× 2 sub matrices, which has the form

V =

�

Λ

�

Λ�

�
χΛ(r̂) 0

0 χ
Λ
(r̂)

��
v
a

ΛΛ�(r) v
b

ΛΛ�(r)

v
c

ΛΛ�(r) v
d

ΛΛ�(r)

��
χ
†
Λ�(r̂) 0

0 χ
†
Λ
�(r̂)

�
. (3.16)

The first matrix has dimensions 4× 2, the middle one 2× 2 and the last one 2× 4, resulting
in a 4 × 4 matrix. From the potential expansion I derived an expansion of the relativistic
Lippmann Schwinger equations (section 10.6).

15for the definition of spherical harmonics see the digression on page 43
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3.6 KKR GF Algorithm

The chapter about the KKR Green function method will be concluded with an overview of
the algorithm. It anticipates many equations from discussions in the following chapters, so
when reading it for the first time it should only be seen as a rough overview without the
need to understand it in full detail. After having further reading, it might be helpful as a
reference for identifying which are the key steps within the calculation.

1. Starting point of the calculation is the Green function of a free electron G
0
(r, r�, z), cf.

eq. (4.15) or eq. (9.3) for the non-relativistic and the relativistic case, respectively.
For this function there is an analytically known expression.

2. The system is divided into atomic cells and the wave functions for each cell are calcu-
lated from the Lippmann-Schwinger equation, that is eq. (5.12) in the non-relativistic
case or equations (10.13) to (10.16) in the relativistic case, here shown for the regular
right hand side solution:

RΛ(r) = JΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)RΛ(r). (3.17)

Mathematically, one has to solve an integral equation. The method chosen in this
work is by using Chebyshev quadrature and rewriting the integral equation into a
system of linear equations, as explained in chapter 11.

3. After the wave functions are known, the t matrix elements can be calculated. In the
non-relativistic case this is done via eq. (5.34) or in the relativistic case via:

tΛΛ� =

ˆ
JΛ�(r�)V (r�)RΛ�(r�)dr. (3.18)

4. The coefficients gij
ΛΛ� have to be determined, see [26] for the formula and a derivation.

They depend only on the position of the scattering centres, i.e. for fixed positions
they are only energy-dependent.

5. The Dyson equation (cf. eq. (3.13))

G
ij

ΛΛ� = g
ij

ΛΛ� +

�

Λ��

�

n

g
in

ΛΛ��

�

Λ���

t
n

Λ��Λ���G
nj

Λ���Λ� (3.19)

for the structural Green functions G
ij

ΛΛ� has to be solved. It is a system of linear
equations that can be solved by standard methods.

6. The single-site Green function is also calculated from the wave-functions via eq.
(10.19)

G(r, r�,W ) = Θ(r
�
− r)

�

Λ

RΛ(r)SΛ(r�) +Θ(r − r
�
)

�

Λ

SΛ(r)RΛ(r�) (3.20)

for the relativistic case. For the non-relativistic case the same equation holds, except
for changing the index Λ to L and using the non-relativistic wave functions instead.
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7. The last step is the calculation of the Green function for the full system

G
full

(r + Ri
, r� + Rj

,W ) = δijG
i
(r, r�,W ) +

�

Λ

R
i

Λ
(r)

�

Λ�

G
ij

ΛΛ�R
j

Λ�(r�) (3.21)

(cf. eq. (3.12)). This Green function contains the whole information, in particular it
can be used to calculate the electron density via eq. (3.10).
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Part II

Non-Relativistic Single-Site Scattering



4 Free Particle Green Function

The Green function of an electron moving freely without the influence of a potential
plays an important role in the KKR theory. This is due to the fact that the free
electron is the reference system used for calculating the Green function of the elec-
tron with the influence of a potential later on. The free space Green function can
be calculated analytically, and in an angular momentum basis it can be expressed
through the free space wave functions in this basis.

4.1 Derivation

As the Green function plays a vital role in multiple scattering methods, this function shall
be calculated for the non-relativistic electron, i.e one that is moving at a speed which is
small compared to the speed of light. The wave function ψ of such an electron is described
by the (stationary) Schrödinger equation

�
−

�2
2m

∆+ V (r)
�
ψ(r) = Eψ(r), (4.1)

where m is the electron mass, � the Planck constant, V (r) a scattering potential and E the
energy. This equation can be rewritten as

�2
2m

�
∆+ k

2
�
ψ(r)=V(r)ψ(r), (4.2)

where k is defined by �2k2
/2m := E. It is helpful to consider first the problem of a free

electron without any scattering potential – not only because this is easier to tackle but also
because the result will be needed in future calculations of Green functions. In this case of a
free electron the right hand side of the integral vanishes and what is left is the homogeneous
differential equation

�2
2m

�
∆+ k

2
�
ψ(r) = 0 (4.3)

which we recognise as the Helmholtz equation. The solutions of this equation for a given
energy E are all the plane waves ψk(r) = e

ikr fulfilling �2k2
/2m = E. The corresponding

Green function is defined by

�2
2m

�
∆+ k

2
�
G

0

nr
(r, r�;E) = δ(r − r�) (4.4)

with the index nr indicating that it is the non-relativistic Green function. Here a third
argument or parameter E is introduced to the Green function, to point out that it depends
on the energy. To solve the equation, one can start from the integral representation of the
Dirac δ function

δ(r − r�) =
1

(2π)³

ˆ
e
iq(r−r�)

dq. (4.5)
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Inserting this into the definition of the Green function and bringing the differential operator
to the other side of the equation yields

G
0

nr
(r, r�;E) =

2m

�2
�
∆+ k

2
�−1 1

(2π)³

ˆ
e
iq(r−r�)

dq (4.6)

=
2m

�2
1

(2π)³

ˆ �
∆+ k

2
�−1

e
iq(r−r�)

dq. (4.7)

Since
�
∆+ k

2
� eiq(r−r�)

k2 − q2
= e

iq(r−r�)
, (4.8)

as it can directly be verified by performing the differentiation, one obtains

G
0

nr
(r, r�;E) =

2m

�2
1

(2π)³

ˆ
e
iq(r−r�)

k2 − q2
dq. (4.9)

The integral can first be rewritten into spherical coordinates. Defining x := r − r� and
choosing the coordinate system in x-direction, i.e. x = xex, one can simplify e

iq(r−r�)
=

e
iqx cos θ, so that

G
0

nr
(r, r�;E) =

2m

�2
1

(2π)³

ˆ
2π

0

dφ

ˆ
π

0

dθ

ˆ ∞

0
q
2
sin θ

e
iqx cos(θ)

k2 − q2
dq (4.10)

=
2m

�2
1

(2π)2

ˆ
π

0

dθ

ˆ ∞

0
q
2
sin θ

e
iqx cos(θ)

k2 − q2
dq

=
2m

�2
1

(2π)2ix

ˆ ∞

0
q
e
iqx − e

−iqx

k2 − q2
dq

=
2m

�2
1

(2π)2ix

�ˆ ∞

0
q

e
iqx

k2 − q2
dq +

ˆ
0

-∞
q

e
iqx

k2 − q2
dq

�

=
2m

�2
1

(2π)2ix

ˆ ∞

-∞
q

e
iqx

(k − q) (k + q)
dq.

The resulting integral has poles for q = k and q = −k, both of order 1. Its value is
therefore undefined unless a certain path of integration is specified. If we remember the
previous section, where it was pointed out that the Green function depends on the boundary
conditions, this makes sense – because so far we did not specify the boundary conditions.
We will first choose a closed integration path γ with the pole at k lying within the path.
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Digression: Residue Theorem

Let f be an analytic function (locally representable by a power series)
within a simply-connected domain G except for isolated singular points.
Then: ˆ

γ

f(z)dz = 2πi

N�

l=1

res[f(z); al]

where γ is a closed, rectifiable (“piece-wise smooth”) curve in G which
does not intersect the singularities of f , and ak, k = 1, ..., N are the
singular points within γ. The residue is

res[f(z), a] =
1

(m− 1)!
lim
z→a

�
d
m−1

dzm−1
(z − a)

m
f(z)

�

for a pole of order m.

Using the residue theorem the integral can be solved:

G
0+

nr
(r, r�;E) =

2m

�2
1

(2π)2ix
· 2πi

1�

l=1

res

�
q

e
iqx

(k − q) (k + q)
, al

�
, (4.11)

where a1 = k and

res

�
q

e
iqx

k2 − q2
, a1

�
=

1

0!
lim
q→k

�
(q − k)q

e
iqx

(k − q) (k + q)

�
(4.12)

= lim
q→k

q

(k + q)
e
iqx

= −
1

2
e
ikx

,

thus
G

0+

nr
(r, r�;E) = −

2m

�2
1

4πx
e
ikx

. (4.13)

Choosing a different integration path γ which contains the pole q = −k and not q = k and
performing an analogue calculation yields

G
0−
nr
(r, r�;E) = −

2m

�2
1

4πx
e
−ikx

. (4.14)

These two Green functions obviously have a different behaviour for x → ∞. Thus the
boundary conditions imposed on the Green function determine the value of the – otherwise
undefined – integral which was seen in its calculation. There is also a physical interpretation
of these boundary conditions: G0+

nr
describes an outgoing wave whereas G0−

nr
is an incoming

wave. Here G
0

nr
:= G

0+

nr
is the function we are interested in. In short:
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The Green function corresponding to the outgoing wave of a non-relativistic free electron is
given by

G
0

nr
(r, r�;E) = −

2m

�2
e
ik|r−r�|

4π|r − r�|
. (4.15)

4.2 Angular Momentum Expansion

For calculations later on the angular momentum expansion of the Green function will be
important. The reason being, that by writing down angular momentum expansions for all
the relevant equations it will be possible to separate the problem and solve the sub-problems
for different values of l and m.

Let us start by recalling the partial wave expansion of a plane wave: For a spherically sym-
metric scattering potential V (r) = V (r) states of different angular momentum are scattered
independently. It is therefore convenient to expand the wave in terms of superposed partial
waves with different angular momentum. This expansion shall not be derived here but just
be stated:

e
ik·r

= e
ikr cos(θ)

=

∞�

l=0

i
l
(2l + 1)jl(kr)Pl(cos θ) (4.16)

= 4π

∞�

l,m

i
l
Y

∗
l,m

(k̂)Yl,m(r̂)jl(kr)

= 4π

�

L

i
l
Y

∗
L
(k̂)YL(r̂)jl(kr).

In the last step a combined index L := (l,m) was introduced to simplify the notation and
r̂ = (φ, θ) denotes the direction of the vector r. Now let us look at the functions jl, Pl

and Yl,m in some short mathematical digressions. First an overview of Bessel and Hankel
functions:
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Digression: Bessel and Hankel functions

Bessel’s differential equation

x
2
d
2
y

dx2
+ x

dy

dx
+ (x

2
− n

2
)y = 0,

where n can be an arbitrary complex number (but in the cases of interest
here will be an integer) has as solutions the Bessel functions. If n is not
an integer, two linearly independent solutions are given by Jn and J−n,
where

Jn(x) :=

∞�

r=0

(−1)
r
(
x

2
)
2r+n

Γ(n+ r + 1)r!
.

These functions are also called the Bessel functions of first kind. In
contrast, if n is an integer the two solutions are given by Jn and another
function Nn which is called a Bessel function of second kind or also a
Weber or a Neumann function:

Nn(x) := lim
p→n

Jp(x) cos(pπ)− J−p(x)

sin(pπ)
.

Both sets of functions can alternatively be defined using integrals of
trigonometric functions. They form a basis for the vector space of the
solution of the differential equation. An alternative basis is given by the
Hankel functions

H
(±)

n
(x) := Jn(x)± iNn(x).
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For the partial wave expansion of a plane wave and also for the expansion of the Green
function, the so-called spherical Bessel functions are needed. Thus a quick overview of
those as well:

Digression: Spherical Bessel functions

When examining the free movement of a particle with a given angular
momentum, one has to solve the Helmholtz equation

�
∆+ k

2
�
ψ=0.

Separation of variables eventually yields the following radial part:

x
2
d
2
y

dx2
+ 2x

dy

dx
+ [x

2
− l(l + 1)]y = 0.

Two linearly independent solutions are the spherical Bessel and spherical
Neumann functions:

jl(x) :=

�
π

2x
Jl+1/2(x)=(−x)

l

�
1

x

d

dx

�l
sin x

x
,

nl(x) :=
�

π

2x
Yl+1/2(x) = −(−x)

l

�
1

x

d

dx

�l
cos x

x
.

Two different linearly independent solutions are given by the spherical
Hankel functions:

h
(1)

l
(x) := jl(x) + inl(x)

h
(2)

l
(x) := jl(x)− inl(x).

The Bessel function vanishes as x → 0 if l ≥ 1 and is called the regular
solution. The Neumann and Hankel functions diverge and are called
irregular solutions. Here only the function h

(1)

l
is of interest, thus the

definition hl := h
(1)

l
will be used throughout this work.
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And finally the Legendre polynomials and spherical harmonics:

Digression: Legendre Polynomials and Spherical Harmonics

The Legendre polynomials are given by

Pn(x) =
1

2nn!

d
n

dxn
[(x

2
− 1)

n
].

They are solutions of Legendre’s differential equation. Moreover, there
is also a general Legendre equation, which is solved by the associated
Legendre polynomials:

Pl,m(x) =
(−1)

m

2ll!
(1− x

2
)
m/2

d
l+m

dxl+m
(x

2
− 1)

l
.

They are also used to define complex spherical harmonics:

Yl,m(θ,φ) = N e
imφ

Pl,|m|(cos θ).

N is a normalisation constant given by N = Al,|m|Cm (Condon-Shortley
convention) where

Al,|m| =

�
2l + 1

4π

(l − |m|)!

(l + |m|)!

Cm = i
m+|m|

=

�
1, m ≤ 0 orm even

−1, m > 0 andm odd.

The spherical harmonics are a set of solutions of the angular part of the
Laplace equation. They fulfil the orthonormality relation

ˆ
2π

0

dφ

ˆ
π

0

sin θdθ Yl,m(θ,φ)Y
∗
l�,m�(θ,φ) = δll�δmm�

and the completeness relation

∞�

l=0

l�

m=−l

Yl,m(θ,φ)Y
∗
l,m

(θ
�
,φ

�
) =

1

sin θ
δ(θ − θ

�
)δ(φ− φ

�
).

As a consequence, any complex square-integrable function can be ex-
pressed in terms of complex spherical harmonics:

f(θ,φ) =

∞�

l=0

l�

m=−l

fl,mYl,m(θ,φ) =

�

L

fLYL(r̂).

Here L := (l,m) and r̂ = (θ,φ) are defined.
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The starting point is to derive the expansion of the integral formula for the Green function
(4.9), which can be rewritten as

G
0

nr
(r, r�, E) =

2m

�2
1

(2π)³

ˆ
1

k2 − q2
e
iqr

e
−iqr�

dq. (4.17)

Now insert the partial wave expansion of the plane wave eq. (4.16) into this expression,
yielding G

0

nr
(r, r�, E) =

2m

�2
1

(2π)³

ˆ
1

k2 − q2

�
4π

�

L

i
l
Y

∗
L
(q̂)YL(r̂)jl(qr)

��
4π

�

L�

(−i)
l
�
YL�(q̂)Y ∗

L�(r̂�)jl�(qr�)

�
dq.

(4.18)

This expression can be rearranged and rewritten into spherical coordinates, remembering
that r̂ = (θr,φr) and q̂ = (θq,φq) represent the angular part in spherical coordinates of r̂
and q̂ respectively: G

0

nr
(r, r�, E)=

2m

�2
2

π

�

L,L�

i
l
(−i)

l
�
YL(r̂)Y ∗

L�(r̂�)
ˆ

jl(qr)jl�(qr
�
)

k2 − q2
Y

∗
L
(q̂)YL�(q̂)dq (4.19)

=
2m

�2
2

π

�

L,L�

�
i
l
(−i)

l
�
YL(r̂)Y ∗

L�(r̂�)
�ˆ

π

0

dθ

ˆ
2π

0
dφ sin θY

∗
L
(q̂)YL�(q̂)

�

·

�ˆ ∞

0

dq
q
2
jl(qr)jl�(qr

�
)

k2 − q2

��
.

Inserting the orthonormality relation for spherical harmonics as stated in the digression
on the preceding page and, furthermore, using i

l
(−i)

l
�
δL,L� = i

l
(−i)

l
= 1 for L = L

�, one
obtains

G
0

nr
(r, r�, E) =

2m

�2
2

π

�

L

�
YL(r̂)Y ∗

L
(r̂�)

�ˆ ∞

0

q
2
jl(qr)jl(qr

�
)

k2 − q2
dq

��
(4.20)

=
2m

�2
1

π

�

L

�
YL(r̂)Y ∗

L
(r̂�)

�ˆ ∞

−∞

q
2
jl(qr)jl(qr

�
)

k2 − q2
dq

��
.

The last step uses the fact, that the integrand is an even function. That can easily be
verified by inserting into the definition of the spherical Bessel functions

jl(−x) = x
l

�
1

(−x)

d

d (−x)

�l
sin(−x)

(−x)
= x

l

�
1

x

d

dx

�l
sin(x)

x
= (−1)

l
jl(x) (4.21)

and noting that (−1)
2l
= 1. We proceed making the following definition:

G
0

nr,l
(r, r

�
, E) :=

1

π

ˆ ∞

−∞

q
2
jl(qr)jl(qr

�
)

k2 − q2
dq. (4.22)

This integral has to be solved by contour integration in the complex plane, again using the
residue theorem. However, because jl(qr)jl�(qr

�
) does not vanish along a semi circle in the

upper half plane, the expression has to be rewritten into spherical Hankel functions and
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different cases have to be taken care of. The necessary steps can be found in [61]. The
result is given by

G
0

nr,l
(r, r

�
, E) = −ikjl(kr<)hl(kr>), (4.23)

where r< := min{r, r�} and r> := max{r, r�}. Furthermore defining

JkL(r) := jl(kr)YL(r̂), (4.24)
JkL(r) := jl(kr)Y

∗
L
(r̂), (4.25)

HkL(r) := hl(kr)YL(r̂) and (4.26)
HkL(r) := hl(kr)Y

∗
L
(r̂), (4.27)

the final result for the Green function is obtained:

G
0

nr
(r, r�, E) =

2m

�2
�

L

YL(r̂)Y ∗
L
(r̂�)G0

nr,l
(r, r

�
, E) (4.28)

= −ik
2m

�2
�

L

YL(r̂)Y ∗
L
(r̂�)jl(kr<)hl(kr>)

= −ik
2m

�2
�

L

�
Θ(r − r

�
)HkL(r)JkL(r�) +Θ(r

�
− r)JkL(r)HkL(r�)

�

This important result in short16:

The partial wave expansion of the non-relativistic free electron Green function is given by

G
0

nr
(r, r�, E) = −ik

2m

�2
�

L

�
Θ(r − r

�
)HkL(r)JkL(r�) +Θ(r

�
− r)JkL(r)HkL(r�)

�
. (4.29)

16Remark: when using real spherical harmonics instead of the (“normal”) complex ones used here, the
functions JkL and JkL are identical, the same holds for HkL and HkL. Hence, in that case the equation
can be written in a more compact form. However, in the relativistic case that is not possible any more.
Therefore, the form above is instructive inasmuch as it has exactly the same structure as the relativistic
free particle Green function will have.
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The Lippmann-Schwinger Equation is a reformulation of the Schrödinger equation
(or later the Dirac equation) into an integral equation, derived by exploiting Green
function theory. The integral equation contains the free space Green function, calcu-
lated in the previous chapter. From the Lippmann-Schwinger equation the solutions
for the wave functions become accessible.

5.1 Derivation

Up to now only the case of a free electron has been examined. The Lippmann-Schwinger
equation connects this free electron case with the general case, i.e. with the solution of the
Schrödinger equation (4.2) for a particle (electron) under the influence of a potential V .
Basically, it is nothing more than a general equation from Green function theory applied to
the Schrödinger equation, namely the equation (3.2) that we first used to define a Green
function. In the physical notation of the Schrödinger equation setting this equation is
rewritten as

ψ
partc

(r) = L
−1
V (r)ψpartc

(r) =
ˆ

G
0

nr
(r, r�;E)V (r�)ψpartc

(r�)dr�. (5.1)

However, a complication here arises from the fact that the source term V ψ itself contains the
function ψ that we are looking for. Therefore, even after having found the Green function,
the problem in this case consists not only of solving an integral but an integral equation.

As the notation ψ
partc already suggests, this is the particular solution, i.e. one out of many

possible solutions of the inhomogeneous equation. According to the theory of differential
equations, the general solution ψ of the inhomogeneous equation is given by the sum of the
particular solution ψ

partc with the set of all solutions of the homogeneous equation {ψ0

k
}:

ψk = ψ
partc

+ ψ
0

k (5.2)

The latter, as already mentioned, are all the plane waves

ψ
0

k(r) = e
ikr

. (5.3)

fulfilling the energy relation �2k2
/2m = E. So we obtain the general solution:

The general solution of the Schrödinger equation for a particle (electron) under the influence
of a potential, is given by the Lippmann-Schwinger equation:

ψk(r) = ψ
0

k(r) +
ˆ

G
0

nr
(r, r�;E)V (r�)ψk(r�)dr�, (5.4)

where ψ
0

k(r) = e
ikr, �2k2

/2m = E and G
0

nr
is given by eq. (4.29).
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5.2 Angular Momentum Expansion

The next aim is to derive an angular momentum expansion of the Lippmann-Schwinger
equation. In equation (4.16) we already saw the partial wave expansion of a plane wave,
which we want to apply on ψ

0

k here. We first define

ψ
0

kL
(r) := YL(r̂)jl(kr) (5.5)

to obtain

ψ
0

k(r) = e
ikr

= 4π

�

L

i
l
Y

∗
L
(k̂)YL(r̂)jl(kr) (5.6)

= 4π

�

L

i
l
Y

∗
L
(k̂)ψ0

kL
(r). (5.7)

We then expand the solution ψk in a analogue manner

ψk(r) = 4π

�

L

i
l
Y

∗
L
(k̂)ψkL(r) (5.8)

but with unknown functions ψkL. Inserting (5.6) and (5.8) into the Lippmann-Schwinger
equation (5.4), multiplying by YL�(k̂), integrating over k̂ and using the orthonormality of
the spherical harmonics

´
Y

∗
L
(k̂)YL�(k̂)dk̂ = δLL� we obtain the following equation:

�

L

i
l
ψkL(r)δLL� =

�

L

i
l

�
ψ

0

kL
(r) +

ˆ
G

0

nr
(r, r�;E)V (r�)ψkL(r�)dr�

�
δLL� (5.9)

which is equivalent to

ψkL(r) = ψ
0

kL
(r) +

ˆ
G

0

nr
(r, r�;E)V (r�)ψkL(r�)dr�. (5.10)

Thus we can summarise:

The angular momentum expansion of the wave function ψk for a particle (electron) in a
potential V is given by

ψk(r) = 4π

�

L

i
l
Y

∗
L
(k̂)ψkL(r) (5.11)

where YL are (complex) spherical harmonics and ψkL are determined by a Lippmann-
Schwinger type equation

ψkL(r) = ψ
0

kL
(r) +

ˆ
G

0

nr
(r, r�;E)V (r�)ψkL(r�)dr�. (5.12)

For this Lippmann-Schwinger equation there are two types of solutions, the regular and
the irregular ones. The regular solutions RkL are the ones that are not singular for r = 0,
whereas the irregular ones SkL diverge as r goes to zero. Furthermore, for both of those
solution there is a right-hand side solution and a left hand-hand side solution. In the
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Lippmann-Schwinger equation this difference is taken account for by choosing a different
source term out of eqs. (4.24) to (4.27). The regular solutions are defined as follows:

The Lippmann-Schwinger equations for the regular wave functions RkL (right-hand side
solution) and RkL (left-hand side solution) are given by

RkL(r) = JkL(r) +
ˆ

G
0

nr
(r, r�;E)V (r�)RkL(r�)dr� (5.13)

RkL(r) = JkL(r) +
ˆ

G
0

nr
(r, r�;E)V (r�)RkL(r�)dr�. (5.14)

The free space solutions JkL and JkL are defined by eqs. (4.24) and (4.25).

