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Inhaltsangabe

Die Untersuchung von einfachen und lateral strukturierten Ubergangsmetall—
oberflachen spielt eine entscheidende Rolle in der Chemie an Oberflachen, im Nano-
magnetismus, im sich zur Zeit entwickelnden Gebiet der Magneto-Elektronik und fur
entsprechende Anwendungen, z.B. in der Datenspeicherindustrie. Die strukturellen,
elektronischen, chemischen und magnetischen Eigenschaften von Ubergangsmetall—
oberflachen auf der nanometer bis zur atomaren Skala zu verstehen, ist eine essentielle
Voraussetzung zur Entwicklung neuer Bauelemente. Das Rastertunnelmikroskop
(RTM, engl. STM) ist eine starke treibende Kraft auf diesem Gebiet, aber die ein-
deutige Interpretation der Mefidaten von Ubergangsmetalloberﬂéchen auf der ato-
maren Skala ist erst an seinem Anfang. In den meisten Fallen werden RTM-Bilder
auf der Grundlage eines Harte-Kugel-Modells gedeutet. Es wird hier gezeigt, daBl
dies nicht korrekt ist. Mit der Kombination von modernen ab initio Rechnungen der
elektronischen Struktur und dem Tersoff-Hamann Modell fir das RTM ergibt sich
ein schlagkraftiger und erfolgreicher Ansatz zur Interpretation von RTM-Bildern von
Ubergangsmetalloberﬂachen auf der atomaren Skala. In dieser Arbeit wird die erste
systematische Untersuchung von RTM-Bildern von Ubergangsmetalloberﬂachen auf
der atomaren Skala vorgestellt. Funf verschiedene Bereiche werden abgedeckt:

(i) Bilder einfacher Oberflachen: Der EinfluB der elektronischen Struktur auf
RTM-Bilder selbst im Fall von reinen Ubergangsmetalloberﬂachen wird durch den
Effekt der spannungsabhingigen Korrugationsumkehr fiir bee-(110) Oberflachen
demonstriert. (ii) Chemische Identifikation: Die Schwierigkeit chemisch unter-
schiedliche Atome an einer Oberflache zu diskriminieren wird an einem Beispiel
dargelegt (CoSiz(001)), bei dem ein wirkliches Verstandnis der experimentellen Daten
nur mit der Hilfe der Rechnungen maéglich wird. (iii) Vergrabene Grenzflachen: Da
das Durchmischen in Multi-Komponenten Systemen nicht auf die Oberflachenlage
beschrankt sein muf}, wird weiter die Moglichkeit diskutiert, mit dem RTM auch ver-
grabene Strukturen abzubilden, sogar in Metallsystemen. Die ersten direkten RTM-
Bilder einer vergrabenen Ubergangsmetallstruktur (Ir) in einem Edelmetallsubstrat
(Cu(001)) werden vorgestellt, und der iiberraschende Effekt wird auf der Grundlage
der elektronischen Struktur erklart und verallgemeinert. (iv) Magnetische Identifika-
tion mit einer nichtmagnetischen Spitze: Es wird untersucht, inwiefern es bei einem
komplexen magnetischen System (Cr und Mn auf Fe(001)) moglich ist, verschiedene
magnetische Konfigurationen aufgrund von (nicht-spinpolarisierten) RTM Experi-
menten zu unterscheiden. (v) Magnetische Abbildung mit SP-RTM: Das Potential des
spin-polarisierten RTM (SP-RTM), magnetische Strukturen auf der ultimativen, der
atomaren Skala abzubilden, wird mittels einer Erweiterung des Tersoff-Hamann Mo-



dells diskutiert. Die Anwendung dieser neuen Idee auf eine Monolage Mn auf W(110)
fihrt zum ersten eindeutigen Nachweis fur die Existenz des zwei-dimensionalen An-
tiferromagnetismus, der bereits 1988 theoretisch vorhergesagt worden ist.



Abstract

The investigation of plain and laterally structured transition-metal surfaces plays a
key role in surface chemistry, in nanomagnetism, in the evolving field of magneto-
electronics, and for respective applications, e.g. in the magnetic-storage indus-
try. Understanding the structural, electronic, chemical, and magnetic properties at
transition-metal surfaces on the nanometer down to the atomic scale is an essential
prerequisite towards the development of new devices. The scanning tunneling micro-
scope (STM) is a strong driving force in this field but the unambiguous interpretation
of acquired data of transition metals on the atomic scale is at its infancy. In most
cases STM images of transition metals are interpreted on the basis of a hard sphere
model. It is shown that this is incorrect. The combination of state-of-the-art first-
principles calculations of the electronic structure with the Tersoff-Hamann model of
the STM provides a powerful and successful approach to interpret STM images of
transition-metals on the atomic scale. In this thesis the first systematic investigation
of STM images of transition metals on the atomic scale is presented. We cover five
different problems:

(i) Images of plain surfaces: The influence of the electronic structure on STM
images even in the simple case of pure transition-metal surfaces is demonstrated by
the effect of a bias-voltage dependent corrugation reversal for bee-(110) surfaces. (ii)
Chemical identification: The difficulty of discriminating between different chemical
species at a surface is treated with an example (CoSiz(001)) showing how the proper
understanding of experimental data can be accomplished by the aid of calculations.
(iii) Buried interfaces: Since the intermixing in multi-component systems need not be
confined to the surface layer, it is further dealt with the ability of the STM to image
also buried structures, even in metal systems. The first direct STM images of buried
transition-metal (Ir) structures in a noble-metal surface (Cu(001)) are presented,
and the surprising effect is explained and generalized on the basis of the electronic
structure. (iv) Magnetic identification using a non-magnetic tip: We explore the
feasibility to discriminate different magnetic configurations on the basis of (non-
spinpolarized) STM experiments for a complex system (Cr and Mn on Fe(001)).
(v) Magnetic imaging with SP-STM: The potential of spin-polarized STM (SP-STM)
to image magnetic structures on the ultimate, the atomic scale is discussed with an
extension of the Tersoff-Hamann model. Applying this new idea to a Mn monolayer
on W(110) leads to the first unambiguous experimental proof of the existence of
two-dimensional antiferromagnetism predicted as early as 1988.
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Chapter 1

Introduction

Almost everyone’s private and professional life today is influenced by the rapidly in-
creasing importance of computing, information technology and telecommunication.
The engine behind this development is the micro-electronics, one of the great intel-
lectual and technological achievements of the 20th century. Micro-electronics has be-
come possible by our understanding of solid state physics through quantum mechan-
ics, the dominating theory in physics during the 20th century'. Ongoing refinements
of fabrication and production techniques lead to increasingly smaller dimensions of
the relevant structures, and we are approaching the nanometer scale, a scale of the
order of the electron wave-length in metals. At this limit transport in these struc-
tures cannot be treated with semiclassical models anymore and unexpected quantum
phenomena have been discovered. At this frontier of physics, a new field of solid state
research has evolved in the late 1980’s: nano-physics. It is justified to expect it to
become the basis of new technology, nano-technology, which might shape the 21st
century to an extent micro-technology has shaped the previous one. Only in 1997 for
example, IBM presented a commercially available hard-disk drive with a storage den-
sity of 2.7 Gbits per square inch which was possible by equipping it with a read head
exploiting the recently discovered Giant Magneto Resistance (GMR) effect (1989 by
P. Griinberg, see Ref. [1]). This quantum effect on the nanometer scale is a finding
of fundamental research. It is but one example of the quick succession of discoveries
in basic research and technological applications by the industry in this new area of
physics. Applying these new quantum effects requires material engineering with a
precision on the nanometer scale. The structuring of metallic and semiconducting
materials with such an accuracy has become feasible by the development of sophis-
ticated deposition techniques like molecular-beam epitaxy and remarkable advances
in ultra-high vacuum technology.