The source term of a Bessel function is chosen because the Bessel functions are regular at
the origin. For the irregular solutions it will be Hankel functions instead, see eqs. (5.73)
and (5.74).

5.3 Coupled Radial Equations

The Lippmann-Schwinger equations can be rewritten into radial equations, i.e. equations
where the angular part is separated and the equation contains a one-dimensional radial
integral only instead of the three dimensional integration of the previous section. The price
for this simplification is that the resulting equations have double indices and form a system
of coupled17 equations. The derivation here will be shown for the regular right-hand side
solution, however, the results are analogous for the other solutions.
We start from eq. (5.13), expand RkL and V in terms of spherical harmonics and use the
angular momentum expansion of the Green function (4.28):

V (r�) =

�

L

VL(r
�
)YL(r̂�) (5.15)

RkL(r) =

�

L�

RL�L(r)YL�(r̂) (5.16)

G
0

nr
(r, r�, E) =

2m

�2
�

L

YL(r̂)Y ∗
L
(r̂�)G0

nr,l
(r, r

�
, E) (5.17)

Inserting the expansions into eq. (5.13) yields:

�

L���

RL���L(r)YL���(r̂) = jl(kr)YL(r̂) +
2m

�2

ˆ ��
�

L���

YL���(r̂)Y ∗
L���(r̂�)G0

nr,l���(r, r
�
, E)

�

·

�
�

L����

VL����(r
�
)YL����(r̂�)

�
(5.18)

·

�
�

L��

RL��L(r
�
)YL��(r̂�)

��
dr�.

17In the case of a spherical potential they decouple, as shown for the relativistic case in section 10.8.
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The next step is a multiplication by Y
*
L�(r̂), then integrating over r̂ and using the orthonor-

mality, i.e.
´
Y

*
L�(r̂)YL

(r̂)dr̂ = δLL� :

�

L���

RL���L(r)δL�L��� = jl(kr)δLL� +
2m

�2

ˆ ��
�

L���

δL�L���Y
∗
L���(r̂�)G0

nr,l���(r, r
�
, E)

�

·

�
�

L����

VL����(r
�
)YL����(r̂�)

�
(5.19)

·

�
�

L��

RL��L(r
�
)YL��(r̂�)

��
dr�.

Computing the sums over Kronecker δ yields:

RL�L(r) = jl(kr)δLL� +
2m

�2

ˆ ��
Y

∗
L�(r̂�)G0

nr,l�(r, r
�
, E)

�
(5.20)

·

�
�

L����

VL����(r
�
)YL����(r̂�)

�

·

�
�

L��

RL��L(r
�
)YL��(r̂�)

��
dr�.

Using the relationship dr := r
2
sin(θ)dφdθdr = r

2
drdr̂ the integral is rewritten into spherical

coordinates:

RL�L(r) = jl(kr)δLL� +
2m

�2

ˆ
S

0
dr

�
r
�2
G

0

nr,l�(r, r
�
, E) (5.21)

·

ˆ
dr̂�Y ∗

L�(r̂�)

�
�

L����

VL����(r
�
)YL����(r̂�)

�

·

�
�

L��

RL��L(r
�
)YL��(r̂�)

�
,

where S denotes the radius of a sphere outside of which the potential vanishes. This can be
rewritten as

RL�L(r) = jl(kr)δLL� +
2m

�2

ˆ
S

0
dr

�
r
�2
G

0

nr,l�(r, r
�
, E) (5.22)

·

�

L��L����

ˆ
dr̂�

�
Y

∗
L�(r̂�)YL����(r̂�)YL��(r̂�)

�

� �� �
=:CL�

L��L����

(VL����(r
�
)RL��L(r

�
))

and by defining
VL�L��(r

�
) =

�

L����

C
L
�

L��L����VL����(r
�
) (5.23)

we can further simplify to obtain

RL�L(r) = jl(kr)δLL� +
2m

�2

ˆ
S

0
dr

�
r
�2
G

0

nr,l�(r, r
�
, E)

�

L��

VL�L��(r
�
)RL��L(r

�
). (5.24)
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The result and the necessary definitions summarised:

The regular solution of the angular momentum Lippmann-Schwinger type equation is given
by

RkL(r) =
�

L�

RL�L(r)YL�(r̂) (5.25)

where

RL�L(r) = jl(kr)δLL� +
2m

�2

ˆ
S

0
dr

�
r
�2
G

0

nr,l�(r, r
�
, E)

�

L��

VL�L��(r
�
)RL��L(r

�
), (5.26)

VL�L��(r
�
) =

�

L���

C
L
�

L��L���VL���(r
�
) and (5.27)

C
L
�

L��L��� =

ˆ
dr̂�Y ∗

L�(r̂�)YL���(r̂�)YL��(r̂�). (5.28)

The coefficients C
L
�

L��L��� are called Gaunt coefficients.

5.4 t Matrix

The t matrix18 describes the transition between the incoming plane waves and the scattered
waves. Therefore is interesting for to its physical meaning, but it will also be helpful later
on to simplify the notation. A derivation of the expression for a full potential has been
shown by Zeller [26].

Starting point is the angular momentum Lippmann-Schwinger equation for RkL (5.13):

RkL(r) = jl(kr)YL(r̂) +
ˆ

G
0

nr
(r, r�;E)V (r�)RkL(r�)dr�. (5.29)

Into this equation we insert the angular momentum expansion of the Green function (4.28)

G
0

nr
(r, r�, E) =

2m

�2
�

L�

YL�(r̂)Y ∗
L�(r̂�)G0

nr,l�(r, r
�
, E), (5.30)

obtaining

RkL(r) = jl�(kr)YL�(r̂) +
2m

�2

ˆ �
�

L�

YL�(r̂)Y ∗
L�(r̂�)G0

nr,l�(r, r
�
, E)

�
V (r�)RkL(r�)dr�. (5.31)

Using expression (4.23) for the coefficients

G
0

nr,l�(r, r
�
, E) = −ikjl�(kr<)hl�(kr>) (5.32)

18The t matrix is closely related to the S matrix (where the S stands for scattering), first introduced by
Wheeler [62].
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for the case r > r
�
> S ⇐⇒ r< = r

�
, r> = r, this equation can be rewritten as

RkL(r) = jl�(kr)YL�(r̂)− ik
2m

�2
�

L�

�ˆ
Y

∗
L�(r̂�)jl�(kr�)V (r�)RkL(r�)dr�

�
YL�(r̂)hl�(kr)

= jl�(kr)YL�(r̂)− ik
2m

�2
�

L�

tL�LYL�(r̂)hl�(kr)

= JkL�(r)− ik
2m

�2
�

L�

tL�LHkL�(r) (5.33)

where we defined

tLL� : =

ˆ
Y

∗
L
(r̂�)jl(kr�)V (r�)RkL�(r�)dr�.

=

ˆ
JkL(r�)V (r�)RkL(r�)dr�. (5.34)

The integration volume is the whole unity cell under consideration. Alternatively the t

matrix can be written in such a manner that it only contains a radial integral. To derive
this expression we compare the t matrix with equation (5.20), observing that the expression
for the t matrix “almost” turns up in this equation – the only difference is that there is the
function G

0

nr,l
instead of jl. By following exactly the same steps as from eq. (5.20) up to

eq. (5.24), that means by making an expansion in spherical harmonics and using the Gaunt
coefficients, we can derive the alternative expression for the t matrix:

tLL� =

ˆ
S

0
dr

�
r
�2
jl�(kr

�
)

�

L��

VL�L��(r
�
)RL��L(r

�
). (5.35)

A physical interpretation of the t matrix can be made looking at eq. (5.33): Incoming waves
are represented in a basis of Bessel functions jl (as their radial parts), with a dependence on
the angular momentum quantum number l. These functions are regular at the origin, which
is the centre of the scattering potential V . Outgoing waves are written in a basis of Hankel
functions (that are irregular in the origin). The vector of Hankel functions is multiplied by
the t matrix, in this way the matrix determines how incoming waves are scattered at the
potential V . In case of a spherical potential the t matrix is diagonal, i.e. it has non-zero
entries only for L = L

�. This means that incoming waves with angular momentum quantum
numbers l,m are only scattered to waves of the same angular momentum l,m and there is
no mixing of the angular momentum channels as it is the case for potentials of arbitrary
shape.

5.5 Radial Equations in PDE Formulation

Instead of using integral equations of Lippmann-Schwinger type it is also possible to find a
system of differential equations for the radial solutions of the Schrödinger equation. This
technique is not used within this work and will not be studied beyond this section, however,
to give an idea of alternative solution techniques that are used to solve the radial equations,
it should be mentioned here. As for the case of integral equations, the expansion parts ψkL
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and VLL� for different values of the angular momentum L are coupled, only in the case of a
spherical potential the equations can be solved independently.
First we rewrite the Schrödinger equation into spherical coordinates. This can be done by
using the Laplace operator in spherical coordinates (see eq. [63]) and the angular momentum
operator L̂ = −i�r ×∇, yielding:

�
−

�2
2m

∆+ V (r)
�
ψk(r) = Eψk(r)

⇐⇒

�
−

1

r2

∂

∂r

�
r
2
∂

∂r

�
+

1

�2r2 L̂
2

+
2m

�2 V (r)− k
2

�
ψk(r) = 0. (5.36)

As before �2k2
/2m = E. The spherical harmonics are the eigenfunctions of L̂

2

(see e.g. [64]
or another book on quantum mechanics):

L̂
2

YL(r̂) = �2l(l + 1)YL(r̂). (5.37)

Since the first part of the operator in the Schrödinger equation depends only on r and the
angular momentum operator L̂ depends only on the angular part r̂ = (θ,φ), the strategy
to solve the equation is by separating the variables in the wave function. This is done by
using the expansion (5.16) in terms of spherical harmonics. The potential is expanded in
an analogous way as in (5.15):

V (r) =

�

L���

VL���(r)YL���(r̂) (5.38)

ψkL�(r) =

�

L��

ψkL��L�(r)YL��(r̂). (5.39)

We insert this into the Schrödinger equation, obtaining
��

−
1

r2

∂

∂r

�
r
2
∂

∂r

�
+

2m

�2

�
�

L���

VL���(r)YL���(r̂)

�
− k

2

�
+

1

�2r2 L̂
2

�
(5.40)

·

�
�

L��

ψkL��L�(r)YL��(r̂)

�
= 0

This can be rearranged to
�

L��

�
−

1

r2

∂

∂r

�
r
2
∂

∂r

�
+

1

�2r2 L̂
2

− k
2

�
ψkL��L�(r)YL��(r̂)

+
2m

�2
�

L��

�

L���

VL���(r)YL���(r̂)ψkL��L�(r)YL��(r̂) = 0. (5.41)

Now we use the eigenvalue equation (5.37), multiply the whole equation by Y
∗
L
(r̂) and

integrate over r̂. Using the orthonormality of the spherical harmonics, this gives us
�

L��

��
−

1

r2

∂

∂r

�
r
2
∂

∂r

�
+

l(l + 1)

r2
− k

2

�
ψkL��L�(r)δLL��

�

+
2m

�2
�

L��

�

L���

�ˆ
dr̂Y ∗

L
(r̂)YL��(r̂)YL���(r̂)

�

� �� �
=C

L
L��L���

VL���(r)ψkL��L�(r) = 0, (5.42)



38 5 Particle in a Potential: Lippmann-Schwinger Equation

where the coefficients C
L

L��L��� are the Gaunt coefficients already defined in eq. (5.22). By
using the definition of VL��L as in eq. (5.23) the equation can further be simplified:

�
−

1

r2

∂

∂r

�
r
2
∂

∂r

�
+

l(l + 1)

r2
− k

2

�
ψkLL�(r)

+
2m

�2
�

L��

�

L���

C
L

L��L���VL���(r)

� �� �
=VL��L

ψkL��L�(r) = 0 (5.43)

Finally, we obtain the coupled equations for the radial part of the wave function:

�
1

r2

∂

∂r

�
r
2
∂

∂r

�
−

l(l + 1)

r2
+ k

2

�
ψkLL�(r) =

2m

�2
�

L��

VL��LψkL��L�(r). (5.44)

5.6 Operator Notation and Integral Equations for the Green Func-
tion

The Green function formalism and the Lippmann-Schwinger equation can also be expressed
using an operator notation. It shortens the notation for calculating an integral equation for
the Green function.

The free particle Green function was defined by eq. (4.1) and the following ones:

(E +∆)ψ(r) = 0 (5.45)
(E +∆)G

0

nr
(r, r�, E) = δ(r − r�). (5.46)

For the particle in a potential V the corresponding Green function is analogously defined
by

(E +∆− V )Gnr(r, r�, E) = δ(r − r�). (5.47)

Now this equation can be expressed as an operator equation by defining the operators Ĝ0

nr
,

Ĥ
0

nr
and Ĥnr acting on a twice differentiable function f as:

Ĝ
0

nr
f :=

ˆ
dr�Gnr(r, r

�
, E)f(r�) (5.48)

Ĥ
0

nr
f := −∆f(r) (5.49)

Ĥnrf := (−∆+ V (r)) f(r). (5.50)

Using these definitions and integrating equation (5.46) over r�, it can be rewritten into
ˆ

dr� (E +∆)G
0

nr
(r, r�, E) =

ˆ
dr�δ(r − r�)

⇐⇒

�
E − Ĥ

0

nr

�
Ĝ

0

nr
= 1. (5.51)
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From this relation one can formally conclude

Ĝ
0

nr
=

�
E − Ĥ

0

nr

�−1

. (5.52)

An analogous procedure for eq. (5.47) yields
�
E − Ĥnr

�
Ĝnr = 1, (5.53)

Ĝnr =

�
E − Ĥnr

�−1

=

�
E − Ĥ

0

nr
− V

�−1

. (5.54)

Multiplying eq. (5.54) from the left by
�
E − Ĥ

0

nr
− V

�
yields an operator representation

of the Lippmann-Schwinger equation for the Green function:
�
E − Ĥ

0

nr
− V

�
Ĝnr = 1

⇐⇒

�
E − Ĥ

0

nr

�

� �� �
=(Ĝ0

nr)
−1

Ĝnr = 1 + V Ĝnr

⇐⇒ Ĝnr = Ĝ
0

nr
+ Ĝ

0

nr
V Ĝnr. (5.55)

By using the definition of the operators the equation can be rewritten into a real space
integral equation:

ˆ
dr�Gnr(r, r

�
, E)f(r�) (5.56)

=

ˆ
dr�G0

nr
(r, r�, E)f(r�) +

ˆ
dr��G0

nr
(r, r��, E)V (r��)

ˆ
dr�Gnr(r

��
, r�, E)f(r�),

valid for any twice differentiable function f . Formally one obtains the integral equation for
the Green function:

Gnr(r, r
�
, E) = G

0

nr
(r, r�, E) +

ˆ
dr��G0

nr
(r, r��, E)V (r��)Gnr(r

��
, r�, E) (5.57)

Multiplying eq. (5.54) from the right by the same factor as in eq. (5.55) gives:

Ĝnr = Ĝ
0

nr
+ ĜnrV Ĝ

0

nr
, (5.58)

which, in real space, yields the integral equation

Gnr(r, r
�
, E) = G

0

nr
(r, r�, E) +

ˆ
dr��Gnr(r, r

��
, E)V (r��)G0

nr
(r��, r�, E). (5.59)
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5.7 Fredholm and Volterra Integral Equations

During the derivation of the Green function for the particle in a potential, it will be useful
to rewrite between two different types of integral equations, the Fredholm and the Volterra
integral equation.
A Fredholm integral equation has the form19

y(r) = f(r) +
ˆ

dr�G0
(r, r�)V (r�)y(r�). (5.60)

For f �= 0 it is called inhomogeneous or of second kind. The integration domain in this case
is finite and does not depend on r. G

0 is called the kernel of the integral, y is an unknown
function and f , G0and V are given.
One can directly see that the Lippmann-Schwinger equation is of this form, and therefore
is a Fredholm integral equation.
The strategy for solving a Fredholm equation is by finding a resolvent kernel G, such that
the unknown function y can be written as

y(r) = f(r) +
ˆ

dr�G(r, r�)V (r�)f(r�). (5.61)

The relationship between G and G
0 can be found using the operator notation exactly as it

has been done in the previous section 5.6. Simply renaming the functions in the Lippmann-
Schwinger equation (5.4) and in the resulting equations (5.57) and (5.59) we get the equa-
tions

G(r, r�) = G
0
(r, r�) +

ˆ
dr��G0

(r, r��)V (r��)G(r��, r�), (5.62)

G(r, r�) = G
0
(r, r�) +

ˆ
dr��G(r, r��)V (r��)G0

(r��, r�). (5.63)

A Volterra integral equation is of the same form as a Fredholm equation, with the only
difference that the integral domain depends on r. In this three-dimensional setting this can
be written as

y(r) = f(r) +
ˆ

dr�K0
(r, r�)V (r�)f(r�) (5.64)

where
K

0
(r, r�) = Θ(r − r

�
)K̃

0
(r, r�). (5.65)

That means the integration domain is limited to a sphere of radius |r|. The equations for
finding the integral kernel still hold, i.e. a solution of the Volterra equation is given by

y(r) = f(r) +
ˆ

dr�K(r, r�)V (r�)f(r�) (5.66)

where
K(r, r�) = K

0
(r, r�) +

ˆ
dr��K0

(r, r��)V (r��)K(r��, r�). (5.67)

19In the general form in Mathematics the term V (r�) is not included. It can, however, simply be included
by redefining G

0. In the form presented here the analogy to the Lippmann-Schwinger equation is directly
obvious, which is why V (r�) has been included.
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For the calculation of the Green function it will be of advantage to rewrite the Lippmann-
Schwinger equation from a Fredholm to a Volterra equation. How to do this will be explained
in sections 10.3 and 10.9.

5.8 α and β Matrices and the Irregular Solution

The α matrix describes the behaviour at the origin of the regular angular single-site solutions
with potential, RkL(r), and without potential, JkL(r).

The relationship between the two was given by equation (5.13):

RkL(r) = JkL(r) +
ˆ

dr�G0

nr
(r, r�;E)V (r�)RkL(r�). (5.68)

Inserting the partial wave expansion of the free space Green function, eq. (4.29), one gets

RkL(r) = JkL(r)− ik
2m

�2
�

L�

�ˆ
dr�Θ(r − r

�
)HkL�(r)JkL�(r�) (5.69)

+Θ(r
�
− r)JkL�(r)HkL�(r�)

�
V (r�)RkL(r�)

= JkL(r)− ik
2m

�2

��

L�

ˆ
|r�|≤|r|

dr�HkL�(r)JkL�(r�)V (r�)RkL(r�)

+

ˆ
|r�|>|r|

dr�JkL�(r)HkL�(r�)V (r�)RkL(r�)
�
.

In the limit |r| → 0 the first integral vanishes, yielding

RkL(r) = JkL(r)− ik
2m

�2
�

L�

JkL�(r)
ˆ
|r�|>|r|

dr�HkL�(r�)V (r�)RkL(r�) (5.70)

=

�

L�

JkL�(r)
�
δLL� − ik

2m

�2

ˆ
|r�|>|r|

dr�HkL�(r�)V (r�)RkL(r�)
�

� �� �
=:αLL�

, as |r| → 0.

Hence20

RkL(r) =
�

L�

αLL�JkL�(r), as |r| → 0, (5.71)

where the α matrix was defined by

αLL� := δLL� − ik
2m

�2

ˆ
drHkL�(r)V (r)RkL(r). (5.72)

As it has been seen in the expansion eq. (4.15), the non-relativistic free electron Green
function can be written in terms of the regular and irregular solutions of the free Schrödinger

20Note that both α and β matrix have a dependence on k that is not indicated here explicitly.
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equation. The goal later on will be finding a similar expansion for the Green function of an
electron in a potential, i.e. in terms of regular and irregular solutions of the Dirac equation
of an electron in a potential. This equation should, however, result in the equation for
the free electron Green function when choosing V = 0. From eq. (5.68) one can see that
RkL = JkL for V = 0. Similarly, the irregular solution, denoted by SkL, should be equal to
the irregular solution of the free electron case, the Hankel function HkL. Hence, the source
term of the corresponding Lippmann-Schwinger equation is no longer a Bessel but now a
Hankel function:

The irregular solutions SkL(r) of a particle in a potential are given by the Lippmann-
Schwinger equations

SkL(r) =
�

L�

βLL�HkL�(r) +
ˆ

dr�G0

nr
(r, r�, E)V (r�)SkL(r�), (5.73)

SkL(r) =
�

L�

βLL�HkL�(r) +
ˆ

dr�G0

nr
(r, r�, E)V (r�)SkL(r�). (5.74)

The source terms are defined in eqs. (4.26) and (4.27). Furthermore the β matrix is used,
which is defined by its entries

βLL� := δLL� + ik
2m

�2

ˆ
drSkL�(r)V (r)JkL(r). (5.75)

In addition to the source term now being a Hankel function, there occurs, unexpectedly, also
the multiplication by the β matrix. First note that for the case of a vanishing potential this
matrix becomes the identity matrix, i.e. for V = 0 it is SkL = HkL as it was required. As
a source term any linear combination of Hankel functions can be used. Why the β matrix
is introduced here and why this specific source term is chosen cannot be understood yet
but only when deriving the expansion of the Green function in sections 5.9 and 10.3. There
it will be seen that with this choice for the irregular solution the Green function for the
particle in a potential can be written in a nice and simple form.

The equation for the irregular solution is a Fredholm integral equation. Thus, according to
section 5.7, the solution is given by

SkL(r) =
�

L�

βLL�

�
HkL�(r) +

ˆ
drGnr(r, r�, E)V (r�)HkL(r�)

�
. (5.76)

SkL(r) =
�

L�

βLL�

�
HkL�(r) +

ˆ
drHkL(r�)V (r�)Gnr(r�, r, E)

�
. (5.77)

In a matrix notation the two matrices are given by

α = (αLL�)
LL� , (5.78)

β = (βLL�)
LL� ∈ C(n+1)

2×(n+1)
2

. (5.79)
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If l runs from 0 to n and m ∈ {−l,−(l − 1), . . . , l} the combined index L = (l,m) can take
(n+ 1)

2 values, hence this is the dimension of the matrix. One can also define the vectors
S, H and A ∈ C(n+1)2 by

S(r) =
�
SkL(r)

�
L
, (5.80)

H(r) =
�
HkL(r)

�
L
, (5.81)

A(r) =

�ˆ
dr�HkL(r�)V (r�)Gnr(r�, r, E)

�

L

, (5.82)

i.e. they are column vectors containing the entries for different values of L. Using these
definitions, equation (5.76) can then be written in a the compact form

S(r) = β
�
H(r) + A(r)

�
. (5.83)

Even though it is not obvious to see, the α and β matrices are the inverse of each other:

The matrices α and β fulfil the relation

α = β
−1
. (5.84)

Proof: Recall the Lippmann-Schwinger equation for the regular solution eq. (5.13):

RkL(r) = JkL(r) +
ˆ

dr�G0

nr
(r, r�;E)V (r�)RkL(r�) (5.85)

According to section 5.7 its solution is

RkL(r) = JkL(r) +
ˆ

dr�Gnr(r, r�;E)V (r�)JkL(r�). (5.86)

Now insert this into the definition of the α matrix, eq. (5.72), to obtain

αL�L = δLL� − ik
2m

�2

ˆ
drHkL�(r)V (r) (5.87)

·

�
JkL(r) +

ˆ
dr�Gnr(r, r�;E)V (r�)JkL(r�)

�

= δLL� − ik
2m

�2

ˆ
drHkL�(r)V (r)JkL(r)

−ik
2m

�2

ˆ
dr�

�ˆ
drHkL�(r)Gnr(r, r�;E)V (r)

�
V (r�)JkL(r�).

Equation (5.83) can be rearranged as

A(r) = β
−1
S(r)−H(r) (5.88)

which, in explicit notation, is equivalent toˆ
dr�HkL(r�)Gnr(r, r�, E)V (r�) =

�

L�

�
β
−1
�
LL� SkL�(r)−HkL(r). (5.89)
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This is exactly the term in square brackets in the equation above. Replacing it yields

αLL� = δLL� − ik
2m

�2

ˆ
drHkL�(r)V (r)JkL(r) (5.90)

−ik
2m

�2

ˆ
dr�

�
�

L��

�
β
−1
�
LL�� SkL��(r�)−HkL�(r�)

�
V (r�)JkL(r�)

= δLL� −

�

L�

�
β
−1
�
LL� ik

2m

�2

ˆ
dr�SkL�(r�)V (r�)JkL(r�)

� �� �
=βLL�−δLL� , cf. eq. (5.75)

.

This equation can equivalently be written in a matrix notation

α = I− β
−1

(β − I) = β
−1
, (5.91)

where I denotes the identity matrix. From this equation follows the claim eq. (5.84), which
completes the proof.

5.9 Angular Momentum Expansion of the Green function for a
Particle in a Potential

In analogy to the angular momentum expansion of the free particle Green function (cf. eq.
(4.28))

G
0

nr
(r, r�, E) = −ik

2m

�2
�

L

JL(kr<)HL(kr>) (5.92)

the Green function a the particle in a potential can also be expanded. However, the spherical
Bessel and Hankel functions JL and HL will here be replaced by the regular and irregular
solutions of the Schrödinger equation for a particle in a potential. Thus, once these solutions
are known, the Green function can be calculated from the expansion.

The non-relativistic Green function for a particle in a potential is given by

Gnr(r, r�;E) = −ik
2m

�2
�

L

�
Θ(r − r

�
)RL(r�)SL(r�) +Θ(r

�
− r)SL(r�)RL(r�)

�
(5.93)

with the regular wave functions RΛ, RΛ, defined by eqs. (5.13) and (5.14), whereas the
irregular wave functions SΛ, SΛ are defined by eqs. (5.73) and (5.74).

In section 10.3 it will be shown that an equation of the same form is valid in the relativistic
case (cf. eq. (10.19)), together with a proof for the relativistic case. For the non-relativistic
case this proof goes completely analogously, except for two differences: the first one is that
here some functions are scalar, that will be vectors or matrices in the relativistic case. Hence
in the relativistic case the order of multiplications matters, while in the non-relativistic case
it does not. The second difference is that the indices L will be replaced by different indices
Λ. As by replacing the indices the proof for the relativistic case can be adopted, no proof
is given here.
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6 Dirac Equation

For an electron with a high kinetic energy the Schrödinger equation does no longer
provide an adequate description, but the Dirac equation has to be used instead. It
was already found two years after the Schrödinger equation was published and, using
vectors with four entries, describes the motion of a spin 1/2 particle in accordance
to special relativity.

6.1 Relativistic Quantum Mechanics

In 1905 Einstein published his theory of special relativity [65], as it was later on termed.
In contrast to the Galilean relativity, which explains the equivalence of all inertial system of
uniform, linear motion with one universal time, the time in special relativity is no longer uni-
versal for all reference systems. The first experiment connected to special relativity was the
Michelson-Morley experiment, conducted already in 1881. It aimed to find a medium
in which light waves travel. However, no such medium and, accordingly, no distinguished
inertial system was found. Einstein’s special relativity explained the unexpected result of
the experiment. As an important consequence of the theory, the vacuum light speed c must
be finite.

In a mathematical description, a theory in accordance with Galilean relativity must be
invariant under a Galilean transformation between two inertial systems. Newton’s Laws,
for example, are invariant under such a transformation. The relativistic counterpart is a
Lorentz transformation, i.e. a theory in accordance with special relativity must be covariant,
which means invariant under a Lorentz transformation. This transformation was part of
Einstein’s publication and also solved the problem that the Maxwell equations were not
invariant under a Galilean transformation.

The Schrödinger equation, published in 1926, is not invariant under a Lorentz transformation
and thus not in accordance with special relativity. Hence, the search for a relativistic
equivalent started directly after Schrödinger’s publication. An attempt to describe the
relativistic movement of an electron was the Klein-Gordon equation, that was published
in 1927. It turned out that this equation does not correctly describe relativistic electrons,
however, it is correct for the description of relativistic Bosons. Dirac’s publication in 1928
[39] solved the problem of describing relativistic electrons.

In the non-relativistic limit of small electron speed v � c the Schrödinger equation correctly
describes the electronic motion. With increasing energy and, accordingly, increasing speed
of motion, relativistic properties become important. Consequences of the Dirac equation
include negative energies, that were explained by Dirac by introducing antiparticles with
opposite energy [66], also known as the hole theory. This theory furthermore allows, in
accordance to the equivalence of energy and mass in special relativity, the annihilation and
creation of particles, which means that the number of particles no longer is a conserved
quantity. In contrast to the Schrödinger equation, it is also able to correctly describe all
interaction processes between light and matter, such as emission and absorption or scattering
of photons. Moreover, it includes the spin of an electron in the theory. This intrinsic angular
momentum couples with the orbital angular momentum, known as spin-orbit coupling. It
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becomes more and more important with increasing atomic number, as for heavy elements the
electrons have a higher energy and thus move faster. There are several good introductory
books to relativistic quantum mechanics [64, 67, 68, 69, 70, 71], whereas the books by
Strange [49] and Rose [72] go further into the details and also treat aspects that are
important in solid state physics.

6.2 The Free Electron

The relativistic description of an electron in free space is given by the Dirac equation

Ĥ0Ψ = i�∂Ψ
∂t

(6.1)

with the Dirac Hamiltonian

Ĥ0 : =
�c
i

�
α1

∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3

�
+ βmc

2 (6.2)

= cαp̂ + βmc
2 (6.3)

and
p̂ = −i�∇. (6.4)

In the stationary case eq. (6.1) becomes

Ĥ0ψ = Wψ, (6.5)

where W denotes the energy eigenvalue in the relativistic case. The quantities αi and β are
4× 4 matrices defined as

β =

�
I2 0

0 −I2

�
, αi =

�
0 σi

σi 0

�
(6.6)

where i ∈ {x, y, z} is the cartesian coordinate and σi are the 2× 2 Pauli matrices

σx =

�
0 1

1 0

�
, σy =

�
0 −i

i 0

�
, σx =

�
1 0

0 −1

�
. (6.7)

α is a vector that contains the three matrices αi as its entries. In contrast to the Schrödinger
equation, which is a linear second order differential equation, the Dirac equation is a linear
first order differential equation. However, according to the general theory of linear dif-
ferential equations, any second order equation can be written as a coupled system of two
first order equations. As the Dirac equation contains vectors with four entries and 4 × 4

matrices it can be seen as a system of four coupled equations, thus resolving this at first
sight surprising difference to the Schrödinger equation.

6.3 Electron in a Potential

To include a scalar potential eϕ(r) and an electromagnetic vector potential A(r) in the
Dirac equation, the following replacements are necessary (see e.g. [71]):

i� ∂

∂t
−→ i� ∂

∂t
− eϕ(r) (6.8)
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or for the stationary case
W −→ W − eϕ(r) (6.9)

and
p̂ −→ p̂ − eA(r). (6.10)

Therefore the Dirac Hamiltonian becomes

ĤD = cα (p̂ − eA(r)) + βmc
2
+ eϕ(r)

= cαp̂ + βmc
2
+ V (r) (6.11)

where the potential V (r) is a 4× 4 matrix defined by

V (r) : = eϕ(r)I4 − ceαA(r) (6.12)

= e

�
ϕ(r)I2 −cσA(r)

−cσA(r) ϕ(r)I2

�

= e





ϕ(r) 0 −cAz(r) −cAx(r) + icAy(r)
0 ϕ(r) −cAx(r)− icAy(r) +cAz(r)

−cAz(r) −cAx(r) + icAy(r) ϕ(r) 0

−cAx(r)− icAy(r) +cAz(r) 0 ϕ(r)



 .

Assuming that ϕ and A have only real entries, this matrix is self-adjoint (Hermitian), i.e.

V (r) = V
†
(r). (6.13)

Density functional calculations using this potential are called Spin-Current DFT. Usually
the potential is approximated neglecting orbital currents (see e.g. [70]) and written in the
following representation:

≈
V (r) : = eϕ(r)I4 − µβΣB(r) (6.14)

=

�
eϕ(r)I2 − µσB(r) 0

0 eϕ(r)I2 + µσB(r)

�

=





eϕ(r)− µBz(r) −µBx(r) + iµBy(r) 0 0
−µBx(r)− iµBy(r) eϕ(r) + µBz(r) 0 0

0 0 eϕ(r) + µBz(r) µBx(r)− iµBy(r)
0 0 µBx(r) + iµBy(r) eϕ(r)− µBz(r)





where

Σ =

�
σ 0

0 σ

�
(6.15)

and where B is the magnetic flux density and

µ =
e�
2m

. (6.16)

Density functional calculations using this potential are called spin-polarised DFT. Just as
the exact potential V , assuming that ϕ and B have real entries only, the approximated
potential

≈
V is also a self-adjoint matrix:

≈
V (r) =

≈
V

†
(r). (6.17)
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6.4 Relativistic Corrections to the Schrödinger Equation

The wave functions resulting from the Dirac equation have four entries. The first two
are commonly termed the large component, the remaining two the small component. In
the Dirac equation, which is a system of four linear first-order differential equations, both
components are coupled. By applying a so-called Foldy-Wouthuysen transformation of the
Dirac Hamiltonian and neglecting the small component, one can derive the Pauli operator :

ĤPauli =
p̂2

2m
+ eϕ(r)

� �� �
ĤSchrödinger

−
e�
2m

σ · B
� �� �

(1)

−
p̂
4

8m3c2� �� �
(2)

+
e�2

8m2c2
∇ · E

� �� �
(3)

−
e�

4m2c2
σ · (E × p̂)

� �� �
(4)

. (6.18)

This operator is applied only to the large component. The first term of the Pauli operator is
equal to the Schrödinger Hamiltonian, followed by relativistic correction terms up to order
O(1/c

2
). Hence, the Pauli operator provides a way to include relativistic effects in otherwise

non-relativistic calculations. The Dirac equation, of course, intrinsically contains all these
terms (and more), so that the Pauli operator is not used anywhere within this work. It is
however instructive in order to gain understanding for what are the main relativistic effects:

1. The first correction term describes the magnetic moment µ = −e�/2mσ resulting
from the electron spin. It gives rise, for example, to the dipole-dipole interaction of
electrons, which is one factor contributing to magnetic shape anisotropy and magneto-
crystalline anisotropy (the other one is spin-orbit coupling, cf. point 4).

2. With increasing speed the relativistic mass increases and differs more and more from
the rest mass. The second correction term is the first contribution to this mass in-
crease.

3. This correction in known as the Darwin term. It describes the fact that in a relativistic
description one can only give a probability for finding an electron at a certain position.
The fine structure correction in the description of Hydrogen is an example of the effect
the Darwin term has.

4. The last term is called the spin-orbit coupling term, that is the main source of vari-
ous relativistic effects in solid state physics, including the magnetic shape anisotropy
mentioned above. More examples are listed in the introduction. For regions where
the potential is in a good approximation spherical, i.e. close to the atom core, the
spin-orbit contribution can be approximated [11, 73] by

ĤSO =
e�

4m2c2
σ · (E × p) ≈ ξ(r)L̂ · Ŝ. (6.19)

Here ξ(r) is the spin-orbit coupling constant, L̂ is the orbital angular momentum
operator and Ŝ is the spin operator. In the following chapter these operators and
their eigenfunctions and eigenvalues will be discussed in detail.
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genfunctions

Angular momentum expansions form an indispensable tool within the KKR-GF form-
alism. Whereas in the non-relativistic case spherical harmonics are used as a basis,
now the so-called spin spherical harmonics take over this role. They are the ei-
genfunctions of the spin-orbit operator K̂. To characterise the states one has the
choice between two different basis sets, the (κ, µ)-basis and the (l,ml,ms)-basis.
Explicit tables of the indices in the two basis sets, Clebsch-Gordan coefficients and
the first spin spherical harmonics are presented as a groundwork for computational
implementation.

7.1 Orbital Angular Momentum Operator

The orbital angular momentum operator L̂ is defined by

L̂ = r × p̂ (7.1)

where p̂ = −i�∇ is the momentum operator. L̂ fulfils the commutation relations
�
L̂x, L̂y

�
= i�L̂z (7.2)

�
L̂y, L̂z

�
= i�L̂x

�
L̂z, L̂x

�
= i�L̂y.

Using these relations, the cross-product of L̂ with itself can be calculated:

L̂ × L̂ =




L̂yL̂z − L̂zL̂y

L̂zL̂x − L̂xL̂z

L̂xL̂y − L̂yL̂x



 =





�
L̂y, L̂z

�

�
L̂z, L̂x

�

�
L̂x, L̂y

�




=




i�L̂x

i�L̂y

i�L̂z



 = i�L̂. (7.3)

The eigenfunctions of the squared orbital angular momentum operator and its z-component
are spherical harmonics:

L̂
2

Yl,m(θ,φ) = �2l(l + 1)Yl,m(θ,φ) (7.4)
L̂zYl,m(θ,φ) = �mYl,m(θ,φ). (7.5)

The angular versions of the creation and annihilation operators

L̂+ := L̂x + iL̂y (7.6)
L̂− := L̂x − iL̂y (7.7)
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allow going from one m state to another:

L̂+Yl,m =

��
l(l + 1)−m(m+ 1)Yl,m+1 if m < l

0 otherwise
(7.8)

L̂−Yl,m =

��
l(l + 1)−m(m− 1)Yl,m−1 if m > −l

0 otherwise.
(7.9)

7.2 Spin Operator

The spin, experimentally observed in experiments of atoms in magnetic fields (Zeeman effect,
Stern-Gerlach experiment), emerges from the Dirac equation as a new (rotational) degree
of freedom compared to the Schrödinger equation. It can be described by the spin operator,
which is defined as

Ŝ :=
�
2
σ (7.10)

where σ is a vector containing the Pauli matrices σx, σy and σz, which are given by

σx =

�
0 1

1 0

�
, σy =

�
0 −i

i 0

�
, σz =

�
1 0

0 −1

�
. (7.11)

For electrons, i.e. spin 1/2 particles, the operator fulfils the eigenvalue equations

Ŝ
2

φms = �2s(s+ 1)φms (7.12)
Ŝzφms = �msφms (7.13)

where s = 1/2, ms = ±s and the eigenfunctions φms are the spinors

φ 1
2
=

�
1

0

�
, φ− 1

2
=

�
0

1

�
. (7.14)

The Pauli matrices have the following properties:

σ
2

i
= I2 (7.15)

σxσy = iσz and cyclic permutations (7.16)
σxσy = −σyσx and cyclic permutations (7.17)

σxσyσz = iI2. (7.18)

From these properties follows a general relation, valid for all commuting vector operators
Â and B̂:

�

i,j

σiÂiσjB̂j =

�

i,j

δijÂiB̂j + i

�

i,j,k

�ijkσkÂiB̂j (7.19)

⇐⇒ (σÂ)(σB̂) = ÂB̂ + iσ(Â × B̂) (7.20)

The first line follows from the relation σiσj = δij +
�

k
i�ijkσk (here �ikj denotes the Levi-

Civita symbol) which is equivalent to equations (7.15) and (7.16), the second line is just
rewriting it using the sum notations for the scalar product and the cross product.
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The spin operator Ŝ fulfils
�
Ŝx, Ŝy

�
= i�Ŝz and cyclic permutations. (7.21)

In analogy to the case of the orbital angular momentum in section 7.1, this implies

Ŝ × Ŝ = i�Ŝ. (7.22)

We also note
�
Ŝ, L̂

�
=

�
2




σxL̂x − L̂xσx

σyL̂y − L̂yσy

σzL̂z − L̂zσz



 = 0. (7.23)

7.3 Total Angular Momentum Operator

In the Schrödinger theory the angular momentum L is equivalent to the total angular
momentum. This is different in the relativistic case, where the total angular momentum is
the sum of the orbital angular momentum and the spin. In operator notation:

Ĵ = L̂ + Ŝ. (7.24)

This sum of two operators has to be understood as the direct product of the corresponding
quantum states, see eq. (7.50). The eigenvalues of Ĵ

2

are given by j(j + 1), where j is
a non-negative half-integer, and those of Ĵz = L̂z + Ŝz are given by µ := m + ms, where
m = −l, ..., l and ms = ±s = ±

1

2
.

The eigenfunctions of this operator will be discussed in section 7.5.

7.4 Spin-Orbit Operator

7.4.1 The Dirac Hamiltonian in Spin-Orbit Operator Notation

Our aim here is to separate radial and angular parts of the Dirac Hamiltonian. This will later
on allow us to apply the separation of variables onto the Dirac equation when calculating
its eigenfunctions.

We will first rewrite the momentum operator p̂. The following identity holds:

er × (er × p̂) Graßmann identity
= er(erp̂)− (erer)p̂ = er(erp̂)− p̂. (7.25)

Rearranging and using the definition of the unit vector er = r/r and of the angular mo-
mentum operator L̂ = r × p̂ yields

p̂ = er(erp̂)− er × (er × p̂) = er(erp̂)−
1

r
er × (r × p̂) = er(erp̂)−

1

r
er × L̂. (7.26)

Hence
σp̂ = (σer)(erp̂)−

1

r
σ(er × L̂). (7.27)
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Now we define
σr := σer (7.28)

and note that the term erp̂ is the directional derivative

erp̂ = −i�er∇ = −i� ∂

∂r
. (7.29)

Hence equation (7.27) becomes

σp̂ = −i�σr

∂

∂r
−

1

r
σ(er × L̂). (7.30)

To rewrite the term er × L̂ the vector er and the operator L̂ are inserted into equation
(7.20), which yields:

(σer)(σL̂) = erL̂ + iσ(er × L̂). (7.31)

Since the cross product L̂ = r × p̂ is perpendicular to r and thus also to er, the term erL̂
equals zero. Now, inserting eq. (7.31) into (7.30) gives

σp̂ = −i�σr

∂

∂r
−

1

ir
σrσL̂

= −i�σr

∂

∂r
+ i

1

r
σrσL̂ (7.32)

= −iσr

�
� ∂

∂r
−

1

r
σL̂

�
.

By defining the

spin-orbit operator
K̂ := −

�
�+ σL̂

�
(7.33)

the expression for σp̂ is rewritten as

σp̂ = −iσr

�
� ∂

∂r
+

�
r
+

K̂

r

�
. (7.34)

Therefore

αp̂ = −iσr

�
� ∂

∂r
+

�
r
+

K̂

r

��
0 I2
I2 0

�
. (7.35)

Using this expression, the Dirac Hamiltonian for a free electron can be rewritten as

ĤD = −ciσr

�
� ∂

∂r
+

�
r
+

K̂

r

��
0 I2
I2 0

�
+ βmc

2
. (7.36)
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7.4.2 Eigenvalues of the Spin-Orbit Operator

The eigenvalues of the spin-orbit operator K̂ are convenient to characterise the states of a
free relativistic particle. To calculate them we first evaluate K̂

2
:

K̂
2
= �2 + 2�σL̂ + (σL̂)(σL̂). (7.37)

Now we rewrite

(σL̂)(σL̂) eq. (7.20)

= L̂
2

+ iσ(L̂ × L̂) (7.38)
eq. (7.3)

= L̂
2

− �σL̂.

Inserting this into the expression for K̂2 yields

K̂
2
= �2 + �σL̂ + L̂

2

(7.39)

and hence
K̂

2
+ �K̂ = L̂

2

. (7.40)

We denote the eigenvalues of K̂ by �κ, i.e. the eigenvalue equation is

K̂χΛ = �κχΛ, (7.41)

where χΛ denote the eigenfunctions and Λ is a combined index Λ = (κ, µ). Then from eq.
(7.40) follows

�2κ2
+ �2κ = �2l(l + 1) (7.42)

because L̂
2

has eigenvalues �2l(l + 1). This means

κ(κ+ 1) = l(l + 1) (7.43)

which implies the two solutions κ = l or κ = −(l + 1). The next step is to link these two
solutions to the eigenvalues of the total angular momentum operator Ĵ. First we note

Ĵ
2

− L̂
2

− Ŝ
2

=

�
L̂ + Ŝ

�2

− L̂
2

− Ŝ
2

= L̂Ŝ + ŜL̂ eq. (7.23)
= 2ŜL̂. (7.44)

Hence
σL̂ eq. (7.10)

=
2

� ŜL̂ =
1

�

�
Ĵ
2

− L̂
2

− Ŝ
2
�
. (7.45)

Inserting this into the definition of the spin-orbit operator yields

K̂ = −

�
�+ σL̂

�
= −

�
�+

1

�

�
Ĵ
2

− L̂
2

− Ŝ
2
��

. (7.46)

For its eigenvalues follows therefore

�κ = − (�+ �j(j + 1)− �l(l + 1)− �s(s+ 1)) . (7.47)

As for electrons the spin eigenvalue is s =
1

2
, it can further be simplified to

κ = −

�
j(j + 1)− l(l + 1) +

1

4

�
. (7.48)
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Inserting κ = l, the first solution we found for κ, into this equation yields j = l − 1/2. If
the second solution κ = −(l+ 1) is inserted, the relation j = l+ 1/2 is obtained. Therefore
we get the final result for the eigenvalues of K̂:

κ =

�
l, if j = l −

1

2

−l − 1, if j = l +
1

2
.

(7.49)

7.5 Spin Spherical Harmonics

This section introduces the so-called spin spherical harmonics, which are the eigenfunctions
of the spin-orbit operator K̂. Furthermore, the angular momentum expansion in different
basis sets is discussed, namely in the (l,ml,ms)-basis and the (κ, µ)-basis.

The definition of the spin spherical harmonics can be found in e.g. [69], [72] or [74], here
they will be defined in 7.60.

A quantum state in the non-relativistic case is fully specified by the quantum numbers l

and m, or by the combined index L = (l,m). l(l + 1) is the value of the squared orbital
angular momentum vector L2 and m is its z-component. We can denote the state in Dirac
notation as |l,m�.