The ultimate tool to study these nano-structures from the nanometer down to the
atomic scale and even to manipulate them atom by atom? is the scanning tunneling
microscope (STM). Invented by Binnig and Rohrer in 1982 [2], who were awarded the

1The theory of relativity should certainly not be forgotten.

2Some  beautiful examples of such structures created by D. Eigler and co-
workers, the quantum corrals, are presented on the homepages of IBM, Almaden:
http://www.almaden.ibm.com/vis/stm/stm.html.
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noble-prize in 1986, it has revolutionized our approach to surface science. Conven-
tional surface characterization techniques like photoemission (PES), inverse photoe-
mission (IPES), low energy electron diffraction (LEED), or Helium scattering provide
information in reciprocal space which are averaged over large scales in real-space (on
the order of the spot size of the photon beam used in PES, for example). The STM,
however, supplies us with real-space images of unprecedented lateral resolution. This
new tool allows the formerly unthinkable possibility to study the properties of lo-
cal structures like individual adsorbed atoms or molecules, step edges, islands, atom
chains, domain boundaries, dislocations, and many more. Other scanning probe tech-
niques followed, probing for example atomic forces, magnetic stray-fields or the local
capacity, but the STM still provides the highest resolution: atomic resolution?.

The idea at the heart of the STM is to exploit the tunnel effect, a basic result of
quantum mechanics taught already in introductory courses [5]. From our experience
we know that a particle, for example a ball, is totally reflected by a potential barrier,
for example a wall, if its energy is insufficient to overcome it. In the microscopic
world this is not true anymore, and there is a finite probability for a particle to tunnel
through such a barrier. Although the effect is rather simple its technical application
in an STM is a scientific challenge. In an STM a sharp metal tip is approached to
a distance of a few Angstroms to a conducting sample surface. Now a tunneling
current can flow through the vacuum barrier if a bias-voltage is applied between tip
and sample. By scanning the tip with piezo-actuators in sub-Angstrém steps across
the surface and adjusting the vertical position z of the tip with a feed-back loop
such that the tunneling current is kept constant a topographic image z(z,y) of the
surface is measured. As the tunneling current depends exponentially on the distance
between tip and sample a vertical resolution of 1 x 1072 nm is achieved with the best
STMs today. Additionally, energy resolved information on electronic features of local
structures can be acquired at the same time with the STM. The correlation of this
information with the images provides a powerful approach to study surfaces on the
atomic scale. However, interpreting such data in terms of the surface morphology, its
electronic and its magnetic properties is by no means trivial. Therefore, great efforts
in the development of appropriate models have accompanied the application of the
STM from the very beginning [6-14].

There is a variety of effects influencing the tunneling of electrons through a vac-
uum barrier between two metal electrodes and many approximations have to be made
in order to model STM experiments. The nature of the approximations which are
required or can be made certainly depends on the specific STM problem addressed.
For the interpretation of STM images it is desirable to establish a practicable scheme
to model the experiments on the basis of the electronic structure of the sample while
taking the STM tip into account by appropriate assumptions. Inelastic effects like
the excitation of electron-hole pairs, plasmons, phonons, photons, or spin-flip pro-
cesses can then be neglected since they present a minor contribution in terms of the
STM images. However, these effects do become important when probing the local

3Quite recently a new technique in atomic force microscopy, the non-contact mode, has also led
to atomic resolution [3,4] but it will take much more research until the same level of sophistication
is reached as with the STM.



electronic structure of the sample by scanning tunneling spectroscopy influencing for
example the lineshape of electronic features or being essential in order to tunnel into
surface states. Further assumptions concerning the vacuum potential barrier, the
electric field, the interaction between tip and sample or the description of the tip and
sample electronic structure are inevitable. The elastic one-electron-tunneling, i.e. ex-
cluding the mutual interaction of the tunneling electrons, can be described exactly,
i.e. including tip-sample interaction, by scattering theory which is an approach used
by Noguera et al. [12], Doyen et al. [13], and Corbel et al. [15]. In order to use this
formalism the electronic structure of the combined system of tip and sample has to
be known. For a realistic system the computational effort for an accurate description
can be immense and often even unattainable. Since interaction effects can often be
ruled out by appropriate tunneling parameters, i.e. if the tip-sample distance is larger
than about 4 A, the pertubative approach proposed by Bardeen [16], neglecting the
interaction between tip and sample, is suitable. It provides a straight forward pro-
cedure to include the results of full fletched bandstructure calculations as an input.
The treatment of the tip is cumbersome in any case and simplifications are needed.
Applying the Bardeen approach, Tersoff and Hamann presented an approximation [6]
of the tip electronic structure that is both most simple in the implementation and
successful. It is the most widely used model and has contributed to the solution of a
great variety of problems concerning experiments on semiconductor as well as metal
surfaces. In this thesis the Bardeen approach in the treatment of Tersoff and Hamann
as well as its extension by Chen [11] is used.

A breakthrough in the understanding of the electronic structure of complex and
real condensed matter is due to the development of the density functional theory in
the last 20 years [17-19]*. This theory is an equivalent formulation of the quantum
theory of a solid as the many-body wavefunction formalism describing the mutual
interaction of electrons within an external potential, e.g. given by the lattice of the
nuclei. Today it is the state-of-the-art theory to compute the ground-state proper-
ties of crystalline solids from first principles and thus a powerful theoretical tool to
study the complex relationship between structural, electronic, chemical, and mag-
netic properties of condensed matter. Even the treatment of low-symmetry systems
like surfaces, clusters, and molecules is no obstacle anymore. There is a variety of
different density functional theory based methods available each optimized to deal
with a limited set of problems. Among these methods the full-potential linearized
augmented plane wave (FLAPW) method is one of the most accurate, general, and
widely applicable. With its aid one can interpret and understand experimental find-
ings as well as explore and predict trends of new materials leading to such surprising
results as the magnetically stabilized ¢(2 x 2) MnCu/Cu(001) surface alloy [20] and
the two-dimensional antiferromagnetism in monolayer transition-metal films on noble-
metal surfaces [21] prior to experimental verification. Thus the mutual interaction of
this theoretical method with predictive power with new experimental techniques and
findings has led to rapid progress in both, theory and experiment. Concerning the
simulation of STM experiments in the Bardeen formulation, the FLAPW method in
film geometry is the method of choice since the surface electronic structure and the

*W. Kohn was awarded the noble prize 1998 in chemistry for his contribution to this theory.
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vacuum region are described with remarkable precision.