In the relativistic case a further angular momentum occurs, the spin angular momentum s.
Since it is always s = 1/2, there is only one additional degree of freedom, the z-component
of the spin, which is determined by ms = ±1/2. To avoid confusion, we will rename m to
ml in the relativistic case. Thus a state is now characterised by four quantum numbers:
|l,ml, s,ms�, out of which one is fixed (s = 1/2). This state can be written as the product
of the orbital angular momentum state and the spin angular momentum state:

|l,ml, s,ms� = |l,ml� ⊗ |s,ms� . (7.50)

This product in an explicit representation is the product of (scalar) spherical harmonics
Yl,ml

with spinors φms :

|l,ml, s,ms� = Yl,ml
(r̂)φms (7.51)

where the spinors are given by

φ 1
2
=

�
1

0

�
, φ− 1

2
=

�
0

1

�
. (7.52)

The number of states up to a maximal l-value lcut is given by

number of states = 2 · (lcut + 1)
2
. (7.53)

Table 7.2a shows the 32 (= 2 · (3 + 1
2
)) possible states up to lcut = 3.

For a given orbital angular momentum L and a given spin S the total angular momentum
is defined by

J = L + S. (7.54)
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One can calculate that the z-components of L̂ and Ŝ , given by the operators L̂z and Ŝz with
eigenvalues ml and ms, are no longer “good” quantum numbers in the case of this spin-orbit
coupling, in the sense that these operators do not commute with the Dirac Hamiltonian
ĤD. However the z-component of the combined angular momentum, given by the operator
Ĵz = L̂z + Ŝz, does commute with ĤD. The eigenvalue of Ĵz is denoted by µ, and obviously
it is

µ := mj = ml +ms = ml ±
1

2
. (7.55)

As an alternative to using the quantum numbers defining a state as |l,ml, s,ms�, one can
also define a state |j, l, s, µ�. This defines a different basis (the (κ,µ)-basis, as we will
see later on). To go from one representation to the other, one has to calculate a linear
combination of the states with suitable coefficients. Going from (l,ml, s,ms)-representation
to (j, l, s, µ)-representation, it has the form:

|j, l, s, µ� =

�

ms=± 1
2

C(j, µ, l, s|ml,ms) |l,ml, s,ms� . (7.56)

As only values for µ = ml + ms are allowed, the coefficients have to vanish for any other
combination.
Now it turns out, that the eigenvalue κ of the spin-orbit operator K̂, contains exactly the
same information as j and l together. That means if κ is given, j and l can be calculated
from it21

j = l −
1

2
sign(κ) = l ±

1

2
(7.57)

l =

�
κ, if j = l −

1

2
⇔ κ > 0

−κ− 1, if j = l +
1

2
⇔ κ < 0,

(7.58)

and on the other hand, if j and l are given, κ can be calculated:

κ =

�
l, if j = l −

1

2

−l − 1, if j = l +
1

2
.

(7.59)

Thus it is completely equivalent to use the notation |j, l, s, µ� or |κ, s, µ�. As it is always
s = 1/2 this quantum number is usually omitted, and the states are named |j, l, µ� or |κ, µ�
in the case of the total angular momentum basis or |l,ml,ms� for the former basis. The
total angular momentum representation is normally called the (κ, µ)-representation. The
following table shows how to calculate within this representation:
l j = l ± 1/2 κ

0 1/2 -1
1 1/2 1

3/2 -2
2 3/2 2

5/2 -3
3 5/2 3

7/2 -4
21Note that the expression j = l ±

1
2 here means j = l + s, where s = ±

1
2 . It is not equal to l +ms.
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Now we need an explicit expression for the basis functions |κ, µ�. Equation (7.56) already
gives a definition, and in an explicit notation it is

χΛ(r̂) =

�

ms=±1/2

C(l, j,
1

2
|µ−ms,ms)Yl,µ−ms(r̂)φms (7.60)

where Λ = (κ, µ) = (j, l, µ) is the combined index for the relativistic quantum numbers.
These functions are called spin spherical harmonics. The coefficients C that occur here are
called Clebsch-Gordan coefficients and are given by:
C(l, j,

1

2
|ml,ms) ms = 1/2 ms = −1/2

j = l + 1/2

�
l+µ+

1
2

2l+1

�
l−µ+

1
2

2l+1

j = l − 1/2 -
�

l−µ+
1
2

2l+1

�
l+µ+

1
2

2l+1

Clebsch-Gordan coefficients are always needed when adding angular momenta. For details
on how to calculate them see e.g. [64] or [72].
Furthermore one defines

Λ = : (−κ, µ) (7.61)

l =

�
κ− 1 if κ > 0

−κ if κ < 0
(7.62)

and

χ
Λ
(r̂) =

�

ms=±1/2

C(l, j,
1

2
|µ−ms,ms)Yl,µ−ms

(r̂)φms . (7.63)

One can show that the spin spherical harmonics are the eigenfunctions of the spin-orbit
operator:

K̂χΛ(r̂) = �κχΛ(r̂). (7.64)
K̂χ

Λ
(r̂) = −�κχ

Λ
(r̂). (7.65)

For a given quantum number j the quantum number µ fulfils

|l − s| ≤ µ ≤ l + s (7.66)

where s = 1/2. The number of states up to a certain value of l is the same in the (κ, µ)-basis
as it was in the (l,ml,ms)-basis, given by eq. (7.53). An explicit overview of the allowed
values up to lcut = 3 is given in table 7.2b.
The Clebsch-Gordan coefficients fulfil the following orthonormality properties (see e.g. [49]
section 2.10):

�

j

C(l, j,
1

2
|µ−ms,ms)C(l, j,

1

2
|µ

�
−m

�
s
,m

�
s
) = δmsm

�
s
δµµ� (7.67)

�

ms

C(l, j,
1

2
|µ−ms,ms)C(l, j

�
,
1

2
|µ−ms,ms) = δjj� . (7.68)
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Table 7.1: An overview of the explicit expressions for the first ten spin spherical harmonics.

index l j µ κ χΛ(θ,φ)

1 0 1/2 -1/2 -1
�

0

Y0,0(r̂)

�
=

�
0�
1

4π

�

2 1/2 1/2 -1
�

Y0,0(r̂)
0

�
=

� �
1

4π

�

3 1 1/2 -1/2 1





�
1

3
Y1,0(r̂)

−

�
2

3
Y1,−1(r̂)



 =





�
1

4π
cos(θ)

−

�
1

4π
sin(θ)e−iφ





4 1/2 1/2 1



 −

�
1

3
Y1,0(r̂)�

2

3
Y1,1(r̂)



 =



 −

�
1

4π
cos(θ)

−

�
1

4π
sin(θ)eiφ





5 3/2 -3/2 -2
�

0

Y1,−1(r̂)

�
=

�
0�

3

8π
sin(θ)e−iφ

�

6 3/2 -1/2 -2





�
1

3
Y1,−1(r̂)�
2

3
Y1,0(r̂)



 =





�
1

8π
sin(θ)e−iφ

�
1

2π
cos(θ)





7 3/2 1/2 -2





�
2

3
Y1,0(r̂)�

1

3
Y1,1(r̂)



 =





�
1

2π
cos(θ)

−

�
1

8π
sin(θ)eiφ





8 3/2 3/2 -2
�

Y1,1(r̂)
0

�
=

�
−

�
3

8π
sin(θ)eiφ

0

�

9 2 3/2 -3/2 2



 −

�
4

5
Y2,−2(r̂)�

1

5
Y2,−1(r̂)



 =



 −

�
3

8π
sin

2
(θ)e−2iφ

�
3

8π
sin(θ) cos(θ)e−iφ





10 3/2 -1/2 2



 −

�
3

5
Y2,−1(r̂)�

2

5
Y2,0(r̂)



 =



 −

�
9

8π
sin(θ) cos(θ)e−iφ

�
1

8π
(3 cos

2
(θ)− 1)





...
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Table 7.2: Allowed sets of quantum numbers in the different basis sets. Note that one state in

the (κ, µ)-basis has no direct relation to a state in the (l,ml,ms)-basis, but is given by a linear

combination of these states. However, the number of states up to a certain cutoff value lcut is the

same in both representations. Also the maximal index (2, 8, 18, 32, 50, 72, ...) corresponding to

the cutoff-value lcut and given by 2 · (lcut + 1)2, does not change.

(a) Different quantum states
|l,ml, s,ms� in the (l,ml,ms)-
basis.

index l ml ms

1 0 0 -1/2
2 +1/2
3 1 -1 -1/2
4 +1/2
5 0 -1/2
6 +1/2
7 1 -1/2
8 +1/2
9 2 -2 -1/2
10 +1/2
11 -1 -1/2
12 +1/2
13 0 -1/2
14 +1/2
15 1 -1/2
16 +1/2
17 2 -1/2
18 +1/2
19 3 -3 -1/2
20 +1/2
21 -2 -1/2
22 +1/2
23 -1 -1/2
24 +1/2
25 0 -1/2
26 +1/2
27 1 -1/2
28 +1/2
29 2 -1/2
30 +1/2
31 3 -1/2
32 +1/2

(b) Different quantum states |j, l, s, µ� in the (κ, µ)-
basis. The left and right part of this table are equiva-
lent, that means it is equivalent to use κ and µ or to
use l, j and µ.

index l j µ κ µ orbital
1 0 1/2 -1/2 -1 -1/2 s1/2

2 1/2 1/2 -1 1/2
3 1 1/2 -1/2 1 -1/2 p1/2

4 1/2 1/2 1 1/2
5 3/2 -3/2 -2 -3/2 p3/2

6 3/2 -1/2 -2 -1/2
7 3/2 1/2 -2 1/2
8 3/2 3/2 -2 3/2
9 2 3/2 -3/2 2 -3/2 d3/2

10 3/2 -1/2 2 -1/2
11 3/2 1/2 2 1/2
12 3/2 3/2 2 3/2
13 5/2 -5/2 -3 -5/2 d5/2

14 5/2 -3/2 -3 -3/2
15 5/2 -1/2 -3 -1/2
16 5/2 1/2 -3 1/2
17 5/2 3/2 -3 3/2
18 5/2 5/2 -3 5/2
19 3 5/2 -5/2 3 -5/2 f5/2

20 5/2 -3/2 3 -3/2
21 5/2 -1/2 3 -1/2
22 5/2 1/2 3 1/2
23 5/2 3/2 3 3/2
24 5/2 5/2 3 5/2
25 7/2 -7/2 -4 -7/2 f7/2

26 7/2 -5/2 -4 -5/2
27 7/2 -3/2 -4 -3/2
28 7/2 -1/2 -4 -1/2
29 7/2 1/2 -4 1/2
30 7/2 3/2 -4 3/2
31 7/2 5/2 -4 5/2
32 7/2 7/2 -4 7/2
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The spinors fulfil

φ 1
2
φ
†
1
2

=

�
1

0

��
1 0

�
=

�
1 0

0 0

�
(7.69)

φ− 1
2
φ
†
− 1

2

=

�
0

1

��
0 1

�
=

�
0 0

0 1

�
(7.70)

and thus also �

ms=± 1
2

φmsφ
†
ms

= φ 1
2
φ
†
1
2

+ φ− 1
2
φ
†
− 1

2

= I2. (7.71)

Furthermore they fulfil the orthonormality relation

φ
†
ms

φm�
s
= δmsm

�
s
. (7.72)

From these relations also follows the orthonormality of the spin spherical harmonics:
ˆ

dr̂χ†
Λ�(r̂)χΛ(r̂) = δΛΛ�

ˆ
dr̂χ†

Λ
�(r̂)χΛ(r̂) = δ

ΛΛ
� (7.73)

ˆ
dr̂χ†

Λ�(r̂)χΛ
(r̂) = δ

ΛΛ� .

Another issue of importance is to transform between spin spherical harmonics expansions
and spherical harmonics expansions. This can be done using the following formula:

I2

�

m

Yl,m(r̂)Y ∗
l,m

(r̂�) =
�

j,µ

χΛ(r̂)χ†
Λ
(r̂�). (7.74)

To verify its correctness start off the right hand side and insert the definition (7.60):

�

j,µ

χΛ(r̂)χ†
Λ
(r̂�) =

�

j,µ

�

ms,m
�
s

C(l, j,
1

2
|µ−ms,ms)C

∗
(l, j,

1

2
|µ−m

�
s
,m

�
s
)

·Yl,µ−ms(r̂)Y ∗
l,µ−m�

s
(r̂�)φmsφ

†
m�

s

=

�

µ

�

ms,m
�
s

�
�

j

C(l, j,
1

2
|µ−ms,ms)C

∗
(l, j,

1

2
|µ−m

�
s
,m

�
s
)

�

·

�
Yl,µ−ms(r̂)Y ∗

l,µ−m�
s
(r̂�)φmsφ

†
m�

s

�

eq. (7.67)

=

�

µ

�

ms,m
�
s

δmsm
�
s
δµµ�

�
Yl,µ−ms(r̂)Y ∗

l,µ−m�
s
(r̂�)φmsφ

†
m�

s

�

eq. (7.55)

=

�

ml

�

ms=± 1
2

Yl,ml
(r̂)Y ∗

l,ml
(r̂�)φmsφ

†
ms

eq. (7.71),m=ml
= I2

�

m

Yl,m(r̂)Y ∗
l,m

(r̂�).



8 The Free Dirac Particle

A relativistic electron in free space is described by the potential-free Dirac equation.
The solution of this equation is given by Dirac plane waves. After separating the
radial and angular parts, one obtains spin spherical harmonics (discussed in the pre-
vious chapter) as the angular parts. To obtain the radial parts, the Bessel differential
equation is solved, yielding Bessel, Hankel and Neumann functions.

8.1 Solution of the Free Dirac Equation: Dirac Plane Waves

In analogy to plane waves as the solution of the Schrödinger equation, one can calculate the
solution of the Dirac Hamiltonian without a potential

Ĥ0 = cαp̂ + βmc
2
. (8.1)

The solutions of the time dependent Dirac equation (6.1) are assumed to be of the form

Ψ(r, t) =
�

χ

ϕ

�
ei(kr−W

� t)
= ψ(r)e−

i
�Wt (8.2)

where ψ(r) is the solution of the stationary equation, given by

ψ(r) =
�

χ

ϕ

�
eikr

= Ueikr
. (8.3)

Here χ and ϕ a two-spinors that are called the large and small component of the double-
spinor U .

Before moving on, first note that
p̂eikr

= �keikr (8.4)

as it can easily be verified by applying the operator p̂ on the exponential function.

Inserting the form assumed for the solution ψ into the stationary Dirac equation (6.5) and
using the relation above yields the equation

c�
�

0 σ
σ 0

��
χ

ϕ

�
keikr

+mc
2

�
I2 0

0 −I2

��
χ

ϕ

�
eikr

= W

�
χ

ϕ

�
eikr (8.5)

which can be rewritten into a system of two equations:
�
W −mc

2
�
χ− c�σkϕ = 0 (8.6)�

W +mc
2
�
ϕ− c�σkχ = 0. (8.7)

For non-trivial solutions of this equation system its coefficient matrix must have a vanishing
determinant: �

W −mc
2
� �

W +mc
2
�
− c

2�2 (σk) (σk) = 0. (8.8)
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From the property (7.20) of Pauli matrices and commuting operators one can conclude

(σk) (σk) = k
2
, (8.9)

which, inserted into (8.8), yields

W
2

= c
2�2k2

+m
2
c
4
. (8.10)

Furthermore, from (8.7) follows the relationship

ϕ =
c�σk

W +mc2
χ (8.11)

between the large and the small component.

The basis vectors χ can be any two linearly independent vectors. Commonly, they are
chosen as the eigenvectors of σz, which correspond to the states “spin up” (ms = +1/2) and
“spin down” (ms = −1/2):

φ 1
2
=

�
1

0

�
, φ− 1

2
=

�
0

1

�
. (8.12)

ms determines the z-component of the spin angular momentum s and is given by

ms = ±s (8.13)

where s = 1/2.

Using these results, the double-spinor U can be written as

U = Ums =

�
W +mc

2

2W

� 1
2
�

φms
c�σk

W+mc2
φms

�
, (8.14)

where the normalisation constant is determined by the condition U
2

ms
= 1, using equations

(8.9) and (8.10). Thus we can write:

The stationary right-hand side solutions of the free particle Dirac equation are:

ψkms(r) =
�
W +mc

2

2W

� 1
2
�

φms
c�σk

W+mc2
φms

�
eikr (8.15)

where
W

2
= c

2�2k2
+m

2
c
4 (8.16)

and
φ 1

2
=

�
1

0

�
, φ− 1

2
=

�
0

1

�
. (8.17)

These solutions, as already mentioned above, are called the right-hand side solutions of the
Dirac equation. They are two-spinor column vectors, i.e. of dimension 4× 1, and solve the
equation �

Ĥ
0
−W

�
ψkms(r) = 0. (8.18)
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One can, however, also consider an equation of the form

ψkms
(r)

�
Ĥ

0
−W

�
= 0, (8.19)

where ψkms
is a row vector, i.e. it has dimension 1 × 4 , and the operator Ĥ

0 acts to the
left. The solution of this equation is called the left-hand side solution.

8.2 Solution of the Free Dirac Equation for Separated Radial and
Angular Parts

The previous section showed how to express the solution of the free Dirac equation in a basis
set of Dirac plane waves. This section, in contrast, uses the representation eq. (7.36) of the
Dirac equation to derive the solutions in a different basis set according to the eigenvalues
Λ = (κ, µ) of the spin-orbit operator and the angular momentum operator.

Before actually starting, we consider how the different parts in equation (7.36) act on the
spin spherical harmonics χΛ. We already saw in section 7.5 how the spin-orbit operator K̂

acts on them. However, we have not yet looked on how σr acts on them. It is a few lines of
calculus (cf. [49] p. 59) to show that

− σrK̂ = K̂σr. (8.20)

As K̂χΛ = �κχΛ after eq. (7.64), this implies

K̂ (−σrχΛ) = −�κ (−σrχΛ) . (8.21)

Thus −σrχΛ must be an eigenfunction of K̂. On the other hand we know that −�κ is the
eigenvalue corresponding to the eigenfunction χ

Λ
, where Λ = (−κ, µ):

K̂χ
Λ
= −�κχ

Λ
. (8.22)

Comparing the two equations it follows that:

− σrχΛ = χ
Λ

(8.23)
−σrχΛ

= χΛ. (8.24)

Now we come back to the original problem of solving the stationary Dirac equation with the
Hamiltonian given in eq. (7.36). The first step is to assume the solution is a wave function
of the following form:

ψ(r) = ψΛ(r) =
�

ψ
t
(r)χΛ(r̂)

iψ
b
(r)χ

Λ
(r̂)

�
. (8.25)

Inserting this into the Dirac equation yields:

−icσr

�
� ∂

∂r
+ �1

r
+

K̂

r

��
iψ

b
(r)χ

Λ
(r̂)

ψ
t
(r)χΛ(r̂)

�
+mc

2

�
ψ

t
(r)χΛ(r̂)

−iψ
b
(r)χ

Λ
(r̂)

�
= W

�
ψ

t
(r)χΛ(r̂)

iψ
b
(r)χ

Λ
(r̂)

�

(8.26)
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This can be regarded as a system of two equations. Using K̂χΛ = �κχΛ and K̂χ
Λ
= −�κχ

Λ
,

we obtain

cσr�
�

∂

∂r
+

1

r
−

κ

r

�
ψ

b
(r)χ

Λ
(r̂) +mc

2
ψ

t
(r)χΛ(r̂) = Wψ

t
(r)χΛ(r̂) (8.27)

−icσr�
�

∂

∂r
+

1

r
+

κ

r

�
ψ

t
(r)χΛ(r̂)− imc

2
ψ

b
(r)χ

Λ
(r̂) = iWψ

b
(r)χ

Λ
(r̂).

Applying equations (8.23) and (8.24) this is rewritten as

− c�
�

∂

∂r
+

1

r
−

κ

r

�
ψ

b
(r)χΛ(r̂) +mc

2
ψ

t
(r)χΛ(r̂) = Wψ

t
(r)χΛ(r̂) (8.28)

c�
�

∂

∂r
+

1

r
+

κ

r

�
ψ

t
(r)χ

Λ
(r̂)−mc

2
ψ

b
(r)χ

Λ
(r̂) = Wψ

b
(r)χ

Λ
(r̂),

which can be written in the form

c� ∂

∂r
ψ

b
(r) = −c�1− κ

r
ψ

b
(r)−

�
W −mc

2
�
ψ

t
(r) (8.29)

c� ∂

∂r
ψ

t
(r) = −c�1 + κ

r
ψ

t
(r) +

�
W +mc

2
�
ψ

b
(r).

At this point the choice of the form assumed for the solution in the beginning becomes
plausible: inserting the i in the second component eventually yields two real (i.e. non-
complex) equations.

The next step is to make the substitutions

u1(r) := rψ
t
(r), u2(r) := rψ

b
(r), (8.30)

yielding the equations

c� ∂

∂r

�
1

r
u2(r)

�
= −c�1− κ

r2
u2(r)−

(W −mc
2
)

r
u1(r) (8.31)

c� ∂

∂r

�
1

r
u1(r)

�
= −c�1 + κ

r2
u1(r) +

(W +mc
2
)

r
u2(r).

After multiplying both equations by r and computing the differentiations, the second order
differential terms cancel out, leaving the equations

∂

∂r
u2(r) =

κ

r
u2(r)−

1

c�
�
W −mc

2
�
u1(r) (8.32)

∂

∂r
u1(r) = −

κ

r
u1(r) +

1

c�
�
W +mc

2
�
u2(r).

This system of two linear first order differential equations can be rewritten into one second
order equation. To do so, the second equation of (8.32) is rearranged:

u2(r) =
c�

W +mc2

�
∂

∂r
u1(r) +

κ

r
u1(r)

�
. (8.33)
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The obtained expression for u2 is then inserted into the first equation:

c�
W +mc2

∂

∂r

�
∂

∂r
u1(r) +

κ

r
u1(r)

�
=

c�
W +mc2

κ

r

�
∂

∂r
u1(r) +

κ

r
u1(r)

�
−

W −mc
2

c� u1(r).

(8.34)

After computing the differentiation, this equation can be simplified to

∂
2

∂r2
u1(r)−

κ+ κ
2

r2
u1(r) +

W
2 −m

2
c
4

c2�2 u1(r) = 0. (8.35)

Inserting the relation (8.10) and multiplying the whole equation by r
2 it can be rewritten

as

r
2
∂
2

∂r2
u1(r) +

�
(kr)

2
− κ (κ+ 1)

�
u1(r) = 0. (8.36)

Resubstituting u1 = rψ
t and u2 = rψ

b yields

r
2
∂
2

∂r2
rψ

t
(r) +

�
(kr)

2
− κ (κ+ 1)

�
rψ

t
(r) = 0 (8.37)

⇐⇒ r
2
∂
2

∂r2
ψ

t
(r) + 2r

∂

∂r
ψ

t
(r) +

�
(kr)

2
− κ (κ+ 1)

�
ψ

t
(r) = 0, (8.38)

where r �= 0 is required to divide the equation by r.

Equation (8.38) is known as the Bessel differential equation, cf. the digression on page 28.
Its solutions are given by jl(kr) and nl(kr) and all linear combinations of these two functions.
Here jl denote spherical Bessel functions and nl are spherical Neumann functions. The latter
can be defined using spherical Hankel functions hl and the relation hl = jl + inl, cf. the
digression on page 27. The spherical Bessel functions jl(kr) are regular, i.e. jl(kr) → 0 as
r → 0, whereas nl(kr) are irregular, i.e. they diverge. Consequently, they are called the
regular and irregular solution respectively.

After the solution for ψ
t is known, the second component ψ

b can be calculated by using
equation (8.33):

u2(r) =
c�

W +mc2

�
∂

∂r
u1(r) +

κ

r
u1(r)

�
(8.39)

⇐⇒ rψ
b
(r) =

c�
W +mc2

�
∂

∂r
+

κ

r

�
rψ

t
(r) (8.40)

⇐⇒ ψ
b
(r) =

c�
W +mc2

1

r

�
∂

∂r
+

κ

r

�
rwl(kr). (8.41)

Here wl = jl for the regular solution or wl = nl for the irregular solution. In both cases,
and also for wl = hl, the differentiation can be expressed by a recursion relation:

d

dr
wl(kr) = kwl−1(kr)−

l + 1

r
wl(kr) (8.42)

=
l

r
wl(kr)− kwl+1(kr) (8.43)
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Using equations (7.58) and (7.62), it follows that

l =

�
l − 1 if κ > 0

l + 1 if κ < 0.
(8.44)

Now, in the case κ > 0 it is convenient to work with eq. (8.42). Using eq. (7.58) it follows
that l = κ, and the recursion can be written as

d

dr
wl(kr) = kw

l
(kr)−

κ+ 1

r
wl(kr). (8.45)

On the other hand, in the case κ < 0 it is convenient to work with eq. (8.43) and from
(7.58) it follows that l = −κ− 1. Hence, this recursion can be written as

d

dr
wl(kr) = −

κ+ 1

r
wl(kr)− kw

l
(kr). (8.46)

Comparing that to the first case κ > 0, one notes that the two cases only differ by a sign.
Therefore, an expression valid for both cases is

d

dr
wl(kr) = sign(κ)kw

l
(kr)−

κ+ 1

r
wl(kr). (8.47)

This recursion relation is now inserted into eq. (8.41):

ψ
b
(r) =

c�
W +mc2

1

r

�
∂

∂r
+

κ

r

�
rwl(kr)

=
c�

W +mc2

�
κ+ 1

r
wl(kr) +

∂

∂r
wl(kr)

�

=
c�

W +mc2

�
κ+ 1

r
wl(kr) + sign(κ)kw

l
(kr)−

κ+ 1

r
wl(kr)

�

=
c�

W +mc2
k sign(κ)w

l
(kr) (8.48)

Replacing wl by jl and nl respectively yields the final result for the regular and irregular
right-hand side solution of the free particle Dirac equation in angular momentum basis:

ψ
reg
Λ

(r) : = JΛ(r) :=
�

jl(kr)χΛ(r̂)
ikc�·sign(κ)
W+mc2

j
l
(kr)χ

Λ
(r̂)

�
(8.49)

ψ
irr
Λ
(r) : = NΛ(r) :=

�
nl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

n
l
(kr)χ

Λ
(r̂)

�
. (8.50)

Now we also wish to calculate the left-hand side solution. This is a simple task. Instead of
the form of the solution in eq. (8.25) we start from

ψΛ(r) =
�

ψ
t

(r)χ
†
Λ
(r̂) −iψ

b

(r)χ
†
Λ
(r̂)

�
. (8.51)
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Performing the same steps as in the previous case eventually results in the equation system
(8.28). Hence

ψ
t

(r) = ψ
t
(r), ψ

b

(r) = ψ
b
(r) (8.52)

and therefore the result is:

ψ
reg
Λ
(r) := JΛ(r) :=

�
jl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

†
Λ
(r̂)

�
(8.53)

ψ
irr
Λ
(r) := NΛ(r) :=

�
nl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

n
l
(kr)χ

†
Λ
(r̂)

�
. (8.54)

As the Hankel functions hl are a linear combination of Bessel and Neumann functions, it is
also possible to use a basis of Bessel and Hankel functions instead22:

An alternative basis for the left-hand side solution of the free particle Dirac equation in an
angular momentum basis is given by

JΛ(r) :=

�
jl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

Λ
(r̂)

�
(8.55)

HΛ(r) :=

�
nl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

n
l
(kr)χ

Λ
(r̂)

�
. (8.56)

JΛ(r) :=

�
jl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

†
Λ
(r̂)

�
(8.57)

HΛ(r) :=

�
hl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

h
l
(kr)χ

†
Λ
(r̂)

�
. (8.58)

This representation is the one that will be used from now on.

8.3 Angular Momentum Expansion of a Dirac Plane Wave

The Dirac plane waves from section 8.1 can be expanded in an angular momentum rep-
resentation using the results from section 8.2. This is useful in order to express them in
terms of spin spherical harmonics χΛ, which are eigenfunctions of the spin-orbit operator,
rather than in terms of spinors φms . Once the results for the Dirac plane waves have been
obtained, these results can further be used to derive an angular momentum expansion of
the free particle Green function.
We start with the expression for the plane wave, eq. (8.15):

ψkms(r) =
�
W +mc

2

2W

� 1
2
�

φms
c�σk

W+mc2
φms

�
eikr

. (8.59)

The strategy is to write the term φmseikr as

φmseikr
=

�

Λ

aΛjl(kr)χΛ(r̂) (8.60)

22This is a convention in the Jülich KKR group, the representation with Neumann functions, however,
can equally well be used.
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and determine the coefficients aΛ fulfilling this relation. To do so, the equation is multiplied
by χ

†
Λ

and then we integrate over r̂:
ˆ

dr̂χ†
Λ
(r̂)φmseikr

=

�

Λ�

�ˆ
dr̂χ†

Λ
(r̂)χΛ�(r̂)

�
aΛ�jl�(kr). (8.61)

Using the orthonormality of the spin spherical harmonics, eq. (7.73), the term in square
brackets simplifies to δΛΛ� , thus yielding the expressionˆ

dr̂χ†
Λ
(r̂)φmseikr

= aΛjl(kr). (8.62)

Using the definition of the spin spherical harmonics eq. (7.60), χ†
Λ

can be rewritten as

χ
†
Λ
(r̂) =

�

ms=±1/2

C(l, j,
1

2
|µ−ms,ms)Y

∗
l,µ−ms

(r̂)φ†
ms

. (8.63)

Inserting this into eq. (8.62) gives

aΛjl(kr) =

�

m�
s=±1/2

C(l, j,
1

2
|µ−m

�
s
,m

�
s
)

ˆ
dr̂Y ∗

l,µ−m�
s
(r̂)eikr

φ
†
m�

s
φms� �� �

δm�
sms

= C(l, j,
1

2
|µ−ms,ms)

ˆ
dr̂Y ∗

l,µ−ms
(r̂)eikr

, (8.64)

where in the second step the orthonormality of the spinors φms has been used.
For the term eikr we already know an expansion from eq. (4.16):

e
ikr

= 4π

�

L

i
l
Y

∗
L
(k̂)YL(r̂)jl(kr). (8.65)

Inserting this into eq. (8.64) yields

aΛjl(kr) = 4π

�

l�,m�

i
l
�
jl�(kr)C(l, j,

1

2
|µ−ms,ms)Y

∗
l�,m�(k̂)

ˆ
dr̂Y ∗

l,µ−ms
(r̂)Yl�,m�(r̂)

� �� �
δl�,lδm�,µ−ms

= 4πi
l
jl(kr)C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂) (8.66)

Hence
aΛ = 4πi

l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂). (8.67)

This can be inserted into eq. (8.60), yielding

φmseikr
=

�

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)jl(kr)χΛ(r̂). (8.68)

So far we found an expansion for the first component of the Dirac plane wave. The next
step is to find an expansion for the second component, i.e. for the term (σk)φmseikr. Since
φms is a constant two-component vector, it is a simple consequence of eq. (8.4) that

� (σk)φmseikr
= (σp̂)φmseikr

. (8.69)
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Using eq. (7.34) we can write it as

(σp̂)φmseikr
= −iσr

�
� ∂

∂r
+

�
r
+

K̂

r

�
φmseikr

. (8.70)

In order to obtain an expansion like eq. (8.68), the question is how the σp̂ operator acts
on jl(kr)χΛ(r̂). We know

σp̂jl(kr)χΛ(r̂) = −iσr

�
� ∂

∂r
+

�
r
+

K̂

r

�
jl(kr)χΛ(r̂) (8.71)

and want to find the eigenvalues of this operator. Thus, let us look at the different parts of
this expression:

• By using eq. (8.47) we know that

� ∂

∂r
jl(kr)χΛ(r̂) = �

�
sign(κ)kj

l
(kr)−

κ+ 1

r
jl(kr)

�
χΛ(r̂). (8.72)

• K̂ acts only on the spherical part of a function, as it can be expressed in terms of the
angular momentum operator L̂, which only contains angular derivatives in spherical
coordinates. Hence we get

K̂

r
jl(kr)χΛ(r̂) =

1

r
jl(kr)K̂χΛ(r̂)

=
�κ
r
jl(kr)χΛ(r̂). (8.73)

Inserting these two results yields

σp̂jl(kr)χΛ(r̂) = −iσr�
�
sign(κ)kj

l
(kr)−

κ+ 1

r
jl(kr) +

1

r
jl(kr) +

κ

r
jl(kr)

�
χΛ(r̂)

= −iσr� (sign(κ)kjl(kr))χΛ(r̂). (8.74)

Applying eq. (8.23) this becomes

σp̂jl(kr)χΛ(r̂) = i�ksign(κ) · j
l
(kr)χ

Λ
(r̂). (8.75)

Now we can rewrite the expression for the plane wave:

ψkms(r) =

�
W +mc

2

2W

� 1
2
�

φms
c�σk

W+mc2
φms

�
eikr (8.76)

Gl. (8.68)

=

�
W +mc

2

2W

� 1
2 �

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)

·

�
jl(kr)χΛ(r̂)

c�σk
W+mc2

φmsjl(kr)χΛ(r̂)

�

Gl. (8.75)

=

�
W +mc

2

2W

� 1
2 �

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)

·

�
jl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

Λ
(r̂)

�
.
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By using the definition eq. (8.55) of the functions JΛ, this simplifies to the final result:

Angular momentum expansion of a Dirac plane wave:

ψkms(r) =
�
W +mc

2

2W

� 1
2 �

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)JΛ(r). (8.77)



9 Free Particle Green Function

The Green function of the free particle is vital for setting up Lippmann-Schwinger
equations. It is a 4 × 4 matrix that can be expressed in terms of the solutions of
the free Dirac equation, namely spinors containing Bessel and Hankel functions (the
radial part) multiplied by spin spherical harmonics (the angular part).

9.1 Derivation

We have seen in chapter 4 how the Green function of the potential free Schrödinger equation
is derived. This expression will be useful when deriving the Green function of the Dirac
equation, which will be derived now.

Starting point, of course, is the free particle Dirac Hamiltonian Ĥ0 as defined in eq. (8.1).
For the stationary Dirac equation of the free electron

Ĥ0ψ(r) = W I4ψ(r) (9.1)

the corresponding Green function is defined by
�
Ĥ0 −W I4

�
G

0
(r, r�;W ) = −δ(r − r�)I4. (9.2)

What will be shown in this section is the following proposition:

Once the non-relativistic free particle Green function G
0

nr
is known, the relativistic one can

be constructed from it by

G
0
(r, r�,W ) =

1

2mc2

�
Ĥ0 +W I4

�
G

0

nr
(r, r�;E) (9.3)

eq. (4.15) and (8.1)

= −
1

c2�2
�
cαp̂ + βmc

2
+W I4

� e
ik|r−r�|

4π|r − r�|
. (9.4)

Proof: To verify the statement let us first look at the following identity:
�
Ĥ0 −W I4

��
Ĥ0 +W I4

�
= Ĥ

2

0
−W

2
I4 (9.5)

= c
2
(αp̂)2 +mc

3
(αp̂β + βαp̂) +m

2
c
4
β
2
−W

2
I4.

We will simplify this term by term:

• Eq. (8.9), together with eq. (8.4), yields:

c
2
(αp̂)2 = c

2p̂2
= c

2
(−i�∇)

2
= −c

2�2∆. (9.6)
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• It is easy to verify that for any 4× 4 matrix

M =

�
m11 m12

m21 m22

�
, (9.7)

where the matrix elements mij themselves are 2 × 2 matrices, the following identity
holds:

βM +Mβ = 2

�
m11 0

0 −m22

�
. (9.8)

Thus, using expression (7.35) and putting M = αp̂ it follows

αp̂β + βαp̂ = 0. (9.9)

• The β matrix fulfils β
2
= I4.

Using these three identities we conclude
�
Ĥ0 −W I4

��
Ĥ0 +W I4

�
= − c

2�2∆I4 +
�
m

2
c
4
−W

�
I4

= − c
2�2

�
∆+ k

2
�
I4 (9.10)

where in the second step eq. (8.10) has been inserted. Now we use the definition of the
non-relativistic Green function in eq. (4.4) and insert an identity matrix I4 on both sides of
the equation:

�2
2m

�
∆+ k

2
�
I4G

0

nr
(r, r�;E) = I4δ(r − r�). (9.11)

Replacing the term ∆+ k
2 in this equation with the result from eq. (9.10) yields

1

2mc2

�
Ĥ0 −W I4

��
Ĥ0 +W I4

�
G

0

nr
(r, r�;E) = −I4δ(r − r�). (9.12)

Comparing that with the definition of the relativistic Green function G
0 in eq. (9.2) we

obtain the result
G

0
(r, r�;W ) =

1

2mc2

�
Ĥ0 +W I4

�
G

0

nr
(r, r�;E). (9.13)

This completes the proof and forms an efficient way of calculating G
0. Note that G

0 no
longer is a scalar as in the non-relativistic case, but it is now a 4× 4 matrix.

9.2 Angular Momentum Expansion

The step is to find an angular momentum expansion of the free electron Green function.
We recall the corresponding expansion in the non-relativistic case, eq. (4.28):

G
0

nr
(r, r�;E) = −ik

2m

�2
�

L

YL(r̂)Y ∗
L
(r̂�)jl(kr<)hl(kr>). (9.14)

First let us consider the case r > r
�, meaning that this equation reads as

G
0

nr
(r, r�;E) = −ik

2m

�2
�

L

YL(r̂)Y ∗
L
(r̂�)jl(kr�)hl(kr). (9.15)
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In the previous section we derived a way to express the relativistic free particle Green
function in terms of the non-relativistic one, eq. (9.3). Inserting the expression above into
this equation we get

G
0
(r, r�;W ) = −

ik

c2�2
�
Ĥ0 +W I4

��

L

YL(r̂)Y ∗
L
(r̂�)jl(kr�)hl(kr). (9.16)

Now we rewrite the term Ĥ0 +W I4 into a matrix form:

Ĥ0 +W I4 = cαp̂ + βmc
2
+W I4

=

�
0 cσp̂

cσp̂ 0

�
+

�
mc

2
I2 0

0 −mc
2
I2

�
+

�
W I2 0

0 W I2

�

=

�
(W +mc

2
) I2 cσp̂

cσp̂ (W −mc
2
) I2

�
. (9.17)

Inserting this into the equation above we find a convenient form of the Green function G
0

(which is a 4×4 matrix) as a 2×2 matrix where its four entries G0

ij
itself are 2×2 matrices,

too:

G
0
(r, r�;W ) = −

ik

c2�2

�
(W +mc

2
) I2 cσp̂

cσp̂ (W −mc
2
) I2

��

L

YL(r̂)Y ∗
L
(r̂�)jl(kr�)hl(kr)

=:

�
G

0

11
(r, r�;W ) G

0

12
(r, r�;W )

G
0

21
(r, r�;W ) G

0

22
(r, r�;W )

�
(9.18)

Now let us calculate the matrix elements one by one.

1. G
0

11
: As defined above, it is

G
0

11
(r, r�;W ) = −

ik

c2�2
�
W +mc

2
�
I2

�

L

YL(r̂)Y ∗
L
(r̂�)jl(kr�)hl(kr). (9.19)

Using eq. (7.74) we can replace the spherical harmonics by spin spherical harmonics:

G
0

11
(r, r�;W ) = −

ik

c2�2
�
W +mc

2
��

l

�
I2

�

m

Yl,m(r̂)Y ∗
l,m

(r̂�)

�
jl(kr

�
)hl(kr)

= −
ik

c2�2
�
W +mc

2
��

l

�
�

j,µ

χΛ(r̂)χ†
Λ
(r̂�)

�
jl(kr

�
)hl(kr)

= −
ik

c2�2
�
W +mc

2
��

Λ

jl(kr
�
)hl(kr)χΛ(r̂)χ†

Λ
(r̂�) (9.20)

2. G
0

12
: Completely analogously to the first case, we can directly write

G
0

12
(r, r�;W ) = −

ik

c2�2 cσp̂
�

Λ

jl(kr
�
)hl(kr)χΛ(r̂)χ†

Λ
(r̂�). (9.21)

Now, using eq. (8.75) but replacing jl by hl (which is legitimate, because the equation
is valid for wl = jl, hl, nl as it can be seen from its derivation) we have

σp̂hl(kr)χΛ(r̂) = i�ksign(κ) · h
l
(kr)χ

Λ
(r̂). (9.22)
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Inserting this yields for the Green function:

G
0

12
(r, r�;W ) =

k
2

c�
�

sign(κ)Λjl(kr
�
)h

l
(kr)χ

Λ
(r̂)χ†

Λ
(r̂�). (9.23)

For the sake of a simpler notation later on, it is convenient to perform the following
renaming:

κ → −κ.

As the sum includes all values of κ, this does not change anything. Consequences of
this renaming are:

Λ → Λ, Λ → Λ

l → l, l → l

sign(κ) → −sign(κ).

Applying this to eq. (9.23) yields

G
0

12
(r, r�;W ) = −

k
2

c�
�

Λ

sign(κ)j
l
(kr

�
)hl(kr)χΛ(r̂)χ†

Λ
(r̂�). (9.24)

3. G
0

21
: This element is identical to G

0

12
, thus we copy the result from eq. (9.23):

G
0
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(r, r�;W ) =

k
2

c�
�

Λ

sign(κ)jl(kr
�
)h

l
(kr)χ

Λ
(r̂)χ†

Λ
(r̂�) (9.25)

4. G
0

22
: This can be adopted from the first case without any changes, except for one

minus sign instead of a plus:

G
0

22
(r, r�;W ) = −

ik

c2�2
�
W −mc

2
��

Λ

jl(kr
�
)hl(kr)χΛ(r̂)χ†

Λ
(r̂�). (9.26)

Again, for the sake of a simpler notation later on, we rename as in point 2, yielding:

G
0

22
(r, r�;W ) = −

ik

c2�2
�
W −mc

2
��

Λ

j
l
(kr

�
)h
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(kr)χ
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(r̂)χ†

Λ
(r̂�). (9.27)

Combining the results from points 1 to 4 yields: G
0
(r, r�;W ) =
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ik
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 . (9.28)

In the second step the component G0

22
was rewritten using eq. (8.10):

�
W +mc

2
� �

W −mc
2
�
= W

2
−m

2
c
4
= c

2�2k2
. (9.29)
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The matrix can be rewritten into a product of two vectors: G0
(r, r�;W ) =

−
(W +mc

2
)

c2�2 ik

�

Λ

�
hl(kr)χΛ(r̂)

ic�ksign(κ)
W+mc2

h
l
(kr)χ

Λ
(r̂)

��
jl(kr

�
)χ

†
Λ
(r̂�) −

ic�ksign(κ)
W+mc2

j
l
(kr

�
)χ

†
Λ
(r̂�)

�
.

(9.30)

Now recall the definitions in eqs. (8.55) to (8.58):

JΛ(r) : =

�
jl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

Λ
(r̂)

�
(9.31)

HΛ(r) : =

�
hl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

h
l
(kr)χ

Λ
(r̂)

�
(9.32)

JΛ(r) : =

�
jl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

†
Λ
(r̂)

�
(9.33)

HΛ(r) : =

�
hl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

h
l
(kr)χ

†
Λ
(r̂)

�
. (9.34)

Using these functions, the Green function can be written as

G
0
(r, r�;W ) = −

(W +mc
2
)

c2�2 ik

�

Λ

HΛ(r)JΛ(r�) for r > r
�
. (9.35)

For the case r
�
> r analogous calculations yield

G
0
(r, r�;W ) = −

(W +mc
2
)

c2�2 ik

�

Λ

JΛ(r)HΛ(r�) for r > r
�
. (9.36)

So the final result is:

Expansion of the Green function for a free Dirac particle:

G
0
(r, r�;W ) = −ik

(W +mc
2
)

c2�2
�

Λ

�
Θ(r − r

�
)HΛ(r)JΛ(r�) +Θ(r

�
− r)JΛ(r)HΛ(r�)

�
(9.37)
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This chapter contains the most important analytical work of this thesis: the deriva-
tion of an expansion of the potential matrix into a radial and an angular part and,
thereafter, such a separation for the relativistic Lippmann-Schwinger equations in-
cluding a full potential. Within the derivation I introduce what I call D coefficients.
They form the relativistic analogue to the Gaunt coefficients in the non-relativistic
case. The analytical results found form the basis of the Dirac single-site solver that
I implemented.

10.1 Derivation

The derivation of the relativistic version of the Lippmann-Schwinger equation is for the most
part analogous to the non-relativistic case. The only noteworthy difference is that there are
now two equations instead of one – one for the right-hand side solution and another one for
the left-hand side solution.
The analogues of eq. (5.1) are the two equations for the particular solutions:

ψ
partc

(r) = L
−1
V (r)ψ(r) =

ˆ
dr�G0

(r, r�;W )V (r�)ψ(r�) (10.1)

ψ
partc

(r) = ψ(r)
�
L
−1
V (r)

�t
=

ˆ
dr�ψ(r�)V (r�)G0

(r�, r;W ) (10.2)

where ψ and ψ
partc are 4 × 1 column vectors whereas ψ and ψ

partc are 1 × 4 row vectors.
Note that the differential operator L as well as the potential V are 4×4 matrices. t denotes
the transpose.
The general solutions ψ, ψ of the inhomogeneous equation system are given by the sum of
one particular solutions ψ

partc, ψpartc plus the set of solutions of the homogeneous system,�
ψ

0

kms

�
and

�
ψ

0

kms

�
:

ψkms = ψ
partc

+ ψ
0

kms
(10.3)

ψkms
= ψ

partc

+ ψ
0

kms
. (10.4)

The latter are Dirac plane waves, as defined in equations (8.15) and (8.19). We note this
result:

The relativistic Lippmann-Schwinger equations for the right-hand side and left-hand side
solutions are

ψkms(r) = ψ
0

kms
(r) +

ˆ
dr�G0

(r, r�;W )V (r�)ψkms(r�) (10.5)

ψkms
(r) = ψ

0

kms
(r) +

ˆ
dr�ψkms

(r�)V (r�)G0
(r�, r;W ), (10.6)

where ψ
0

kms
and ψ

0

kms
are Dirac plane waves, given by equations (8.15) and (8.19).
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10.2 Angular Momentum Expansion of the Lippmann-Schwinger
Equations

The starting point for deriving the angular momentum expansion of the relativistic Lippmann-
Schwinger equation is the expansion of Dirac plane, see eq. (8.15)

ψ
0

kms
(r) =

�
W +mc

2

2W

� 1
2
�

φms
c�σk

W+mc2
φms

�
eikr (10.7)

in an a spin angular momentum basis, as shown in eq. (8.77):

ψ
0

kms
(r) =

�
W +mc

2

2W

� 1
2 �

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)JΛ(r). (10.8)

The solution of the Lippmann-Schwinger equation (10.5) can be expanded in an analogue
manner

ψkms(r) =
�
W +mc

2

2W

� 1
2 �

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)RΛ(r) (10.9)

with an unknown function ψΛ. Inserting this expansion together with the expansion for the
Dirac plane wave, eq. (10.8), into the Lippmann-Schwinger equation (10.5) yields

�

Λ

i
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)RΛ(r) (10.10)

=

�

Λ

i
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)
�
JΛ(r) +

ˆ
drG0

(r, r�;W )V (r�)RΛ(r�)
�
.