While there have been rather many studies concerning the role of the electronic
structure of semiconductor surfaces on STM experiments there has been surprisingly
little work on the topic of metals, especially transition metals. While the presence
of dangling bond states on semiconductor surfaces supplies a rich basis for the un-
expected outcome of STM experiments and the need for theoretical models, con-
ventional wisdom claims that it should be rather simple and uninteresting in the
case of metal surfaces [22]. Since electrons screen the nuclear charges in metals
much more efficiently than in semiconductors STM images with atomic resolution
should simply display the surface atoms as protrusions. Therefore most of the ex-
planations of STM images on the atomic scale for metals have been based on hard
sphere models. This is definitely insufficient and mostly wrong as this work clearly
demonstrates. Another reason for the lack of STM experiments on metal surfaces
in combination with first-principles calculations is the difficulty to achieve atomic
resolution on metals compared to the case of semiconductors where many studies
also on the bias-voltage dependence have been reported. However, transition-metal
surfaces are currently of great interest in fundamental research as well as for the mag-
netic storage industry due to their astonishing magnetic properties. In the past, the
investigation of transition-metal surfaces and ultra-thin films has led to such surpris-
ing results as the enhancement of magnetic moments at surfaces, the occurrence of
magnetism for metals which are non-magnetic in bulk, two-dimensional antiferromag-
netism, non-collinear spin-structures, and the formation of two-dimensional surface
and sub-surface alloys. All of these effects occur at the atomic scale making the STM
an appropriate tool to study them.

In this work, the first systematic study of the role of the electronic structure in
STM experiments on the atomic scale for transition-metal surfaces is presented. It is
shown how the combination of first-principles calculations using the FLAPW method,
as implemented in the FLEUR code, with STM experiments provides new insight into
the investigation of this class of materials. In contradiction to conventional wisdom a
number of surprising results have been obtained. After an introduction to the basics
of density functional theory in chapter 2, the concept and some technical aspects of
the FLAPW method are discussed in chapter 3. The procedure of modeling STM
experiments on the basis of Bardeen’s approach is presented in chapter 4. Further an
efficient method to correlate calculated STM images and spectra with the electronic
structure is introduced. This approach leads to a selection rule concerning the con-
tribution of states from different parts of the surface Brillouin zone to the possible
patterns of the STM images.

The chapters 5 to 9 contain five different applications. We begin in chapter 5
with a study of the most simple case one can think of, pure transition-metal surfaces.
It is demonstrated that even in such a situation the interpretation of the acquired
experimental data can be difficult. Instead of imaging the atom sites as protrusions
as one would expect from conventional wisdom for metals, as a function of the bias-
voltage the STM image may display the hollow sites as protrusions. The effect, bias-
voltage dependent corrugation reversal, prevents one to simply deduce the adsorption
sites of deposited atoms from the images.



Further complications are introduced by the presence of different chemical species
at a surface which is a frequently encountered situation. To discriminate between
different kinds of atoms in such a multi-component system, i.e. to gain chemical
sensitivity with the STM, is far from trivial and although this has been an open topic
for a long time, there is no general recipe available. Chapter 6 gives evidence that
sometimes only the combination with first-principles calculations leads to a proper
understanding of the experimental results.

In a multi-component system the intermixing between different chemical species
need not be limited to the surface layer. Instead, impurities or even two-dimensional
alloy layers can be covered by one or more layers of the substrate material. While
the direct STM imaging of buried structures in semiconductors has been frequently
reported it has previously been impossible for metal systems. The images simply
displayed the arrangement of the surface layer atoms, and it had to be concluded
indirectly that the formation of a buried structure is taking place. This is consistent
with conventional wisdom that the effective screening of electrons in a metal prevents
perturbations to be visible for more than about one atomic layer. In chapter 7, we
present for the first time direct STM images of a subsurface alloy. Aided by the
calculations, the unexpected effect can be explained, and its application for a wide
class of materials is shown. On the basis of the electronic structure we further explore
the feasibility of imaging even deeply buried alloys by the presence of quantum well
states in such systems.

After having dealt with the influence of electronic, structural, and chemical prop-
erties in the previous chapters, we turn to the currently most important aspect of
transition metals in chapters 8 and 9 which are their exceptional magnetic prop-
erties. We start in chapter 8 by investigating the influence of different magnetic
configurations on the expected (non-spinpolarized) STM experiments. The systems
taken under scrutiny, Cr and Mn on Fe(001), display a complex correlation between
structure and magnetism on the atomic scale. A real-space probe with atomic res-
olution like the STM is therefore ideally suited to shed light onto this system. The
calculations reveal that the spectroscopic mode of STM should provide a distinction
between different magnetic configurations in the case of Cr while it is impossible for
the more complicated scenario of Mn. Surprisingly, calculated (atomic resolution)
STM images of a Mn-monolayer on Fe(001) display patterns related to the magnetic
superstructure rather than to the chemical only the use of spin-polarized STM (SP-
STM) [23-28] unit cell. However, due to the variety of competing antiferromagnetic
configurations for Mn it can be concluded that will lead to a safe discrimination
between the different magnetic configurations.

In chapter 9 a general theoretical discussion of the potential of SP-STM to re-
solve magnetism on the atomic scale is given by an extension of the Tersoff-Hamann
model. With its aid and the selection rule introduced in chapter 4 we can prove that
any magnetic superstructure within an arrangement of chemically equivalent atoms
leads to an SP-STM image displaying a pattern corresponding to the magnetic con-
figuration. There is not just a slight modulation of the non-spinpolarized STM image
reflecting the chemical structure but a complete domination of the contrast by the
magnetic structure. This general effect is demonstrated experimentally for a Mn
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monolayer on a W(110)-surface. This system is an example for the occurrence of
two-dimensional antiferromagnetism in monolayer films on non-magnetic substrates
predicted by S. Bliigel et al. as early as 1988 [21]. The STM experiment is in ex-
cellent agreement with the first-principles calculations and is the first unambiguous
proof for the existence of two-dimensional antiferromagnetism. An illustrative image
of the achieved magnetic resolution on the atomic scale is given in Fig. 1.1. Instead
of providing an explanation posterior to the experiment the calculations were per-
formed in advance and later beautifully verified in the experiment. Predictive power
can thus be attributed to the present theoretical approach. Finally, a conclusion and
a summary of this work are given in chapter 10.



Figure 1.1: Direct observation of the two-dimensional atomic scale antiferromagnetic
structure of a monolayer magnetic film by spin-polarized scanning tunneling microscopy
(SP-STM). All atoms of the monolayer film (red and green) are of the same chemical
species (Mn) and differ only by the orientation of their magnetic moment. Using a mag-
netic probe tip it is possible to measure an SP-STM image (see the height profile) showing
one kind of magnetic atoms (red) as hills and the other kind (green) as valleys, i.e. a direct
image of the atomic scale magnetic order within the magnetic film.
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Chapter 2

Density Functional Theory

In order to calculate the structural, electronic, and magnetic properties of a solid it
is necessary to solve the many-body Schrodinger equation describing the interaction
between the electrons and the interaction of the electrons with the nuclei. Thus, one
must find the eigenstates |U) and energy eigenvalues F of:

H|U) = E|W), (2.1)

where H is the Hamiltonian of the interacting system. It contains the kinetic energy
of all particles and the Coulomb interaction between electrons, electrons and nuclei
and between the nuclei themselves. Both, the eigenstates |U) and the Hamiltonian
H, depend on the positions r; and spins o; of all electrons as well as on the positions
of the nuclei R;. Since the motion of the electrons is much faster than that of the
nuclei one can neglect the atom motion or vibration to a good approximation by
fixing their positions. This is called the adiabatic approximation and is common to
the majority of electronic structure calculations. In the adiabatic approximation the
Hamiltonian can be given explicitly by:

“ hQ Z[@ Z[ZJG
H:;_% Z|r—r| Z|Y—RI| Z|RI—RJ| 22)

where 7 denotes the charge of the nucleus I. Today, there is no analytical or numer-
ical way of finding the solutions, i.e. the many-particle wave functions, to this Hamil-
tonian if more than a few electrons are considered. Therefore, one has to look for
possible reformulations of the problem or to introduce well-justified approximations.
In the Hartree-approximation, for example, one treats the electrons independently by
writing the many particle wave functions as products of single particle wave functions.
Further, the electron interaction term in the Hamiltonian is replaced by the electro-
static Coulomb potential of all electrons, the Hartree potential. Thereby the problem
reduces to finding one-particle wave functions in a periodic potential. If, in addi-
tion, the requirement of an anti-symmetric many-particle wave function is fulfilled
by forming a Slater determinant of single-particle wave functions one can generalize
this approach to the Hartree-Fock-approximation. In this way the Pauli-exclusion
principle is satisfied keeping any two electrons from occupying the same state. This
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approach is to a certain extent still successfully applied in quantum chemistry to cal-
culate properties of atoms and molecules, but it is not sufficient for the quantitative
description of electrons in bulk or even surface magnetism.

Since one is usually only interested in the expectation values of certain quantum-
mechanical operators (the observables), e.g. the total energy, the charge density or the
magnetic moment, and not in the enormous amount of information contained in the
many-particle wave function it is natural to think about an alternative formulation
of the problem. It is the idea of the Thomas-Fermi model to express all properties of
a system as a functional of the electron probability density alone. The model turns
out to be a rather crude one, as the kinetic energy is described in terms of the density
and no electron correlation is included. Therefore, it does not improve the results
of Hartree-Fock calculations significantly. Nevertheless in 1964 Hohenberg and Kohn
used the idea of this model [17] and derived an equivalent formulation of the many-
body Schrodinger equation which is the density-functional theory. This theory is the
basis of all modern ab initio or first-principles (parameter-free) electronic structure
calculation methods. The importance of this development was expressed recently by
awarding W. Kohn the noble prize 1998 in chemistry for his contributions to this
theory!.

2.1 Theorem of Hohenberg and Kohn

An important limitation of the density-functional theory as it has been derived by
Hohenberg and Kohn and applied in this work is it being a ground-state theory.
Thus it is actually applicable only for temperatures 7' — 0 K. Rather than the
many-electron wave function its central quantity is the probability density n of the
electrons given by the expectation value of the density operator:

N

n(r) = (Y(ry, Ty, o en)| Y 8(r — 1) [Yo(r1, 2, oo ). (2.3)

=1

In contrast to the many-electron wave function i the probability density n depends
on one three-dimensional space coordinate r instead of 10** for 1) making it easy to
handle. The theorem of Hohenberg and Kohn [17] generally applies to any many-
electron system with Coulomb interaction in an external potential V. which is in
our case given by the Coulomb interaction with the nuclei located at the lattice sites.
It states that the electron density ng of the ground-state is uniquely connected with
the external potential V. Together with the number of electrons N this defines the
problem completely. Since an integration in space of the electron density ng yields
the number of electrons, all properties of the ground-state can be expressed by its
electron density ng. The theorem is twofold:

e All ground-state properties are unique functionals of the ground-state electron

!The prize was shared with J. A. Pople who implemented the theory most successfully in the
field of chemistry in his GAUSSIAN code.
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density ng. For example, the total energy can be expressed as
EO = E[no] = F[no] + /no(r)Vext(r) dBT, (24)

where F'[n] is a functional independent of the specific system as it describes the
electron-electron interaction only.

e The total energy functional K[n] obeys a variational principle, i.e. it is mini-
mized for the ground-state electron density ng:

dE[n]

Eln] > E[no)l = £y = 5

= 0. (2.5)

no

The second part of the theorem provides a way of finding the ground-state density
by varying the energy functional with respect to the density. Up to this point the
many-body problem has only been reformulated and is hidden in the unknown func-
tional F[n]. For the practical applicability of the theory it is essential to find an
(approximate) description of this functional. Levy showed [19] that it can formally
be written as:

Fin] = min (Y|T + Ueel), (2.6)

where T' is the operator of the kinetic energy, U, is the Coulomb interaction between
electrons and 1 must be an anti-symmetric N-particle wave function, because of the
fermionic character of electrons. To my knowledge no practical application of this
formulation has been derived so far. Therefore, before one could even think of using
the density functional theory for practical purposes, it was a further basic step in
the theory necessary to construct an energy functional which led to the Kohn-Sham
equations [18].

2.2 Kohn-Sham Equations

The idea of Kohn and Sham leading to the practical applicability of density functional
theory was to map the many-particle problem to an independent particle problem in
an effective potential. Thus they have chosen as an ansatz for the energy functional:

Eln] = Tin] + Euln] + Fext[n] + Fx[n], (2.7)

where Ty[n] is the kinetic energy of non-interacting electrons, i.e. independent parti-
cles, and can be given explicitly by using single-electron orbitals ;(r):

T =2y~ [vwvssm e, (2.8)

where the sum is taken over all occupied states ¢ and the factor 2 accounts for each
orbital being occupied with a spin up and a spin down electron. Ey[n] is the Hartree
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energy describing the Coulomb interaction of the electrons in their electrostatic po-
tential and is given by:

Fuln] = i/Maf’r. (2.9)

2 lr — r/|

Fext[n] is the energy caused by the external potential:

Fexe[n] = / 1(1) Ve (1) &7 (2.10)

Finally all many-particle interactions and the correction to the kinetic energy due
to interacting electrons are contained in the exchange-correlation energy functional
FEyc[n]. The exchange interaction is caused by the requirement of an anti-symmetric
wave function in connection with the Coulomb repulsion of electrons. It is therefore
possible to gain energy by aligning electron spins parallel since the orbital wave
functions must then be anti-symmetric in the real-space coordinates which reduces
the Coulomb energy. It is this mechanism which leads to the magnetic moments of
atoms or solids, i.e. a difference in the number of spin up and spin down electrons.
The correlation of electron motion on the other hand is a classical many-particle effect
caused by their Coulomb interaction.

The great advantage of dividing up the energy functional in the form as written
in Eq. (2.7), i.e. into four contributions is motivated by the quite accurate description
of the kinetic energy, which is a major contribution to the total energy. Using the
kinetic energy of free electrons for this part was a serious drawback of the Thomas-
Fermi model. The electron density can now be expressed by the sum over all occupied
single-particle orbitals:

n(r) =2 lr) (2.11)

Again the factor 2 enters to account for the double occupation of orbitals. In principle,
the orbitals ¢;(r) have not been introduced to be interpreted in the single-particle
picture, for example to describe excitations. The main quantity is still the electron
density n, but practical applications show the usefulness of the direct interpretation
of the 1,;’s as single-electron states. Very often the physics can be understood on the
basis of this concept. Further, it can be proved explicitly that the excitations are
described by this theory for energies near to the Fermi level.

Instead of varying the energy functional of Eq. (2.7) with respect to the electron
density n one can also insert Eq. (2.11) into the energy functional and vary with
respect to the single-electron orbitals ¥. The constraint of a constant number of
particles can be taken care of by requiring the orbitals to be normed. This introduces
Lagrange parameters ¢;, which can often be interpreted as excitation energies, and
the final result of applying the variational principle are the Kohn-Sham equations:

<— %V2 + Vir(r) + Ve (r) + ch(r)> Pi(r) = eiy(r). (2.12)
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This equation is equivalent to a one-particle Schrodinger equation in an effective
potential consisting of the Hartree potential Vi;:

Via(r) = eQ/ﬂdST, (2.13)

r —r'|
the external potential Vi and the exchange-correlation potential Vi.:

_ 5Exc[n]

Vae(r) Sn(r)

(2.14)

Both the Hartree and the exchange-correlation potential depend on the electron den-
sity and therefore these equations can only be solved self-consistently. By choosing
the electron density of the atoms the starting potentials are defined, and by solving
Eq. (2.12) and inserting the solutions into Eq. (2.11) an output density is generated.
This output density is mixed with the input density? to a new starting density and the
process is repeated. If the output and input densities differ only marginally the cal-
culation has converged and the ground-state density has been found. It is interesting
to note that solving the Kohn-Sham equations is not more demanding than solving
the equations of the Hartree-approximation and is far easier than in the Hartree-Fock
approximation using non-local potentials.

2.3 Spin Density Functional Theory

In order to describe magnetic properties of atoms, molecules or solids it is neces-
sary to extend the theory to a spin density functional theory. This is possible in a
straight forward way by introducing in addition to the electron density n(r) the vector
of the magnetization density m(r) which results from the concept of Pauli-spinors
accounting for the electron spin. If only collinear spin structures are considered,
i.e. ferro- and antiferromagnetic configurations, only a scalar magnetization density
m(r) is necessary since the two spinor components can be decoupled. Alternatively,
one can operate with majority n4(r) and minority n (r) spin densities as independent
variables since they are related by:

n(r) = na(r) + my(r), (2.15)
m(r) = nq(r) — ny(r). (2.16)

A theorem equivalent to the one of Hohenberg and Kohn can be proved stating that
an unique energy functional of majority and minority spin densities exists which is
minimized for their ground-state densities:

E[ng,ny] > E[nl,n{] = Ey for ny #nf and ny # nj. (2.17)

?Different methods have been developed in order to improve the process of converging a density.
Simply using the output density as new starting density usually does not lead to convergence at all.
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By introducing an exchange-correlation energy functional Fyc[ng,n;] depending on
both spin densities one obtains a set of Kohn-Sham equations for each spin direction:

p4

(g Vi) + Vaul) £ Vi) ) 0 06) = ), (219)

where o = (1,]) and the spin-dependent exchange-correlation potential V.7:

Vee(r) = % (2.19)

The spin densities are given by the spin-dependent orbitals:
ng(r) =Y [¢7(r)[. (2.20)

The energetically lowest orbitals are filled until the number of occupied orbitals is
equal to the number of electrons (in the unit cell). Thus a difference in the number
of majority and minority spin electrons may remain which determines then a finite
magnetic moment for the ground-state.

2.4 Local Spin Density Approximation

In the previous two sections it has been shown how the concept of density functional
theory can be mapped to a practical solvable problem. Still no approximations have
been made, and the full many-body problem is contained in the Kohn-Sham equa-
tions. All many-particle interactions are described by the exchange-correlation energy
functional or, equivalently, the corresponding potential. Since no explicit form can
be given for this essential term the value of the whole approach depends on finding
an adequate approximation. Most commonly the local spin-density approximation
is being used. Its idea is to approximate the exchange-correlation energy locally by
that of an homogeneous spin-polarized electron gas with spin-densities as found at a
given position r, i.e. by:

Bulnr) = [ dmo5on(e),ny(e) nfe) 2.21)

Today there are methods of calculating the exchange-correlation energy per electron
of an interacting spin-polarized homogeneous electron gas ¢'°™°¢(n4 n|), i.e. with
spatially constant spin-densities, with different parameterizations. They result from
approximations to the analytical solution of the many-body problem utilizing the
random phase approximation [29,30]. The most accurate ones are derived from
numerical Quantum Monte Carlo calculations [31,32]. Although the local spin-density
approximation was believed to be accurate only in the limit of slowly varying electron
densities the practical application also to very inhomogeneous electron densities, e.g.
of transition metals, has been surprisingly successful. The reason for this is seen in

the mutual cancellation of different errors inherent to the approximation.
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2.5 Stoner Model of Ferromagnetism

Since many of the metal surfaces discussed in this work possess magnetic ground-
states it 1s worthwhile describing the Stoner Model of ferromagnetism to provide a
basis for the interpretation of the more complicated systems. In the following we will
show how one can derive the model directly from the spin-density functional theory.

In general, the magnetization density m(r) is small compared with the electron
density n(r), and therefore one can linearize the exchange-correlation potential V.7
of the spin-polarized case around the non-spinpolarized case V2:

Ve (r) 2 V2(r) F Vaelr)mlr), (2.22)

where o denotes the spin direction (1,]). Higher order terms in the magnetization
density m(r) are neglected. Thus there is a decrease of the potential for the majority
spin electrons (1) and an increase for the minority spin electrons (]). Stoner intro-
duced a parameter I, the so-called exchange integral, to describe this shift in the
potential in a simple manner and Eq. (2.22) becomes:

1
Vo) = VA) F SIM, (2.23)

where M is the magnetization of an atom in the solid defined by the integral of the
magnetization density over the volume of the atom:

M = / m(r) d°r. (2.24)

va.tom

Since the potential of the non-spinpolarized case has only been modified by a constant,
the eigenstates of the Kohn-Sham equations remain unaltered while the energies are
shifted by the constant potential change:

1
Y7 (r) = Y(r) with ¢/ =€) F §[M, (2.25)

where ¥ are the eigenfunctions and ¢? the corresponding energy eigenvalues of the
non-magnetic problem. Consequently, also the density of states of the majority and
minority electrons can be related to the density of states of the non-magnetic one by:

n?(€) = n®(e + %[M). (2.26)

Given the density of states and the total number of electrons N, we can calculate the
Fermi energy Fp of the system:

N = 7 (no(e + %[M) +n%(e — %]M)) de. (2.27)
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Figure 2.1: Graphical solution of Eq. (2.29). Figure has been taken from Ref. [34].

Analogously, the magnetic moment M is given by:
Ep
1 1
A4:l/@P@+§JM)—n%e—§]MDde (2.28)

From Eq. (2.27) the Fermi energy can be computed as a function of the magnetization,
i.e. B = Erp(M) and by inserting this into Eq. (2.28) we obtain an equation of the
form:

M = F(M) (2.29)

for the magnetization itself, where F'(M) is given by the right-hand side of Eq. (2.28)
with K = Erp(M). Several characteristics of the function F(M) can be proven:

(i) F(0)=0, (ii) F'(M) >0, (iii) F(M — f00) = + M, (2.30)

(iv) F(M) = —F(—M). (2.31)

In Fig. 2.1 two possible curves for F(M) consistent with the relations (i) to (iv)
have been sketched. In case (A) only the solution M = 0 is possible while two
additional solutions of Eq. (2.29) exist for case (B): M = +Ms. In (B) the non-
magnetic state becomes unstable with respect to the ferromagnetic state. In order
to find ferromagnetic solutions to Eq. (2.29) (see case (B)) the function F/(M) must
increase more than linearly at the origin, i.e. F'(0) > 1, which leads to the Stoner
criterion of ferromagnetism:

In°(Er) > 1. (2.32)