The whole equation is multiplied by YΛ�(k̂) = Yl�,µ�−m�
s
(k̂). Integrating over k̂ and using the

orthonormality of the spherical harmonics then results in

�

Λ

i
l
C(l, j,

1

2
|µ−ms,ms)RΛ(r)δΛΛ� (10.11)

=

�

Λ

i
l
C(l, j,

1

2
|µ−ms,ms)

�
JΛ(r) +

ˆ
drG0

(r, r�;W )V (r�)RΛ(r�)
�
δΛΛ� .

Simplifying the equation gives

RΛ(r) = JΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)RΛ(r). (10.12)

For the left hand side solution RΛ the derivation is similar. The following box summarises
the four Lippmann-Schwinger equations:
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Angular momentum Lippmann-Schwinger equations for the regular solutions:

RΛ(r) = JΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)RΛ(r�) (10.13)

RΛ(r) = JΛ(r) +
ˆ

dr�RΛ(r�)V (r�)G0
(r�, r;W ) (10.14)

Angular momentum Lippmann-Schwinger equations for the irregular solutions:

SΛ(r) =

�

Λ�

βΛ�ΛHΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)SΛ(r�) (10.15)

SΛ(r) =

�

Λ�

βΛ�ΛHΛ�(r) +
ˆ

dr�SΛ(r�)V (r�)G0
(r�, r;W ). (10.16)

Here the β and β matrices are defined by:

βΛ�Λ := δΛ�Λ + ik
(W +mc

2
)

c2�2

ˆ
drHΛ(r)V (r)UΛ�(r) (10.17)

= δΛ�Λ + ik
(W +mc

2
)

c2�2

ˆ
drSΛ(r)V (r)JΛ�(r)

βΛ�Λ := δΛ�Λ + ik
(W +mc

2
)

c2�2

ˆ
drUΛ�(r)V (r)HΛ(r) (10.18)

= δΛ�Λ + ik
(W +mc

2
)

c2�2

ˆ
drJΛ�(r)V (r)SΛ(r)

The reason for introducing the β matrix and for choosing exactly the source term above for
the irregular solution can not be understood yet. It is because with this source term the
irregular solution is chosen correctly to yield an easy expression for the Green function of a
Dirac particle in a potential, as it will be shown in the next section, where also the equation
for UΛ will be given. The equivalence of the two representations for the β matrices will be
proven in the next section, too.

10.3 Angular Momentum Expansion of the Relativistic Green Func-
tion for a Particle in a Potential

The objective of this work is to calculate the Green function of the single-site problem.
Hence, this section shows how to calculate it from the wave functions of the single site
problem and how the corresponding formula can be derived. A mathematically complete
derivation for the non-relativistic case was given in [75]. The derivation here is based on
this paper, however, the wave functions in the relativistic case are vectors with four entries
instead of scalar wave functions, and the Green function and integration kernel are 4 × 4

matrices now. Hence, one has to pay attention to the order in which those vectors and
matrices are multiplied. Apart from that, the derivation is analogous to the non-relativistic
case.
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The claim is that

the Green function for a Dirac particle in a potential is given by

G(r, r�;W ) = −ik
(W +mc

2
)

c2�2
�

Λ

�
Θ(r − r

�
)RΛ(r�)SΛ(r�) +Θ(r

�
− r)SΛ(r�)RΛ(r�)

�
(10.19)

with the wave functions RΛ, RΛ, SΛ and SΛ given by eqs. (10.13) to (10.16).

Proof: The proof will be split into eight steps, out of which the first seven describe the
case r > r

�, i.e. the first summand in the Green function, and the last step describes which
changes are necessary in order to derive the second summand.

1. General technique of rewriting a Fredholm to a Volterra equation

Following a technique shown by Rall [76], a Fredholm integral equation can be rewritten
into a Volterra integral equation.

A Fredholm equation is of the form

y(r) = f(r) +
ˆ

dr�G0
(r, r�;W )V (r�)y(r�) (10.20)

with arbitrary f . It has, according to section 5.7, the solution

y(r) = f(r) +
ˆ

dr�G(r, r�;W )V (r�)f(r�). (10.21)

To solve it, it can be useful to rewrite it into a Volterra equation

y(r) = f(r) +
�

cΛJΛ(r) +
ˆ

dr�K0
(r, r�;W )V (r�)y(r�) (10.22)

by defining

K
0
(r, r�;W ) := G

0
(r, r�;W ) + ik

(W +mc
2
)

c2�2
�

Λ

JΛ(r)HΛ(r�) (10.23)

cΛ := −ik
(W +mc

2
)

c2�2

ˆ
drHΛ(r)V (r)y(r). (10.24)

2. Rewriting the Lippmann-Schwinger equation to a Volterra equation

The technique from the first point can be applied to the Lippmann-Schwinger equation. Let
us start with the regular right hand side solution, eq. (10.13)

RΛ(r) = JΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)RΛ(r�). (10.25)

From eq. (9.37) we know the expansion of the Green function for the free Dirac particle,
which in the case r > r

� is

G
0
(r, r�;W ) = −

(W +mc
2
)

c2�2 ik

�

Λ

HΛ(r)JΛ(r�). (10.26)
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Inserting this into the expression for K
0, eq. (10.23), yields the integration kernel for the

Lippmann-Schwinger equation in a Volterra form:

K
0
(r, r�;W ) := −ik

(W +mc
2
)

c2�2 Θ(r − r
�
)

�
�

Λ

HΛ(r)JΛ(r�)−
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Λ

JΛ(r)HΛ(r�)

�
. (10.27)

The Lippmann-Schwinger equation itself is, rewritten into the Volterra representation, of
the form of eq. (10.22). Thus, according to section 5.7, it has the solution

y(r) = f(r) +
�

Λ

cΛJΛ(r) +
ˆ

dr�K(r, r�;W )V (r�)

�
f(r�) +
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Λ

cΛJΛ(r�)

�
(10.28)

where K has to fulfil the relation

K(r, r�;W ) = K
0
(r, r�;W ) +

ˆ
dr��K0

(r, r��;W )V (r��)K(r��, r�;W ). (10.29)

By defining the two auxiliary functions

F (r) = f(r) +
ˆ

dr�K(r, r�;W )V (r�)f(r�) (10.30)

UΛ(r) = JΛ(r) +
ˆ

dr�K(r, r�;W )V (r�)JΛ(r�) (10.31)

the solution of the Volterra equation can be written in the short form

y(r) = F (r) +
�

Λ

cΛUΛ(r). (10.32)

3. Rewriting the cΛ coefficients using the β matrix (r > r
�)

For the part that follows the cΛ coefficients have to be rewritten to a different form. In
order to do so, we insert eq. (10.32) into the definition of the cΛ coefficients, eq. (10.24):

cΛ = −ik
(W +mc

2
)

c2�2
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= −ik
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drHΛ(r)V (r)F (r) +
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Λ
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.

This equation is equivalent to

�
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cΛ�

�
δΛ�Λ + ik

(W +mc
2
)

c2�2

ˆ
drHΛ�(r)V (r)UΛ�(r)

�
(10.34)

= −ik
(W +mc

2
)

c2�2

ˆ
drHΛ(r)V (r)F (r).

Now the term in square brackets is defined as the β matrix:
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βΛ�Λ = δΛ�Λ + ik
(W +mc

2
)

c2�2

ˆ
drHΛ(r)V (r)UΛ�(r) (10.35)

so that eq. (10.34) is viewed as an inhomogeneous linear equation with unknown cΛ, and
thus the cΛ coefficients can be determined via matrix inversion

cΛ = −ik
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2
)

c2�2
�

Λ�

β
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Λ�Λ

ˆ
drHΛ�(r)V (r)F (r). (10.36)

Here β
−1

Λ�Λ denote the entries of the inverted matrix β
−1 (and not the inverted entries of β).

Inserting the definition of the auxiliary function F , eq. (10.30), into this expression yields

cΛ = −ik
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2
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�
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We now define the function SΛ as the term in square brackets:

SΛ(r) = HΛ(r) +
ˆ

dr�HΛ(r�)V (r�)K(r�, r;W ). (10.38)

It will be shown in the seventh step of this proof that this definition is actually equivalent
to the definition in eq. (10.16). Using this form for SΛ the expression for the cΛ coefficients
simplifies to

cΛ = −ik
(W +mc

2
)

c2�2
�

Λ�

β
−1

Λ�Λ

ˆ
drSΛ�(r)V (r)f(r). (10.39)

4. Derivation of a preliminary expression for the Fredholm integration kernel
(r > r

�)

From eq. (10.39) we can insert the explicit expression for the cΛ coefficients into the formal
solution of a Volterra equation, eq. (10.32):

y(r) = F (r)− ik
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2
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β
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Λ�Λ
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Inserting eq. (10.30) for the auxiliary function F yields

y(r) = f(r) +
ˆ

dr�
�
K(r, r�;W ) (10.41)

−ik
(W +mc

2
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c2�2
�

Λ

�

Λ�

β
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Λ�ΛSΛ�(r�)UΛ(r)V (r�)f(r�)
�
.

By comparing this equation to the formal solution of a Fredholm equation, given in eq.
(10.21), it follows that the Fredholm integration kernel G must be equal to the term in
square brackets:

G(r, r�;W ) = K(r, r�;W )− ik
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2
)

c2�2
�

Λ

�

Λ�

β
−1

Λ�ΛSΛ�(r�)UΛ(r). (10.42)

5. Rewriting the equation for UΛ (r > r
�)

The defining equation for UΛ, eq. (10.31), is such that UΛ is the solution of the Volterra
equation

UΛ(r) = JΛ(r) +
ˆ

dr�K0
(r, r�;W )V (r�)UΛ(r�) (10.43)

with integration Kernel K. Inserting the expression for K
0 from eq. (10.27) it can be

rewritten as

UΛ(r) = JΛ(r)− ik
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)
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V (r�)UΛ(r�)

r>r
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= JΛ(r)− ik
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=βΛΛ�−δΛΛ� after eq. (10.35)

=
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JΛ�(r)βΛΛ� − ik
(W +mc

2
)
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�

Λ�

ˆ
dr�HΛ�(r)JΛ�(r�)V (r�)UΛ(r�).

From eq. (9.37) we know the expansion for the free Dirac particle Green function, in the
case r > r

� it is given by

G
0
(r, r�;W ) = −ik

(W +mc
2
)

c2�2
�

Λ

HΛ(r)JΛ(r�), (10.45)

which, inserted into the equation above, yields

UΛ(r) =
�

Λ�

JΛ�(r)βΛΛ� +

ˆ
dr�G0

(r, r�;W )V (r�)UΛ(r�). (10.46)
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By comparing this equation to the Lippmann-Schwinger equation that defines the regular
right hand side solution RΛ, eq. (10.13) it follows that

UΛ(r) =
�

Λ�

RΛ�(r)βΛΛ� . (10.47)

Inserting that into the preliminary expression eq. (10.42) that we found for the Green
function G yields

G(r, r�;W ) = K(r, r�;W )− ik
(W +mc

2
)

c2�2
�

Λ�

RΛ(r�)SΛ�(r�). (10.48)

Since K(r, r�) = 0 for r > r
� we obtain

G(r, r�;W ) = ik
(W +mc

2
)

c2�2
�

Λ

RΛ(r�)SΛ(r�) for r > r
�
. (10.49)

6. Rewriting the β matrix solution (r > r
�)

To complete the first part of the proof it remains to show that the definition for SΛ in eq.
(10.38) is equal to the one in eq. (10.16). In order to do so, we first define the α matrix by

αΛ�Λ := δΛ�Λ − ik
(W +mc

2
)

c2�2

ˆ
drHΛ(r)V (r)RΛ�(r). (10.50)

Since this definition is, apart from different indices and a different prefactor, the same as in
the non-relativistic case, eq. (5.72) in section (5.8), we know in analogy to this section that

α
−1

Λ�Λ = δΛ�Λ + ik
(W +mc

2
)

c2�2

ˆ
drSΛ(r)V (r)JΛ�(r). (10.51)

Now we first want to show that this matrix is equal to the β matrix defined in eq. (10.35).
In order to do so insert eq. (10.47) into eq. (10.35), yielding

βΛ�Λ = δΛ�Λ + ik
(W +mc

2
)

c2�2

ˆ
drHΛV (r)

�

Λ��

βΛ�Λ��RΛ��(r) (10.52)

which can equivalently be expressed in a matrix notation as

β = I + (I− α)β. (10.53)

Rearranging this matrix equation yields

β = α
−1 (10.54)

and hence
βΛ�Λ = δΛ�Λ + ik

(W +mc
2
)

c2�2

ˆ
drSΛ(r)V (r)JΛ�(r). (10.55)
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7. Rewriting the irregular solution (r > r
�)

Now, using the new expression for the β matrix, we can rewrite the equation for the irregular
left hand side solution SΛ. We start from the defining Lippmann-Schwinger equation, eq.
(10.16)

SΛ(r) =
�

Λ�

βΛ�ΛHΛ�(r) +
ˆ

dr�SΛ(r�)V (r�)G0
(r�, r;W ) (10.56)

and insert the expression for the β matrix into this equation:

SΛ(r) =

�

Λ�

�
δΛ�Λ + ik

(W +mc
2
)

c2�2

ˆ
dr�SΛ(r�)V (r�)JΛ�(r�)

�
HΛ�(r) (10.57)

+

ˆ
dr�SΛ(r�)V (r�)G0

(r�, r;W )

= HΛ�(r) +
ˆ

dr�SΛ(r�)V (r�)

�
G

0
(r�, r;W ) + ik

(W +mc
2
)

c2�2
�

Λ�

JΛ�(r�)HΛ�(r)

�
.

The term in square brackets is equal to K
0
(r�, r;W ) as defined in eq. (10.23), hence

SΛ(r) = HΛ(r) +
ˆ

dr�SΛ(r�)V (r�)K0
(r�, r;W ). (10.58)

This is a Volterra integral equation, which, according to section 5.7, has the solution

SΛ(r) = HΛ(r) +
ˆ

dr�HΛ(r�)V (r�)K(r�, r;W ) (10.59)

where the integration kernel K is defined by eq. (10.29).
8. Changes for the second case r

�
> r

The derivation of the second part of the Green function for the case r
�
> r goes analogously

to the first case. The Fredholm equation to start off now is given by

y(r) = f(r) +
ˆ

dr�y(r�)V (r�)G0
(r�, r;W ). (10.60)

Note that the order of the functions in the integrand has changed and the arguments of G0

have also been interchanged. The Volterra form of this equation is given by

y(r) = f(r) +
�

cΛJΛ(r) +
ˆ

dr�y(r�)V (r�)K0

(r�, r;W ) (10.61)

where K
0 and cΛ are given by

K
0

(r,� r;W ) := G
0
(r�, r;W ) + ik

(W +mc
2
)

c2�2
�

Λ

HΛ(r�)JΛ(r) (10.62)

cΛ := −ik
(W +mc

2
)

c2�2

ˆ
drHΛ(r)V (r)y(r). (10.63)

Following the steps from the first case and rewriting the equations then leads to the result

G(r, r�;W ) = −ik
(W +mc

2
)

c2�2
�

Λ�

SΛ(r�)RΛ�(r�) for r
�
> r (10.64)
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which, combined with eq. (10.49), gives the complete result

G(r, r�;W ) = −ik
(W +mc

2
)

c2�2

�
�

Λ

Θ(r − r
�
)RΛ(r�)SΛ(r�) +Θ(r

�
− r)SΛ(r�)RΛ(r�)

�

(10.65)
and therefore completes the proof.

10.4 t Matrix and Phase Shift

The t matrix in the relativistic case (see also [60]) can be defined analogously to the non-
relativistic case, i.e. to eq. (5.34), as

tΛΛ� =

ˆ
drJΛ(r)V (r)RΛ�(r). (10.66)

The only difference to the non-relativistic case is, that the index L has been replaced by the
index Λ = (κ, µ) and, correspondingly, the relativistic wave functions and the relativistic
potential are inserted. The matrix elements, however, still remain scalar, since JΛ is a 1× 4

vector, V a 4× 4 matrix and RΛ a 4× 1 vector.

The physical interpretation also remains unchanged compared to the non-relativistic case:
incoming waves with angular momentum index Λ are scattered to the angular momentum
channels Λ

� with an amplitude given by the element tΛΛ� .

In the (κ, µ) representation the t matrix is diagonal for non-magnetic systems if the potential
matrix V contains a spherical part only. That can be seen in figure 10.1a for the example
of a tungsten impurity in a rubidium host, calculated with the fully-relativistic code that
I implemented within my thesis. Note that this matrix, transformed into the (l,ml,ms)

basis, would no longer be a diagonal matrix. The structure is the same as found within a
scalar-relativistic calculation with additional spin-orbit coupling.

In a magnetic calculation, i.e. using a spin-dependent but still spherical potential, addi-
tional non-diagonal elements occur in the t matrix. They form a structure “parallel” to the
diagonal, as shown in figure 10.1a. The same form has also been presented by Ebert et.
al. [77].

When comparing the result of a non-magnetic full-potential calculation in fig. 10.2a to the
corresponding spherical potential calculation there is only little change in the structure of
the t matrix. Note, however, the logarithmic scale. A similar structure does not mean that
all the elements are exactly the same.

Fig. 10.2b shows the result of a magnetic full-potential calculation. Here additional non-
diagonal elements can be observed. Rubidium has a body-centred cubic lattice structure,
and for this lattice type Strange et.al. [78] give a general discussion of the form of
the t matrix. The large elements in the matrix shown here are in accordance with their
discussion. For the small elements (< 10

−8) there are deviations from their calculated form.
This, however, is due to a small numerical inaccuracy.

To obtain a representation that can be more intuitively interpreted, we will also study the
phase shift δΛ. This quantity describes the phase difference between the incoming wave with
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(a) Non-magnetic calculation with the spherically potential.

(b) Magnetic calculation with the spherically approximated po-
tential.

Figure 10.1: Logarithmic plot of the t matrix elements, calculated fully-relativistically with a

spherical potential for tungsten in a rubidium host in the (κ, µ) basis.
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(a) Non-magnetic calculation with the full potential.

(b) Magnetic calculation with the full potential.

Figure 10.2: Logarithmic plot of the t matrix elements, calculated fully-relativistically for tung-

sten in a rubidium host in the (κ, µ) basis.
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angular momentum index Λ and the outgoing scattered wave in the same angular momentum
channel. Detailed descriptions can be found e.g. in [79, 80]. Such a description is possible for
a spherical potential, meaning that there is no mixing between angular momentum channels,
or in other words, where the t matrix is diagonal. Fig. 10.3 schematically depicts the phase
shift of an incoming Bessel function jl.

Figure 10.3: Schematic plot of the phase shift. The blue curve depicts the radial part of an

incoming wave in an angular momentum decomposition, which is a Bessel function (here for l = 1).
The red, dashed curve is the large component R

t

ΛΛ
of the scattered wave, with Λ corresponding

to the given l value. Such a simplified picture is valid for spherical potentials, where there is no

mixing of angular momentum channels.

For spherical potentials the following relation between the phase shift and the t matrix
holds:

k tΛΛ = −sin(δΛ)e
iδΛ .

Fig. 10.4 shows the result of a calculation with the single-site Dirac solver that I implemented
for the phase shifts of a tungsten impurity in a rubidium host. The calculation was non-
magnetic and for a spherical potential, as only then the resulting t matrix is diagonal and the
(non-generalised) phase shifts are defined. Interesting in the figure is the splitting between
the two d orbitals. Such a splitting can be observed in relativistic calculations of heavy
elements, as it depends on the spin-orbit coupling strength and therefore increases with
the atomic number Z. For example, Strange et. al. [81] found a similar splitting in
calculations for platinum.

Another interesting quantity is the k-dependent t matrix, defined by its elements T
msm

�
s

kk� .
This matrix describes how an incoming wave with wave vector k and spin quantum number
ms is scattered into outgoing waves with wave vectors k� and spin quantum numbers m

�
s

and is defined as

T
msm

�
s

kk� :=

ˆ
drψ0

kms
(r)V (r)ψk�

m�
s
(r). (10.67)

This matrix can also be expressed in terms of the tΛΛ� matrix elements. In order to show
this, we insert the expansion of the free Dirac wave function, eq. (8.77), and the expansion
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Figure 10.4: Phase shifts for tungsten in a rubidium host in a non-magnetic calculation with a

spherical potential, which means that the tΛΛ entries are the same for a given κ value. Plotted

here are the values corresponding to the indices 1 to 18 in table 7.2b, corresponding to the given

five orbitals.

of the solution ψk�
m�

s
, eq. (10.9), into the definition above. This results in

T
msm

�
s

kk� =

ˆ
dr

�

ΛΛ�

��
W +mc

2

2W

� 1
2
�
4πi

l
C(l, j,

1

2
|µ−ms,ms)

�∗

Yl,µ−ms(k̂) (10.68)

·

�
W +mc

2

2W

� 1
2
�
4πi

l
C(l

�
, j

�
,
1

2
|µ

�
−m

�
s
,m

�
s
)

�
Y

∗
l�,µ�−m�

s
(k̂)

·JΛ(r)V (r)RΛ�(r)
�
.

Defining the coefficients

aΛ(k) =
�
W +mc

2

2W

� 1
2

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂) (10.69)

it can be rewritten as

T
msm

�
s

kk� =

�

ΛΛ�

aΛ(k)a∗Λ�(k�
)

ˆ
drJΛ(r)V (r)RΛ�(r). (10.70)

The integral is by the definition in eq. (10.66) a tΛΛ� element, hence

T
msm

�
s

kk� =

�

ΛΛ�

aΛ(k)a∗Λ�(k�
)tΛΛ� . (10.71)
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10.5 Angular Momentum Expansion of the Potential

The angular momentum expansion of the potential is somewhat tricky in the relativistic
case, thus we will devote a section to showing how it is done. This kind of expansion is
not possible for an arbitrary 4× 4 matrix but makes use of the property, that the potential
matrices V or

≈
V contain self-adjoint (or Hermitian) sub-matrices. These sub-matrices are

defined as

V
a
: =

�
V11 V12

V21 V22

�
= e

�
ϕ 0

0 ϕ

�
(10.72)

V
b
: =

�
V13 V14

V23 V24

�
= ce

�
−Az −Ax + iAy

−Ax − iAy +Az

�
(10.73)

V
c
: =

�
V31 V32

V41 V42

�
= ce

�
−Az −Ax + iAy

−Ax − iAy +Az

�
(10.74)

V
d
: =

�
V33 V34

V43 V44

�
= e

�
ϕ 0

0 ϕ

�
(10.75)

so that the potential, cf. eq. (6.12), can be written as

V =

�
V

a
V

b

V
c

V
d

�
. (10.76)

Analogously, the potential
≈
V that uses a B field instead of the vector potential A, cf. eq.

(6.14), is made up of the sub-matrices

≈
V

a

: =




≈
V 11

≈
V 12

≈
V 21

≈
V 22



 =

�
eϕ− µBz −µBx + iµBy

−µBx − iµBy eϕ+ µBz

�
(10.77)

≈
V

b

: =




≈
V 13

≈
V 14

≈
V 23

≈
V 24



 = 0 (10.78)

≈
V

c

: =

� ≈
V 31

≈
V 32

V41 V42

�
= 0 (10.79)

≈
V

d

: =




≈
V 33

≈
V 34

≈
V 43

≈
V 44



 =

�
eϕ+ µBz µBx − iµBy

µBx + iµBy eϕ− µBz

�
(10.80)

and can consequently be written as

≈
V =




≈
V

a ≈
V

b

≈
V

c ≈
V

d



 . (10.81)

Now, the important thing to note is that for ϕ, A and B being real, all the sub-matrices
are Hermitian:

V
x
= V

x†
,

≈
V

x

=

≈
V

x†
, x = a, b, c, d. (10.82)
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We will now continue with the potential V . However, as
≈
V also fulfils the property above,

an analogous treatment is possible for this representation of the potential.