Thus the occurrence of ferromagnetism depends on the exchange integral [ and the
density of states n® of the non-spinpolarized treatment at the Fermi level Er. Ob-
viously, In°(Er) has to be sufficiently large to fulfill the instability criterion (2.32).
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I is basically an atomic quantity and depends on the nuclear number. Within each
transition-metal series it varies little. It is typically largest at the end of the series
and it holds that I35 > I3 > Is4. The density of states n° is approximately inversely
proportional to the bandwidth W, n® oc 1/W. The bandwidth W, on the other hand,
depends on the overlap of the wave functions of neighboring atoms and is propor-
tional to the square root of the number of nearest neighbors N, W o /N. As the
number of nodes of the wave functions increases from zero to two from the 3d to
the 5d wave functions, there is also an increased delocalisation and thus an increased
overlap. Correspondingly, the bandwidth follows the relationship W3y, < Wiy < Wiy
and consequently n3; > n9, > nd,. If we choose numbers for these trends based
on general arguments, we find that ferromagnetism occurs only for Fe, Co and Ni.
With a reduction of the coordination number N from bulk to surfaces, thin films and
finally to atoms the tendency towards magnetism increases. Atoms are the limiting
case with a bandwidth zero. Thus they always possess a magnetic moment if shells
are only partially filled which is expressed in Hund’s first rule. The rare-earth metals
with their strongly localized f-electrons are related to the case of atoms while the
magnetism of the transition metals, i.e. metals with partially filled d-shells, is called
band or itinerant magnetism since the same electrons are responsible for transport
and magnetism. In the reduced dimensions of a thin film ferromagnetism can occur
even for transition metals which are non-magnetic in bulk (for example Ti becomes
ferromagnetic as a monolayer film on a noble-metal substrate [33]). Along these
lines a whole new class of materials can be created with a variety of new magnetic
structures.

The Stoner criterion can be generalized to arbitrary spin configurations, for ex-
ample antiferromagnetic structures which can be represented by a spin wave with a
wave vector q, i.e. a magnetization density that is modulated within the crystal. The
generalized Stoner criterion states that

Ix(q) > 1, (2.33)

where x(q) is the g-vector dependent susceptibility. The transition metal bulk anti-
ferromagnets are Mn and Cr with complicated ground-states, and especially for Mn
the correlation of structure and magnetism is complex. Quite generally one can state
that the elements at the beginning or at the end of the 3d,4d and 5Hd-row show a
tendency towards ferromagnetism while the elements with approximately half-filled
d-bands, e.g. Mn and Cr, tend to antiferromagnetism. For a further discussion of
antiferromagnetism we refer to the literature (e.g. [34]).
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Chapter 3

The FLAPW Method

In the previous chapter the task of computing the properties of a solid has been re-
duced from a many-body problem of interacting electrons to finding the solutions of
a kind of single-particle Schrodinger equation with an effective but density dependent
potential, i.e. self-consistently solving the Kohn-Sham equations (Eq. (2.12)). In this
chapter we introduce and shortly discuss one specific technique for computing their
solutions, the Full-potential Linearized Augmented Plane Wave (FLAPW) method.
Describing this powerful, but technically demanding method which has been devel-
oped, improved and extended for some 20 years in detail is beyond the scope of this
work and for a deeper understanding it can only be referred to a recently published
book [35]. Further, Ref. [36,37] are recommended to learn about the wide field of

technical aspects.

A great deal of applications of density functional theory in the field of condensed
matter deal with crystalline solids and their surfaces. These possess (external) po-
tentials with translational symmetry. This enables one to apply the Bloch Theorem
(see for example [38]) stating that every eigenstate of the Schrodinger equation can
be classified by the quantum numbers band index v and wave vector k. Further, it
can be expressed by:

Vi (1) = exp (ikr) Y ¢ exp (iGr), (3.1)

G

where G is a vector of the reciprocal lattice and the ¢& are Fourier expansion coef-
ficients.

3.1 The Eigenvalue Problem

There are a variety of numerical techniques available today for solving the Kohn-Sham
equations all of which — some more, some less — are particularly appropriate for certain
classes of materials, structural configurations, or to compute special properties with
high accuracy. Most of them share the ansatz of expanding the wave function ¢y, in

19
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a set of basis functions ¢,:

N

Ya(r) = D e, dkn(r), (3.2)

n=1

with the number of basis functions N. Inserting this ansatz into the Kohn-Sham
equations (Eq. (2.12)) we arrive at an eigenvalue problem for the eigenvalues e, and
expansion coefficients ¢} :

(Hk - 6kusk)cku = 07 (33)

where the Hamiltonian matrix Hy is given by:

Hp = / G (1) Horen () &P, (3.4)

and the overlap matrix Si is defined as:

Sﬁz/ﬁammwfn (3.5)

Since the set of basis functions is usually non-orthogonal the overlap matrix differs
from the unity matrix, and equation (3.3) is a generalized eigenvalue problem. It can
be transformed into a normal eigenvalue problem by decomposing the overlap matrix
through a Cholesky factorization. In general Hy and Sy are hermitian matrices which
become symmetric if the crystal has inversion symmetry. It is important to note that
the computation time required to solve an eigenvalue problem scales with the order N
of the matrix to the third power. Thus it is highly desirable to have an effective basis
set, i.e. one which needs only a small number of functions N to describe the electron
wave functions accurately. Another aspect important for the choice of a basis is the
generation of the Hamiltonian and the overlap matrix which can also be quite time
consuming if the basis set is complex.

In spin-density functional theory the effective potential and thereby also the
Hamiltonian are spin-dependent. For collinear spin structures the Hamilton matrix
becomes block-diagonal which leads to two eigenvalue problems of the form (3.3),
one for each spin direction o € (1,]). Correspondingly, the wave functions ¢y gain
an extra spin index o. As the treatment of both spin directions is equivalent and for
the sake of simplicity the spin index is neglected in the following but may easily be
added in all results.

3.2 Choosing the Basis Functions

The choice of the basis functions together with the approximations made to express
the effective potential and the electron density defines different techniques and leads
to their names. For example, plane waves are a very natural choice since they fulfill
Bloch’s theorem (compare Eq. (3.1)) and are easy and efficient to deal with in terms
of computing matrix elements of quantum mechanical operators like the Hamiltonian.
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Their major drawback is the high number of plane waves needed to express the strong
oscillations of electron wave functions near to the atom cores where electrons possess
high kinetic energies. Therefore one can either modify the potential in the region near
to the nuclei reproducing the correct band energies without finding the right wave
functions (this is the concept of the pseudopotential methods) or choose a different
set of basis functions for this special region of space. The latter is the concept of
the augmented plane wave (APW) based methods and has first been proposed by
Slater [39]. Space is partitioned into non-overlapping spheres (so-called muffin-tins)
located at the atom sites and the interstitial region in between them. In the interstitial
region, where the potential is almost constant, plane waves are still chosen as basis
functions. In the spheres, on the other hand, a product of spherical harmonics Y}, ()
and solutions u;(r) of the radial Schrédinger equation with the spherically symmetric
part of the effective potential are used:

‘ % exp [i(k + G)r] if r € Interstitial,
¢k, r) = ST AS(K)wuy(r) Yy, (7)  if r € Muffin-Tin Sphere a,

im

(3.6)

where [m are the angular momentum quantum numbers, €2 is the volume of the unit
cell and the basis functions are characterized by the wave vector k and the reciprocal
lattice vector G. The coefficients A?S(k) are chosen so that the basis functions are
continuous at the sphere boundaries of the atom a. The radial Schrodinger equation®:

( Rdr R+ 1)

5 s T 5 + Ver(r) — E;) ruy(r) =0 (3.7)

contains the energy F; of the valence electrons for the angular momentum [. If we
insert this ansatz for the basis functions into the Kohn-Sham equations a nonlinear
equation for the energy eigenvalues results which is non-trivial to solve. If, on the
other hand, the energy FE; would be fixed we would obtain a simple matrix eigen-
value problem which can be solved with standard matrix techniques. However, the
practical application shows that this is impossible within the APW idea since the
basis functions lack variational freedom if F; is fixed for all valence electrons of a
given [-quantum number and one cannot describe the wave functions and eigen ener-
gies of all electrons within a reasonable energy interval with sufficient accuracy. To
overcome this difficulty is the point of the linearized augmented plane wave (LAPW)
method [40]. One can expand the solution of the radial Schrodinger equation w;(r, F)
in a Taylor series around the solution with energy E;:

ul(r, E) = UZ(T, El) + (E — Eg)a%ul(r, E) E—E, + O((E — EZ)Q). (38)

The error in the wave functions scales quadratically with the variation (£ — E;) and
thus the error in energy is of order 4. Therefore, it becomes possible to describe the

Tn principle one has to deal with the Dirac equation at this point what is actually done in the
FLAPW code used in the present work. Since it is not of fundamental importance for the idea of
the LAPW method we neglect this further complication here.
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Kohn-Sham solutions of the valence bands by a single linearization energy for each
orbital character [, e.g. the s-, p-, and d-bands if we include also the energy derivative
of u; into the basis set. The band energy ey, and expansion coefficients CEL of each
state are then determined by a single diagonalization of the Hamiltonian matrix. The
energy parameters F; are optimized in each iteration of the self-consistency cycle
by setting it to the center of mass of the occupied bands with [-orbital character.
The basis functions in the muffin-tin spheres are modified accordingly in the LAPW
method:

bak,r) = 3 [ARS(k)u(r, B1) + BiS (Kiu(r, B1)] Vi (8), (3.9)

im

where w;(r, F;;) denotes the partial derivative of wu;(r, £;) with respect to the energy,
and it can be calculated by differentiating Eq. (3.7). The freedom of choosing the
coefficients A% (k) and BS(k) is exploited to make the basis functions and their
derivatives continuous at the sphere boundaries.

By construction the basis functions and thus also the calculated valence states are
orthogonal to any function with vanishing amplitude outside the muffin-tin spheres.
This makes it possible to treat the core states separately and still calculate the true
valence wave functions. As we include all electrons the LAPW method is called
an all-electron method. Because spin-orbit effects are of strong influence for the
low lying core states the relativistic Dirac equation is applied?. From the crystal
potential only its spherical symmetric part is used for the core states which presents
a minor approximation. Special programs are applied to find the core states but the
self-consistency cycle includes core and valence states equally.

In the APW-method we used a spherical potential inside the muffin-tin spheres
and a constant potential in the interstitial region. This is certainly a good approxima-
tion for metals in close packed structures. However, for materials in open structures
such as oxide or nitride materials, the treatment of vacancies, and surfaces or for
materials with crystal structures of low symmetry, this approximation can lead to
incorrect results. An extension of the LAPW-method capable to deal with these
problems is the full-potential LAPW (FLAPW) method, in which no shape approx-
imation is made for the charge density nor the potential. The exact form of the
charge density or the potential is described in section 3.4. Being able to include also
non-spherical potentials in the spheres is an additional advantage of extending the
basis functions by the derivative of the radial solution.

3.3 Describing Surfaces

The approach developed up to this point is sufficient if we limit ourselves to the
treatment of bulk crystals. But currently there is a large interest in surfaces and their
properties and obviously this is what scanning tunneling microscopy is all about. In

2The scalar-relativistic approximation to the Dirac equation is used for the valence electrons.
Spin-orbit interaction effects like the magnetic anisotropy can still be included in a perturbation
treatment.
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\ Z

Figure 3.1: Film geometry used in the FLAPW code. The unit cell is sketched. It
contains a number of lattice planes with the desired surface orientation and is terminated
to both sides by a semi-infinite vacuum region. Space is divided into the three regions:
(I) Muffin-Tin Spheres at the atom sites, (II) Interstitial in between, and (III) the semi-
infinite Vacuum. At the boundary of two regions the basis functions and their derivatives
are fitted continuously.

principle it is still possible to hold onto the previously sketched scheme by simply
expanding the unit cell in one direction (commonly the z-direction) without defining
any atom positions there. Thereby we create a (perfect) vacuum in between repeated
slabs of the crystal. This is called the supercell geometry. The wave functions in the
vacuum (which is part of the interstitial region) are expanded in plane waves according
to the previous section. At this point we leave the track of Slater who proposed to
describe the wave functions by the most appropriate type of basis functions in every
region. It is well known from elementary quantum mechanics that wave functions
decay exponentially inside a potential barrier given by the vacuum region in our case.
Thus a large number of plane waves will be necessary to give an accurate expansion
of the wave functions and the charge density in the vacuum region necessary for
STM calculations. For practical purposes codes using a plane wave expansion in the
vacuum are restricted to distances of about 3 A from the surface since numerical noise
is present at larger distances. An extension of the approach closer to Slater’s original
motivation of the APW method is realized with the concept of the film geometry [41,
42]. Instead of repeating slabs which are separated by interstitial space®, a single

31f the separation between these slabs is too small they can even interact.
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film is created by approximating the semi-infinite substrate by a finite number of
lattice planes of the desired surface orientation and thickness. The film is terminated
on both sides by a semi-infinite region, the vacuum region (see Fig. 3.1). The film
thickness are chosen such that the surface properties are converged. In film geometry
the FLAPW-method is truly two-dimensional, and we work with two-dimensional
Bloch vectors k. Further, due to the boundary condition of the potential at infinity
(V(2 = o0) = 0), an absolute energy scale is introduced.

The vacuum region present additionally to the muffin-tin spheres and the intersti-
tial is provided with its own basis functions adjusted to the properties of the vacuum:

daa.(kpr) = |Aga, (k)ug (ky, 2, £) +

BGIIGJ. (kll)uG” (k||7 2, EU)

exp [i(k; + Gy)ryl, (3.10)

where the reciprocal lattice vector G = G| + G, has been split into its part par-
allel and perpendicular to the surface. While Gy is simply an element of the two-
dimensional reciprocal lattice the perpendicular contribution is given by:

_ 2mq

G, ="5h, (3.11)

where ¢ is an integer number, fi is the unit vector normal to the surface, and D is
chosen to be larger than the film thickness D by about twice the muffin-tin radius of
the surface layer. The z-dependent part of the basis functions u is a solution of the
one-dimensional Schrodinger equation with the laterally averaged part of the vacuum
potential Veg(2):
2 7 2
(—h—d— + Ver(2) + "

2m dz?

o, ey + Gy)’ = Eug, (ky, 2, B,) = 0, (3.12)
where F, is the energy parameter for the linearization of the vacuum basis functions
analogous to the Fj’s used for the basis in the muffin-tin spheres. As in Eq. (3.9)
u denotes the energy derivative of u. The basis functions and their derivatives are
again matched continuously at the separation surface of the two regions, i.e. to the
plane waves of the adjacent interstitial region (see also Fig. 3.1), by the coefficients
AG”GJ_(kH) and BGHGJ_(kH)'

In summary, the basis functions in the vacuum region are composed of two-
dimensional plane waves parallel to the surface, which exploits the remaining two-
dimensional translational symmetry and of exponentially decaying functions u and
t in the z-direction. This choice results in a flexible and numerically accurate de-
scription of the vacuum wave functions and finally in the possibility to simulate STM
measurements performed at distances of 4 to 13 A from the surface. The accuracy of
the film geometry to describe a semi-infinite crystal depends on the extent to which
neglecting the interaction between the two surfaces of the film is justified. Further,
it has to be checked that the inner film layers possess the electronic structure of
the bulk. In order to satisfy these requirements a sufficient number of film layers is
needed. In the case of metals 10 to 15 layers have proven to yield good results. This
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is certainly due to the effective electron screening in metals with screening length of
the order of one to two atom layers.