Exploiting a general property of Hermitian matrices, namely that they can be decomposed
into their eigenvalues and eigenvectors, we can write

V
x
=

2�

i=1

λ
x

i
u
x

i
u
x†
i

(10.83)

where {ux

1
, u

x

2
} are an orthonormal set of eigenvectors of V x forming a basis of the matrix’s

eigenvalue spectrum, and {λx

1
,λ

x

2
} are the corresponding eigenvalues. Using orthogonal but

not necessarily normalised vectors, we can generalise

V
x
=

2�

i=1

λ
x

i

�ux

i
�
2
u
x

i
u
x†
i

(10.84)

Digression: The spin spherical harmonics χΛ are 2×1 column vector
functions depending on the two angular variables r̂ = (θ,φ). They form
an orthonormal basis of the vector space of square integrable two-vector
functions f on the surface of the unit sphere:

�
f1

f2

�
: [0, π)× [−π, π) → C2

, (θ,φ) �→

�
f1(θ,φ)

f2(θ,φ)

�

with the scalar product given by �f, g� :=
´
dr̂f †

(r̂)g(r̂). Hence, any
function in that vector space can be expanded in terms of spin spherical
harmonics: f(r̂) =

�
Λ
νΛχΛ(r̂). If the function f depends not only on

the angular but also on the radial variable, the coefficients νΛ have a
radial dependence: f(r) =

�
Λ
νΛ(r)χΛ(r̂).

Now let us take the eigenvalue λ
a

i
(r) one of the two eigenvectors u

a

i
(r). Exploiting the fact

that there exists a χΛ-expansion of λa

i
u
a

i
, we write:

λ
a

i
(r)ua

i
(r) =

�

Λ

ν
a

iΛ
(r)χΛ(r̂) where ν

a

iΛ
(r) =

ˆ
dr̂χ†

Λ
(r̂)λa

i
(r)ua

i
(r). (10.85)

One could also write this in Dirac notation as

|u
a

i
� =

�

Λ

|χΛ� �χΛ |u
a

i
� . (10.86)

Obviously, the same is valid for the adjoint of the eigenvector (that is not multiplied by the
eigenvalue)

u
a†
i
(r) =

�

Λ

ν̃
a

iΛ
(r)χ

†
Λ
(r̂) where ν̃

a

iΛ
(r) =

�ˆ
dr̂χ†

Λ
(r̂)ua

i
(r)

�∗

=

ˆ
dr̂ua†

i
(r)χΛ(r̂) (10.87)
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or in Dirac notation
�u

a

i
| =

�

Λ

�χΛ| �u
a

i
|χΛ� , (10.88)

as it follows simply by forming the adjoint equation. That means we can write

λ
a

i
(r)ua

i
(r)ua†

i
(r) =

�
�

Λ

ν
a

iΛ
(r)χΛ(r̂)

��
�

Λ�

ν̃
a

iΛ�(r)χ
†
Λ�(r̂)

�

=

�

Λ

�

Λ�

ν
a

iΛ
(r)ν̃

a

iΛ�(r)χΛ(r̂)χ†
Λ�(r̂) (10.89)

Thus the 2× 2 sub-matrices can be expanded as

V
a
(r) =

2�

i=1

�

Λ

�

Λ�

ν
a

iΛ
(r)ν̃

a

iΛ�(r)χΛ(r̂)χ†
Λ�(r̂)

=

�

Λ

�

Λ�

�
2�

i=1

ν
a

iΛ
(r)ν̃

a

iΛ�(r)

�
χΛ(r̂)χ†

Λ�(r̂)

=

�

Λ

�

Λ�

v
a

ΛΛ�(r)χΛ(r̂)χ†
Λ�(r̂) (10.90)

defining the term in brackets as

v
a

ΛΛ�(r) :=

2�

i=1

ν
a

iΛ
(r)ν̃

a

iΛ�(r) =

2�

i=1

�ˆ
dr̂χ†

Λ
(r̂)λa

i
(r)ua

i

��ˆ
dr̂ua†

i
(r̂)χΛ�(r̂)

�
. (10.91)

For the other sub-matrices the expansions are similar, however they are not exactly the
same. For x = b the term λ

b

i
u
b

i
is expanded as before in the case x = a, however the part

u
b†
i

is expanded using χ
Λ

instead of χΛ. This is done just to obtain a simple notation in the
end. For x = c, d changes are similar. Here is an overview of the different coefficients:

ν
a

iΛ
(r) =

ˆ
dr̂χ†

Λ
(r̂)λa

i
(r)ua

i
(r), ν̃

a

iΛ
(r) =

ˆ
dr̂ua†

i
(r)χΛ(r̂) (10.92)

ν
b

iΛ
(r) =

ˆ
dr̂χ†

Λ
(r̂)λb

i
(r)ub

i
(r), ν̃

b

iΛ
(r) =

ˆ
dr̂ub†

i
(r)χ

Λ
(r̂) (10.93)

ν
c

iΛ
(r) =

ˆ
dr̂χ†

Λ
(r̂)λc

i
(r)uc

i
(r), ν̃

c

iΛ
(r) =

ˆ
dr̂uc†

i
(r)χΛ(r̂) (10.94)

ν
d

iΛ
(r) =

ˆ
dr̂χ†

Λ
(r̂)λd

i
(r)ud

i
(r), ν̃

d

iΛ
(r) =

ˆ
dr̂ud†

i
(r)χ

Λ
(r̂) (10.95)

v
a

ΛΛ�(r) =

2�

i=1

ν
a

iΛ
(r)ν̃

a

iΛ�(r) =

2�

i=1

�ˆ
dr̂χ†

Λ
(r̂)λa

i
(r)ua

i

��ˆ
dr̂ua†

i
(r̂)χΛ�(r̂)

�
(10.96)

v
b

ΛΛ�(r) =

2�

i=1

ν
b

iΛ
(r)ν̃

b

iΛ�(r) =

2�

i=1

�ˆ
dr̂χ†

Λ
(r̂)λb

i
(r)ub

i

��ˆ
dr̂ub†

i
(r̂)χ

Λ
�(r̂)

�
(10.97)

v
c

ΛΛ�(r) =

2�

i=1

ν
c

iΛ
(r)ν̃

c

iΛ�(r) =

2�

i=1

�ˆ
dr̂χ†

Λ
(r̂)λc

i
(r)uc

i

��ˆ
dr̂uc†

i
(r̂)χΛ�(r̂)

�
(10.98)

v
d

ΛΛ�(r) =

2�

i=1

ν
d

iΛ
(r)ν̃

d

iΛ�(r) =

2�

i=1

�ˆ
dr̂χ†

Λ
(r̂)λd

i
(r)ud

i

��ˆ
dr̂ud†

i
(r̂)χ

Λ
�(r̂)

�
(10.99)



10.5 Angular Momentum Expansion of the Potential 93

As a consequence of these decompositions of the sub-matrices, there exists a decomposition
of the whole potential matrix V :

V (r) =

�

Λ

�

Λ�

�
v
a

ΛΛ�(r)χΛ(r̂)χ†
Λ�(r̂) v

b

ΛΛ�(r)χΛ(r̂)χ†
Λ
�(r̂)

v
c

ΛΛ�(r)χΛ
(r̂)χ†

Λ�(r̂) v
d

ΛΛ�(r)χΛ
(r̂)χ†

Λ
�(r̂)

�
(10.100)

=

�

Λ

�

Λ�

�
χΛ(r̂) 0

0 χ
Λ
(r̂)

��
v
a

ΛΛ�(r) v
b

ΛΛ�(r)

v
c

ΛΛ�(r) v
d

ΛΛ�(r)

��
χ
†
Λ�(r̂) 0

0 χ
†
Λ
�(r̂)

�

We will later on make use of this expansion for separating the radial and angular part of
the Lippmann-Schwinger equation.

To have an explicit expression as it can be programmed, we evaluate the products and get
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�

Λ�
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(10.101)
were χΛ(1) and χΛ(2) are the two components of the spin spherical harmonic function.

Apart from the theoretical aspect that this expansion is possible, the coefficients v
x

ΛΛ� , as
defined in eq. (10.91), are also explicitly needed for calculations. It is therefore necessary to
calculate all the eigenvectors ux

i
and eigenvalues λx

i
of the sub-matrices V x. When using the

potential
≈
V , these eigenvalues and eigenvectors are (obviously) different, so the coefficients

v
x

ΛΛ� are also modified compared to the exact theory.

Explicit calculations of the eigenvectors and eigenvalues for the potential V yield:

u
a

1
=

�
0

1

�
, u

a

2
=

�
1

0

�
(10.102)

λ
a

1
= λ

a

2
= eϕ (10.103)

u
b

1
=

�
−Ax+iAy

|A|+Az

1

�
, u

b

2
=

�
−Ax+iAy

−|A|+Az

1

�
(10.104)

λ
b

1
= e |A| , λ

b

2
= −e |A| (10.105)

u
c

i
= u

b

i
, λ

c

i
= λ

b

i
, u

d

i
= u

a

i
, λ

d

i
= λ

a

i
. (10.106)

When using the potential
≈
V the explicit expressions are

u
a

1
=

�
−Bx+iBy

|B|+Bz

1

�
, u

a

2
=

�
−Bx+iBy
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�
(10.107)

λ
a

1
= eϕ+ µ |B| , λ

a

2
= eϕ− µ |B| (10.108)

u
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1
=

�
Bx−iBy

|B|−Bz

1

�
, u

d

2
=

�
Bx−iBy

−|B|−Bz

1

�
(10.109)



94 10 Relativistic Lippmann-Schwinger Equations

λ
d

1
= eϕ+ µ |B| , λ

d

2
= eϕ− µ |B| (10.110)

u
b

1
= u

c

1
=

�
0

1

�
, u

b

2
= u

c

2
=

�
1

0

�
(10.111)

λ
b

i
= λ

c

i
= 0. (10.112)

These eigenvectors are not yet normalised, i.e. in the calculation one has to replace these
explicit expressions for ui by ui/ �ui�.

10.6 Coupled Radial Equations for Full-Potential Spin-Polarised
KKR

As we have seen in section 10.3, once the regular and irregular solutions of the Dirac equation
for the particle in a potential are known, the Green function can be calculated by using an
expansion into those solutions. The latter can be calculated from the Lippmann-Schwinger
equations (10.13) – (10.16). In order to do so, we will use a further angular momentum
expansion, i.e. the potential and the Green function are expanded. This will result in
coefficients RΛΛ� from which the regular solutions RΛ can be calculated.

We start off expanding RΛ in terms of spin spherical harmonics:

RΛ(r) =
�

Λ�

�
R

a

Λ�Λ(r)χΛ�(r̂)
iR

b

Λ�Λ(r)χΛ
�(r̂)

�
=

�

Λ�

�
χΛ�(r̂) 0

0 χ
Λ
�(r̂)

��
R

a

Λ�Λ(r)

iR
b

Λ�Λ(r)

�
. (10.113)

As we know that the spin spherical harmonics χΛ are 2× 1 column vectors, the expression
at the right hand side is a 4 × 2 matrix times a 2 × 1 column vector (Rt

Λ�Λ and R
t

Λ�Λ are
scalar functions), thus yielding a 4 × 1 column vector. That is what the solution of the
Dirac equation RΛ (here in angular momentum representation) should be.

From eq. (8.55) we know we can write

JΛ(r) =
�

J
a

Λ
(r)χΛ(r̂)

iJ
b

Λ
(r)χ

Λ
(r̂)

�
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�
χΛ(r̂) 0

0 χ
Λ
(r̂)

��
J
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Λ
(r)

iJ
b

Λ
(r)

�
(10.114)

where the following definition was made:
�

J
a

Λ
(r)

iJ
b

Λ
(r)

�
:=

�
jl(kr)

ikc�·sign(κ)
W+mc2

j
l
(kr)

�
. (10.115)

Using eq. (9.28) we can write the Green function as

G
0
(r, r�;W ) = −

ik (W +mc
2
)
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(r̂)

�

·

�
G

a

Λ
(r, r

�
) iG

b

Λ
(r, r

�
)

iG
c

Λ
(r, r

�
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Λ
(r̂�) 0

0 χ
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�
(10.116)



10.6 Coupled Radial Equations for Full-Potential Spin-Polarised KKR 95

with the definition

�
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(W+mc2)

hl(kr
�
)j

l
(kr)

ic�ksign(κ)
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. (10.117)

Note that this matrix has dimension 2 × 2, whereas the full Green function G
0
(r, r�;W )

is a 4 × 4 matrix. As the matrix of spin spherical harmonics multiplied from the left has
dimensions 4× 2 and the one multiplied from the right has dimensions 2× 4, everything is
well-defined.

And last but not least the potential is expanded in the following form:

V (r) =
�

Λ

�

Λ�

�
χΛ(r̂) 0

0 χ
Λ
(r̂)

��
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�
. (10.118)

We continue from is the Lippmann-Schwinger equation (10.13)

RΛ(r) = JΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)RΛ(r�). (10.119)

Inserting all the expansion into this equation yields
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Now multiplying by the matrix

�
χ
†
Λ�(r̂) 0

0 χ
†
Λ
�(r̂)

�
from the left, integrating by r̂ and using
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the orthonormality of the spin spherical harmonics yields the equation
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From now on it is necessary to assume that we are using the potential ˜̃
V with a B field and

not one with a full vector field A. If that is the case, it is v
b

Λ2Λ3 = v
c

Λ2Λ3 = 0, i.e. the 2× 2

potential matrix only has diagonal entries and consequently it commutes with the matrices
containing spin spherical harmonics. Therefore, one can take out the sums, write all the
spin spherical harmonic matrices in a row and then write all the spin spherical harmonics
into one matrix:
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Separating angular and radial integral parts, this can be rewritten as:
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Now, in analogy to the Gaunt coefficients in the non-relativistic case, the coefficient matrices
�

DΛ�Λ2Λ3Λ4 0
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Λ
�
Λ
2
Λ
3
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4

�
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are defined where

DΛ�Λ2Λ3Λ4 :=
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dr̂�χ†
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Λ3(r̂�)χΛ4(r̂�) (10.121)

Using these coefficients the equation can already be written as an exclusively radial equation.
However, there are still three sums. By defining new potential coefficients given by
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it can be simplified to the form
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For convenience we rename Λ
4 → Λ

��.

The coupled radial relativistic Lippmann-Schwinger equations are given by
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The section is concluded with a closer look at the D coefficients. They are coefficients not
depending on the position r, i.e. the integrals can be calculated once and the values can
be stored, without the need to calculate the integrals every time a Lippmann-Schwinger
equation needs to be solved. The D coefficients have four indices, which means that for
calculations up to Λcut one has to store Λ

4

cut
values. If, for example, lcut = 3 is chosen as

the maximal l value in the calculation, Λ goes up to Λcut = 32. However, to include also
the Λ coefficients, one has to go up to Λcut = 40. Storing all the 40

4
= 2560000 coefficients

yields a file size of roughly 90 MB (18 digits precision for non-zero values). This is still an
acceptable size. However, for calculations using large l values, the following trick might be
of interest.
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Starting from the definition the integral is written as a double integral:

DΛ�Λ2Λ3Λ4 : =
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Inserting the completeness relation of the spin spherical harmonics
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one can rewrite
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Defining new coefficients

dΛΛ2Λ� :=

ˆ
dr̂χΛ(r̂)χ†

Λ2(r̂)χΛ�(r̂) (10.127)

which are 2× 1 vectors and have the property

d
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the equation can be written as

DΛ�Λ2Λ3Λ4 =

�

Λ

d
†
ΛΛ2Λ�dΛΛ3Λ4 . (10.129)

Hence, using the d coefficients, one has the chance to store only Λ
3

cut
instead of Λ4

cut
values,

however, with the disadvantage of having to calculate the sum of equation (10.129) for each
quadruple of (Λ�

,Λ
1
,Λ

2
,Λ

3
) values.

The d coefficients can also be boiled down to sums over Clebsch-Gordan coefficients and
Gaunt coefficients by writing the spin spherical harmonics in terms of spherical harmonics
and replacing the occurring Gaunt coefficient terms.

10.7 Coupled Radial Equations for Full-Potential Spin-Current KKR

Fully relativistic calculations where the vector field A is not replaced by a magnetic field
B are termed spin-current density functional theory. When using a magnetic field B the
self-consistency circle is run for a spin-up potential V ↑ and a spin-down potential V ↓. From
these two potentials one can calculate ϕ(r) and B(r). Since a scalar-relativistic code needs
the same two potentials, the necessary modifications in the KKR code to embed a fully
relativistic single-site solver (given that the solver already exists) are small. In spin-current
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calculations, however, the self-consistency circle has to be run for the potentials A and ϕ,
which means that the whole KKR code needs to be modified to embed a fully relativistic
spin-current single-site solver. A further difficulty is that the exchange-correlation potential
for spin-current DFT is still under development.

Therefore, in the solver I implemented I used the approximation of a B field. Nonetheless,
here I will present the coupled radial equations for a fully-relativistic full-potential spin-
current single-site solver. The additional effort for the single-site problem is manageable
and thus it might be interesting in the future to implement these equations.

I start from eq. (10.120). As the v
b and v

c coefficients are no longer vanishing, the next
matrices do not any more nicely commute as they did before. However, the equation can
be rewritten as
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Separating radial and spherical integral parts is still possible:
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Using the relativistic equivalent of the Gaunt-coefficients that I introduced in eq. (10.121),
this can be written as
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Now I define the new potential coefficients as
�
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Λ2Λ3(r
�
)

�
(10.130)

=
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yielding the coupled radial equations (after renaming Λ
4 → Λ

��.):

The coupled radial relativistic Lippmann-Schwinger equations for full-potential spin-current
calculations are given by
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·
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These equation have the same form as the ones in eq. (10.123) except that the potential
matrix does not any more have zero blocks.

10.8 Decoupled Radial Equations for a Spherical Potential without
a Magnetic Field

For the special case of a spherical potential ϕ(r) = ϕ(r) without a magnetic field (B = 0)
the coefficients vΛΛ�(r) and wΛΛ�(r) have a simple form that can be calculated analytically.
This can extremely speed up the calculation for this special case – there is no need to
calculate the coefficients DΛ�Λ2Λ3Λ4 numerically and no angular integrals which would need
to be calculated numerically. Furthermore, it forms a way to test a code designed for the
general case and is good as an example to understand the procedure in the general setup.
The potential matrix for this special case has the simple form

V (r) =





eϕ(r)

eϕ(r)

eϕ(r)

eϕ(r)



 (10.132)

and thus the eigenvectors and eigenvalues are

u
a

1
=

�
0

1

�
, u

a

2
=

�
1

0

�
, λ

a

1
(r) = λ

a

2
(r) = eϕ(r) (10.133)

u
d

1
=

�
1

0

�
, u

d

2
=

�
0

1

�
, λ

d

1
(r) = λ

d

2
(r) = eϕ(r). (10.134)
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All the other eigenvalues are zero. As the eigenvectors are constant and the eigenvalues
have no angular dependence, they can be taken out of the integral when calculating the νiΛ

coefficients, for example

ν
a

1Λ
(r) =

ˆ
dr̂χ†

Λ
(r̂)λa

i
(r)ua

i
(r) (10.135)

=

�ˆ
dr̂χ†

Λ
(r̂)

�
· eϕ(r)

�
0

1

�
. (10.136)

Now first look at the cases Λ ∈ {1, 2}. These are the only two values with l = 0 and m = 0.
The integral of the spherical harmonic function Y0,0 = 1/

√
4π is given by

ˆ
dr̂Y0,0(r̂) =

√
4π. (10.137)

From table 7.1 it is known that

χ1(r̂) =
�

Y0,0(r̂)
0

�
, χ2(r̂) =

�
0

Y0,0(r̂)

�
(10.138)

and thus it is ˆ
dr̂χ†

1
(r̂) =

� √
4π 0

�
,

ˆ
dr̂χ†

2
(r̂) =

�
0

√
4π

�
. (10.139)

For all values Λ > 2 the integral of the spin spherical harmonics is zero. This can easily be
seen from the orthonormality relation of a spherical harmonic Yl,m with Y0,0 :

1
√
4π

ˆ
dr̂Y ∗

l,m
(r̂) =

ˆ
dr̂Y ∗

l,m
(r̂)Y0,0(r̂) = δl,0δm,0

=⇒

ˆ
dr̂Y ∗

l,m
(r̂) = 0 for (l,m) �= (0, 0) . (10.140)

Hence, the integral of the spin spherical harmonics for Λ > 2 is also vanishing:ˆ
dr̂χΛ(r̂) = 0,

ˆ
dr̂χ†

Λ
(r̂) = 0 forΛ > 2. (10.141)

The other νiΛ-coefficients can be calculated analogously. After that the vΛΛ�-coefficients can
be calculated to be:

v
a

ΛΛ�(r) = v
d

ΛΛ�(r) =

�
4πeϕ(r), Λ = Λ

�
, Λ ∈ {1, 2}

0, otherwise
(10.142)

v
b

ΛΛ�(r) = v
c

ΛΛ�(r) = 0 ∀Λ,Λ
�
.

The last step is to calculate the wΛΛ�-coefficients. Inserting the result above into the general
formula yields

w
a

Λ�Λ4(r) =

�

Λ2

�

Λ3

DΛ�Λ2Λ3Λ4vΛ2Λ3(r)

=

�

Λ2

DΛ�Λ2Λ2Λ4vΛ2Λ2(r)

= (DΛ�11Λ4 +DΛ�22Λ4) 4πeϕ(r). (10.143)
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In the first step the property of the vΛΛ�-coefficients was used, that for Λ �= Λ
� the coefficients

vanish. In the second step the property that all coefficients for Λ > 2 vanish was used. The
D-coefficients are calculated via

DΛ�11Λ4 =

ˆ
dr̂χ†

Λ�(r̂)χ1(r̂)χ†
1
(r̂)χΛ4(r̂)

=
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�

1√
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0

��
1√
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0
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1

4π
0

0 0

�
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DΛ�22Λ4 =
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Λ�(r̂)
�

0 0

0
1

4π

�
χΛ4(r̂) (10.145)

and thus

(DΛ�11Λ4 +DΛ�22Λ4) =
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0
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χΛ4(r̂)
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1
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=
1

4π
δΛ�Λ4 . (10.146)

Inserting that into the formula for the wΛΛ�-coefficients yields

w
a

Λ�Λ4(r) =
1

4π
δΛ�Λ44πeϕ(r) = eϕ(r)δΛ�Λ4 . (10.147)

In analogy we have

w
d

Λ�Λ4(r) =
�
D

Λ
�
22Λ

4 +D
Λ
�
11Λ

4

�
4πeϕ(r) = eϕ(r)δ

Λ
�
Λ
4

= eϕ(r)δΛ�Λ4 . (10.148)

This result means that all values for Λ� �= Λ
4 vanish, which is important inasmuch as it means

that the coupled radial Lippmann-Schwinger equations decouple in the case of a spherical
potential without a B field. This decoupling is also found in the non-relativistic case of
a spherical potential. When solving the single-site problem computationally, the coupling
of the Lippmann-Schwinger equations results in a huge matrix that needs to be inverted.
The inversion makes up a great part of the necessary computational effort, together with
the calculation of the wΛΛ�-coefficients in the potential expansion. As both steps turn out
obsolete in the case of a spherical scalar potential, it explains why this case is much simpler,
both theoretically and with respect to the necessary computational effort, and therefore
many investigations are limited to this special case.

10.9 From Fredholm to Volterra Representation

The Lippmann-Schwinger equations derived in sections 10.6 and 10.7 contain two types of
radial integrals, one that goes from 0 to r and another one that goes from r to S, where
S is a sphere outside which the potential vanishes. For computational implementation it is
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favourable to have only one type of integral to solve. Hence, in this section the integral is
rewritten to a Volterra equation, i.e. two integrals both with integration domain from 0 to
r. The technique for rewriting the integral is the same as in section 10.3 in the first step of
the proof.

Let us first insert the explicit form of the Green function, eq. (10.117), into the radial
Lippmann-Schwinger equations (10.123), yielding:
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Taking the parts that do not depend on r
� out of the integral, the equation can be rewritten

as
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Now we use bold symbols for denoting two-entry vectors and 2× 2 matrices and define23
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This allows us to rewrite the equation:
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Now we want to rewrite this mixed Fredholm equation into a Volterra equation. We start
making the following definitions
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which allow us to write the Fredholm equation as

RΛ�Λ(r) = AΛ�Λ(r)JΛ�(r) + BΛ�Λ(r)HΛ�(r). (10.158)

In order to have integrals running from 0 to r only, we rewrite AΛ�Λ as follows:
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23In my computational implementation the factor (W + mc
2)/(c2�2) is taken into the definition of the

potential V to be consistent with the convention of the scalar relativistic solver.
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Note that AΛ�Λ(0) is constant. Apart from the matrices A, B and R we also want to define
the matrix

β̃ : = A
−1
(0) or (10.160)
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)RΛ��Λ(r

�
). (10.161)

Note that this matrix is defined analogously to the matrix α = β
−1 in eq. (10.50). It is not

the same though, as the functions here are vectors with two entries instead of four.

Furthermore we define another three matrices by multiplying the first three matrices from
the right hand side by β̃

Ã(r) := A(r)β̃ (10.162)
B̃(r) := B(r)β̃ (10.163)
U(r) := R(r)β̃ (10.164)

Explicitly written the entries are
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Thus we get the equation

UΛ�Λ(r) = JΛ�(r)ÃΛ�Λ(r) + HΛ�(r)B̃Λ�Λ(r) (10.167)

which is equivalent to:

Two-vector Volterra representation of the relativistic radial Lippmann-Schwinger equations:
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Part IV

Implementation and Applications



11 Numerical Techniques

The main challenge when solving the single-site Dirac equation is to solve the coupled
radial Lippmann-Schwinger equations, in the method chosen here written in an in-
tegral from. Using Chebyshev quadrature formulae, the integral equations can be
rewritten into linear equation systems that can be solved by matrix inversion.

Apart from the radial integration, there are also several integrations of the angular
variables r̂ = (φ, θ), namely for the D coefficients and the ν coefficients, that are
solved using the method by Lebedev and Laikov.

11.1 Chebyshev Quadrature

To solve the Lippmann-Schwinger integral equations for the Schrödinger equation, Gonzales
et al. [82] proposed a method using Chebyshev polynomials (a good introduction can
be found in [83], for details about the Chebyshev method see e.g. [84, 85, 86]). As the
Lippmann-Schwinger equations derived here for the Dirac case have the same form, the same
technique can be applied to solve them. The first component of the method is Chebyshev
quadrature, which is based on a simple idea: a sufficiently smooth function is interpolated
by a polynomial which is then integrated. Because the integral of a polynomial is known,
the integration is easy and boils down to a recursion relation.

The intuitive try for interpolating a function might be to choose equidistant points within
the integration interval. This, however, leads to large deviations between the interpolating
polynomial and the interpolated function close to the boundaries of the interval in consid-
eration. This problem is known as Runge’s phenomenon (see [87]) and it can be overcome
by using a different point set. The points that minimise the maximal error on the interval
[a, b] are given by

xn =
a+ b

2
+

b− a

2
cos

�
π
2n− 1

2N

�
, n = 1...N − 1 (11.1)

when using polynomials up to degree N . If [a, b] = [−1, 1] these points are the zeroes of the
Chebyshev polynomials Tn, which are defined by

Tn(x) := cos(n arccos(x)), n ∈ N. (11.2)

Although it is not obvious at first sight these functions are indeed polynomials. The first
three are given by

T0(x) = 1

T1(x) = x (11.3)
T2(x) = 2x

2
− 1.

When using the Chebyshev nodes, it is convenient to express the interpolating polynomial
in a basis of Chebyshev polynomials. In order to derive a recursion relation for the differ-
entiation of the polynomials one can use the trigonometric representation given above and



11.1 Chebyshev Quadrature 109

differentiate it, yielding

2Tn(x) =
1
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d

dx
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1
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d

dx
Tn−1(x) forn ≥ 2. (11.4)

Here, however, a recursion relation for the integration is needed. Integration the whole
equation yields
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To complete the recursion relation we need the case of n = 0 and n = 1, which can easily
be calculated directly:

ˆ
r

−1

T0(x)dx = T1(r) + 1 (11.6)
ˆ

r

−1

T1(x)dx =
1

4
T2(r)−

1

4
. (11.7)

Hence, we have an integration formula for a single Chebyshev polynomial. Now let us look
at an arbitrary polynomial of degree n (the interpolating polynomial) expressed in a basis
of Chebyshev polynomials:

p(x) =

N�

n=0

anTn(x). (11.8)

The integral of p will be a polynomial P of degree N + 1 which, for the definite integral,
can be written as

P (r) :=

ˆ
r

−1

p(x)dx =

N+1�

n=0

bnTn(r). (11.9)

Let us directly look at the definite integral and evaluate the expression:

ˆ
r

−1

p(x)dx =

N�

n=0

an

ˆ
r

−1

Tn(x)dx

eqs. (11.5)−(11.7)

= a0 (T1(r) + T0(r)) +
a1

4
(T2(r)− T0(r))

+

N�

n=2

an

�
1

2 (n+ 1)
Tn+1(r)−

1

2 (n− 1)
Tn−1(r) +

(−1)
n+1

n2 − 1

�

= a0 (T1(r) + T0(r)) +
a1

4
(T2(r)− T0(r))

+

N+1�

n=3

an−1

2n
Tn(r)−

N−1�

n=1

an+1

2n
Tn(r) +

N�

n=2

an(−1)
n+1

n2 − 1
(11.10)
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In order to maintain the basis we make the approximation of leaving out the (N + 1)th
term in the first sum. The equation can then be rewritten as

ˆ
r

−1

p(x)dx = a0 (T1(r) + T0(r)) +
a1

4
(T2(r)− T0(r)) +

aN−1

2N
TN(r)−

a2

2
T1(r)

−
a3

4
T2(r) +

N−1�

n=3

an−1 − an+1

2n
Tn(r) +

N�

n=2

an(−1)
n+1

n2 − 1
. (11.11)

Rearranging and remembering that T0(r) = 1 yields

ˆ
r

−1

p(x)dx =

�
a0 −

a1

4
+

N�

n=2

an(−1)
n+1

n2 − 1

�
T0(r) +

�
a0 −

a2

2

�
T1(r)

+

N−1�

n=2

an−1 − an+1

2n
Tn(r) +

aN−1

2N
TN(r) (11.12)

Let us now define the coefficient vectors

p :=





a0

a1
...
aN




, P :=





b0

b1
...
bN




(11.13)

that contain the coefficients of the Chebyshev representation of the polynomials p and P .
Again the term bN+1 has been omitted. From eq. (11.12) it can be seen that

P :=





a0 −
a1
4
+
�

N

n=2

an(−1)n+1

n2−1

a0 −
a2
2

a1−a3
4

a2−a4
6...

aj−1−aj+1

2j

...
aN−1

2N





. (11.14)

Now one can write in a matrix form:

M · p = P , (11.15)
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which is explicitly written:




1 −
1

4
−

1

3
+

1

8
−

1

15
· · ·

(−1)
j+1

j2−1
· · ·

(−1)
N+1

N2−1

1 0 −
1

2
1

4
0 −

1

4

0

0

. . .
1

2j
0 −

1

2j

. . .
1

2(N−1)
0 −

1

2(N−1)

1

2N
0









a0

a1

a2

...
aj
...

aN





=





b0

b1

b2

...
bj
...

bN





.

(11.16)
Note that this is an (N + 1)× (N + 1) matrix and j runs from 0 to N .
The matrix differs slightly from the one calculated by Gonzales et al. [82], namely in the
(N + 1)th entry of the first line. This matrix includes a term that is neglected in the matrix
by Gonzales. As a test, one can apply the integration onto the polynomials x

j. For j < N

both methods are numerically exact. For j = N and j = (N + 1) I got results that were
better by one order of magnitude for my example calculation (N = 5).

So far the method describes how to transform an integral to a matrix vector multiplication.
In the case of the Lippmann-Schwinger equations, however, on has to solve an integral
equation. In the scheme above that means that the coefficient vector p consists of unknown
values that need to be determined. In order to do so, the matrix M is inverted and the
product M−1

P is evaluated. In other words, the integral equation is rewritten into a linear
equation system that is solved by matrix inversion.

11.2 Chebyshev Expansion

The Chebyshev polynomials fulfil the following orthogonality relation:
ˆ

1

−1

Tm(x)Tn(x)
�
1− x

2
�− 1

2 dx =

�
π

2
δmn ifm �= 0 or n �= 0

π ifm = n = 0.
(11.17)

Therefore a function f that is defined on the interval [−1, 1] can be expanded in terms of
Chebyshev polynomials as

f(x) =

∞�

n=0

anTn(x) (11.18)

where

an =

�
1

π

´
1

−1
f(x) (1− x

2
)
− 1

2 dx if n = 0

2

π

´
1

−1
f(x)Tn(x) (1− x

2
)
− 1

2 dx if n ≥ 1.

(11.19)

Apart from the continuous orthogonality relation, the Chebyshev polynomials also fulfil a
discrete orthogonality relation:

N�

j=0

Tn(xj)Tm(xj) =

�
N

2
δmn ifm �= 0 or n �= 0

N ifm = n = 0,
(11.20)
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where xj are the Chebyshev nodes

xj = cos

�
π
2n− 1

2N

�
, j = 0...N − 1, (11.21)

which are the special case of eq. (11.1) on the interval [−1, 1]. Inserting the function f into
the orthogonality relation yields an approximative formula for the coefficients an:

an ≈

�
1

N

�
N−1

j=0
f(xj)Tn(xj) if n = 0

2

N

�
N−1

j=0
f(xj)Tn(xj) if n ≥ 1.

(11.22)

As this discrete formula is a sum instead of an integral, it is more useful for practical
implementation of the Chebyshev method.

11.3 Lebedev-Laikov Quadrature

The Chebyshev method of the previous section can be applied to one-dimensional integrals,
i.e. in the context of this thesis for the radial integration. For the angular momentum
expansion of the potential, specifically for integrations when calculating the νΛΛ� coefficients,
equations (10.92) to (10.95), and the D coefficients, eq. (10.121), a quadrature method for
integrations on a sphere is needed. The method used here was developed by Lebedev and
Laikov [88, 89, 90, 91] and is a standard method for integrations on a sphere. A good
introduction to the method can be found in [92].

The essence is to rewrite the integral to a summation
ˆ

dr̂f(r̂) =
ˆ

π

0

dθ

ˆ
2π

0

dφf(θ,φ) ≈

�

i

wif(θi,φi) (11.23)

with adequately chosen points (θi,φi) on the sphere and corresponding weights. The points
are chosen such that they are invariant under the octahedral rotational group with inversion.
To construct the points one has to start from one representative of a certain class of points
and then construct and then find the invariant points. The smallest number of points
that can theoretically be used is six, corresponding to six vertices of an octahedron24. The
weights are determined by demanding that the method is exact for integrating polynomials
up to a given order.

Laikov provided a publicly available C code that generates integration points and corres-
ponding weights. I used the original code to generate these values for my integration routine.
As a test calculation I evaluated the orthonormality relation of spherical harmonics in the
range of l = 0 up to l = 6. With 110 points I already obtained machine precision.

24The series of possible numbers of points is 6, 14, 26, 38, 50, 74, 86, 110, 146, 170, 194, 230, 266, 302,
350, 434, 590, 770, 974, . . ..



12 Dirac Single-Site Solver

The algorithm of the Dirac single-site solver that I implemented is explained here. As
an application, the skew scattering of tungsten in rubidium is calculated, showing the
expected asymmetry that is an extrinsic contribution to the anomalous Hall effect.

12.1 Algorithm

The algorithm for solving the single site problem has been implemented in Fortran 90. The
most important steps up to the radial parts of the wave functions are described here in a
diagrammatic scheme. For details of the steps refer to the respective equations given and the
sections in which they appear. Expressions in monospace style refer to the corresponding
Fortran files and subroutines.

_____________

Calculate and Expand the Potential (Potential.f90)
read the D coefficients from a file (readDcoeff)

for each r calculate ϕ(r,φ, θ) and B(r,φ, θ) (getPotPhi, getPotB)
calculate the potential matrix V (r)

for each Λ calculate the νΛ(r), ν̃Λ(r) coefficients eqs.
(10.92-10.95) performing integrations on a sphere
(nuCoefficients)

for each tuple ΛΛ
� calculate the vΛΛ�(r) coefficients by summing up

the respective νΛ(r) coefficients eqs. (10.96-10.99)
(ExpansionCoefficients)

calculate the sums for the wΛΛ�(r) coefficients eq.
(10.122) (wPotentialExpansion)

Prepare the Source Terms (SourceTerms.f90)
for each r calculate a vector containing Bessel and Hankel

functions J(r), H(r) for all Λ values, eqs.
(10.150-10.153)

Set up and Solve the Linear Equation System (calctmat.f90, rllsll.f90)
write the equation as a huge matrix-vector multiplication with indices for the radial points
ri and the Λ value
multiply by the Chebyshev matrix to set up the linear equation system
invert the matrix
��� radial wave functions RΛΛ�(r), SΛΛ�(r)
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My code is written such that it is embedded into the KKR code that is recently under
development in our institute (D. Bauer, R. Zeller, P. Mavropoulos).

The calculation for a given kinetic energy E starts by computing the magnetic field B and
the scalar potential ϕ from the spin up V

↑ and spin down potential V ↓ in angular momentum
representation, that is provided by the embedding KKR code. Once B and ϕ are known
(in real space representation), the 4 × 4 potential matrix is set up and expanded into spin
spherical harmonics. This expansion is done by making use of the νΛΛ� coefficients. From
these coefficients, the wΛΛ� coefficients are calculated25.

After the potential expansion has been computed, a second ingredient for setting up the
Lippmann-Schwinger equations is to calculate the source terms, which contain Bessel and
Hankel functions and spin spherical harmonics. Once they are calculated, the Lippmann-
Schwinger equations are solved by the Chebyshev matrix. To obtain higher numerical ac-
curacy without high computational effort, the integration domain is split into sub-intervals,
resulting in smaller matrices. The solutions for the sub-intervals are matched by an analyt-
ically exact condition. The result is a large matrix, describing the system of linear equations
which are equivalent to the Lippmann-Schwinger equations. The equation system is solved
by matrix inversion, yielding the radial wave functions.

The two most time consuming steps in the algorithm are the calculation of the sum for the
wΛΛ� coefficients in eq. (10.122) and the matrix inversion. The former is a sum that has
to be computed for Λ2 coefficients, while for each of them Λ

2 summands have to be added,
resulting in Λ

4 operations26. The current speed of the code is around four times slower
compared to scalar relativistic calculations with spin-orbit coupling. While the matrix
inversion is inevitable, the sum for the wΛΛ� coefficients holds potential for future efficiency
enhancement by examining the analytical properties of the DΛΛ�Λ2Λ3 coefficients, which are
the relativistic counterparts of the Gaunt coefficients. As many of them are zero, the number
of operations in the sum for each coefficient can be reduced if these properties are exploited.

Once the wave functions are known, they are transformed from the (κ, µ) basis to the
(l,ml,ms) basis, so that they can be used within the currently existing embedding code
without modifications. In the course of the wave function calculations, the (angular mo-
mentum dependent) t matrix is also calculated, as it is needed for the calculation of the
Green function of the full system. The described procedure is done for many energies,
afterwards the Green function can be calculated from an energy integration. The matrix
T

msm
�
s

kk� is not part of this calculation, however, I wrote an add-on (in Python language) that
calculates this matrix, in order to examine scattering in detail. Results are presented in the
following section.

25For the case of spherical potentials with zero magnetic field B there is a faster routine, making use of
analytical properties discussed in section 10.8, that calculates the wΛΛ� coefficients directly. This routine is
used if the parameter spherical_only in DiracConfig.f90 is set to 1, otherwise the full-potential method
is used.

26 For example, if lcut = 3 and hence Λcut = 32, this means that around 1 million operations have to be
performed.
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12.2 Skew Scattering at a Tungsten Impurity

If an electron is scattered at an (impurity) atom the interaction of the electron wave with the
spin-orbit coupling of the impurity produces a direction dependent scattering, i.e. electrons
have a higher probability of being scattered into a certain direction depending on whether
they are in a spin up or spin down state. This effect has first been described by Mott [93],
who also examined the consequences for the conductivity in metals [94, 95]. It is one of the
extrinsic contributions to the anomalous Hall effect [96], and in this context the term skew
scattering is commonly used. The contribution to the spin Hall effect has recently been
examined by Fert and Levy [97].

Figure 12.1: Scattering at a tungsten impurity

in a rubidium host in a non-magnetic calculation

with a spherically approximated potential. De-

picted is the squared absolute value of the matrix

T
msm

�
s

kk� where the absolute values of k and k�
are

equal (elastic scattering) and correspond to the

Fermi energy. This figure shows the non-spinflip

scattering, here for ms = m
�
s = +1

2
with the spin

in z-direction. The incoming wave has a wave

vector in the direction of the x-axis k = kF êx.
In spherical coordinates this corresponds to an-

gles φ = 0 and θ = π/2. The shown curve is the

φ
�
-dependence for a fixed value of θ

� = 3

2
π.

The absolute squared value of the matrix
T

msm
�
s

kk� defined in eq. (10.67) is propor-
tional to the probability of a particle be-
ing scattered in a certain direction. I cal-
culated this matrix, based on a calculation
of a tungsten impurity in a rubidium host.
The corresponding potential was calculated
self-consistently within the local density ap-
proximation by the KKR method. Since
rubidium is to a very good approximation
a free-electron host, we can examine the
Mott scattering in the free-electron approx-
imation. Due to the cubic structure of ru-
bidium, the tungsten potential has in real-
ity small non-spherical components, that are
neglected in the non-magnetic calculation
and included in the magnetic calculation. In
this calculation the incoming spin is oriented
in z-direction, while the incoming wave has
a wave vector k in the x-direction. In spher-
ical coordinates this is equivalent to k hav-
ing the angular part (θ,φ) = (

π

2
, 0). The

calculation was performed at the Fermi en-
ergy, hence the length of the wave vector is
determined by �2k2

F
/2m = EF .

Fig. 12.2 shows the result of the calcu-
lation. Depicted is

��Tmsm
�
s

kk�

��2 in terms of
(θ

�
,φ

�
), which are the angular coordinates

of k. The results shown are the part without spin-flip, i.e. ms� = ms. I computed this first
in a non-magnetic calculation using only the spherical part of the potential (fig. 12.2a) and
then in a magnetic calculation with full-potential (fig. 12.2b). The difference between a
magnetic and non-magnetic calculation here is the dominating part of the difference.
The theoretically expected asymmetry between scattering to the left and to the right (in
x-direction), corresponding to an asymmetry dependent on φ

�, can be observed in both
calculations. It is more drastic in the magnetic full-potential case. For a more quantitative
picture, in fig. 12.1 the φ

�-dependent asymmetry is shown for a fixed θ value.
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(a) Non-magnetic calculation with the spherically approximated potential.

(b) Magnetic calculation with the full potential.

Figure 12.2: Scattering at a tungsten impurity in a rubidium host. Depicted is the squared

absolute value of the matrix T
msm

�
s

kk� where the absolute values of k and k�
are equal (elastic scat-

tering) and correspond to the Fermi energy. This figure shows the non-spinflip scattering, here for

ms = m
�
s = +1

2
with the spin in z-direction. The incoming wave has a wave vector in the direction

of the x-axis k = kF êx. In spherical coordinates this corresponds to angles φ = 0 and θ = π/2.
The left plots show the angles of the wave vector k�

of the scattered wave in spherical coordinates.

In the right picture the same quantity is depicted, here by the distance from the origin.



13 Conclusion

Within this work it was my aim to present a comprehensive discussion of the full-potential
electron scattering problem based on the Dirac equation. In the first part I set this work into
the context of electronic structure calculations with the KKR method and DFT methods
in general. The second part described the non-relativistic case, forming an important step
in understanding the relativistic case later on. Additionally, the Green function in the
relativistic case is based on the one of the non-relativistic case.

In the third part I addressed the main objective of this thesis. Starting point is the Dirac
equation, which contains vectorial wave functions with four entries and a 4 × 4 potential
matrix. This matrix has the important property that it is not only hermitian, but also con-
sists of four sub-matrices, which themselves are again hermitian. Exploiting this property,
I was able to expand the potential in spin spherical harmonics, such that the expansion
coefficients form a 2× 2 matrix. This fact is important, because based on this expansion I
developed an expansion of the relativistic Lippmann-Schwinger equations with radial wave
functions having only two and not four entries. Hence, the resulting matrix for the system
of linear equations that has to be solved, in my method has only twice the dimensions (four
times as many entries) as the matrix in the non-relativistic case, and not four times as many.
The dimensions are the same as for scalar relativistic calculations with spin-orbit coupling,
only the sum for the wΛΛ� coefficients consumes additional computational time.

In the derivation of the potential expansion I considered both cases, the one of a B field
representation and the one of using the full vector field A. Hence I showed the theoretical
framework of solving the single-site problem in a spin-current KKR method and discussed
that the additional complicacy for the single-site problem is managable. In order to be
compatible with the code, however, the implemented version is based on the B field repres-
entation (spin-polarised KKR).

Since the Lippmann-Schwinger equations I derived have the same structure as the ones in
the non-relativistic case, the Chebyshev integration method, already applied by Gonzales
et. al. to the Schrödinger equation, can be applied to the Dirac equation without major
modifications in the integration methods. Hence the advantages of this method – immensely
improved numerical accuracy at only modest increase in computational time and numerical
stability, become accessible for fully-relativistic full-potential calculations.

I successfully implemented the method as part of the KKR code currently developed in
Jülich. As a test, I compared some calculated wave functions to the ones calculated by the
scalar-relativistic solver and, after artificially setting the vacuum speed of light in my pro-
gramme to a much higher value (simulating the non-relativistic limit), to the non-relativistic
solver, both with good agreement.

I applied the method to a tungsten impurity in a rubidium host. In this system tungsten
is magnetic and furthermore, due to its high atomic number, tungsten shows strong spin-
orbit coupling and, in general, strong relativistic effects. One of them is the splitting of
the d orbitals which I could observe when calculating the phase shifts. Another property I
examined was the scattering of electrons at this tungsten impurity (Mott scattering or skew
scattering). Here a non-symmetric scattering behaviour can be observed, which forms one
of the extrinsic contributions to the anomalous Hall effect.
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To conclude it can be said that, based on a successful derivation of relativistic Lippmann-
Schwinger equations, I was able to develop an efficient algorithm to determine the wave
functions and the Green functions in fully-relativistic full-potential electron scattering. The
calculations performed are able to simulate interesting quantum mechanical effects and are
good accordance with expectations.
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