The number of basis functions needed to accurately describe the electronic struc-
ture of a surface depends on its constituents as well as the properties to be calculated.
A normal starting point is 80 to 100 basis functions per atom in the unit cell. The
number is fixed by restricting the reciprocal lattice vectors by:

|k|| + G| < kmax- (313)

The accuracy of any calculation is improved by taking more functions into account
and it must be checked whether the quantities in question vary on the level of accuracy
desired. Thus the number of basis functions is not a parameter in a sense that it
imposes a fundamental limit upon the method.

3.4 Representation of Density and Potential

Before we can discuss how the effective potential contained in the Hamiltonian matrix
is calculated, a representation of the potential and of the charge density needs to
be chosen. In terms of storing both quantities efficiently and treating their strongly
varying parts inside the muffin-tin spheres adequately it is natural to apply the three-
fold representation of the wave functions once more to the potential and the charge
density. Thus we use plane waves in the interstitial and vacuum regions* and spherical
harmonics in the muffin-tin spheres. As the charge density is given by the square of
the wave function, the cut-off parameters in the wave function induce natural cut-
off parameters for the charge density and potential. These are Gpax = 2kmax for
the plane wave cut-off and Lpax = 2lnax for the cut-off in the angular momentum
representation in the atomic spheres. Thus it is reasonable to reduce the number
of stored coefficients. This can be done by exploiting the crystal symmetries which
must be fulfilled for quantities like the potential and charge density. One can use (i)
the operations of the space group for the plane waves of the interstitial and vacuum
as well as to reduce the summation over the full Brillouin zone to the irreducible
wedge, (ii) the point group operations of atom sites for the spherical harmonics in
the muffin-tins, and (iii) restrict the calculation to the non-equivalent atom sites and
compute the others by the relating symmetry operations.

Applying the space-group operations {R|t}, each composed of a point operation
R and a translation t, to the plane waves, results in the generation of so-called star
functions ¢,(r), i.e. symmetrized plane waves. They are defined by:

ba(r) = Nlop " exp [IRG(r + t)], (3.14)

where N, is the number of space group operations. By construction these functions
are orthogonal and possess the space group symmetries of the crystal. They can be
applied to expand any quantity invariant to the corresponding symmetry operations.

4In the vacuum the Fourier coefficients become z-dependent.
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The name star function is due to the fact that each function ¢, contains all plane
waves with reciprocal vectors which are related by point operations and thereby form
a star of vectors. The reciprocal vectors summarized in such a star are all of the
same length although not all vectors of the same length need to be contained in
one particular star function. Each star function contains a large number of plane
waves, while each plane wave is an element of a single star function only. Hence, the
number of coefficients which have to be stored decreases tremendously. While the
star functions depend on the three-dimensional space coordinate r in the interstitial
they become two-dimensional in the vacuum.

In the muffin-tin spheres we can apply the point-group operations of the atom
sites which can and in general are different from site to site. We summarize the
spherical harmonics Y}, at site « to so-called lattice harmonics K in the form:

v,m

K (fa) =Y ¢5 0 Yim(Ba) with ry =1 — Ry, (3.15)
where Ry is the position of atom a and v is used for numbering the lattice har-
monics. Usually a limitation of the angular moment to [ = 8 is sufficient for the
expansion of density and potential in the muffin-tin spheres.

Finally, we can summarize the representation of charge density and potential by
giving it explicitly for the density:

S nsdPP(r) r € Interstitial,
n(r) = Y onl(r)K2(t,) r € Muffin-Tin Sphere o, (3.16)
S ons(2)¢P(r)) r € Vacuum,.

Note that the expansion coefficients n2(r) in the muffin-tin spheres have to be calcu-
lated on a (exponential) radial mesh r; and in the vacuum on a (linear) z-mesh, z;,
i.e. perpendicular to the film surface.

3.5 Generating the Potential and Matrices

In order to generate the Hamiltonian matrix entering the eigenvalue problem:
, h?
HG’G(k) = /(pa;(k, I') {—%VQ + V;g(r) CbG(k, I') dST’, (317)

we need to calculate the effective potential V.g(r) consisting of the exchange-
correlation potential and the Coulomb potential due to the nucleus and the electron
charge. The exchange-correlation potential can be computed rather easily in real
space, where it is diagonal. The charge density in the sphere is expressed in real
space and the calculation of the exchange-correlation potential is straight forward.
The charge density in the interstitial region is stored in reciprocal space and has to be
transformed into real space by a discrete Fast-Fourier transform. Then the exchange-
correlation potential is calculated and back-transformed into reciprocal space and
stored in the representation described in the previous section.
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To calculate the Coulomb potential of an arbitrary periodic charge distribution is
a non-trivial problem though and for a long time it has simply been treated as in the
APW-method discussed before: spherical charge density and potential in the spheres
and constant charge density and potential in the interstitial region. As mentioned
before this is a major deficiency if open structures like surfaces or molecules are
considered where the bonding is highly non-spherical. Fortunately, a solution to the
problem has been developed by Weinert [43] and it has been implemented successfully
in the present code.

The idea of the method can be sketched as follows. The charge distribution inside
the muffin-tin spheres leads to certain multipole moments outside of them, i.e. in the
interstitial, which on the other hand do not uniquely define the charge distribution
in the spheres. Thus one can construct a new pseudo-charge density distribution
in the spheres reproducing the multipole moments of the true charge density in the
interstitial region. Further, the freedom of choice can be used to represent this pseudo-
charge density by a rapidly converging Fourier expansion. This makes it possible to
solve the Poisson equation for this charge density in a trivial way in Fourier space:

. 47T,0pseudo(G)

This potential is the true Coulomb potential in the interstitial region including the

[Zaa(e) (3.18)

muffin-tin sphere boundary. The potential inside the muffin-tin spheres can be easily
computed by means of a standard Green’s function technique (e.g. [44]):

1 seudo aGD(r7 r/)
V2T (r) = /p(r')GD(r,r') - yp Y pseud (r')Tda', (3.19)
MT SMT
where Gp(r,r’') is the Green’s function for Dirichlet boundary conditions and 83(11,7

is its normal derivative on the sphere boundary. The first integral includes the true
charge density and is over the volume while the second integral is over the surface
of the muffin-tin sphere. In the case of the film geometry with a vacuum region the
method is extended to take care of the additional vacuum charge.

The synthesis of the Hamiltonian matrix can further be split into three parts:

H = Hpmr + AWns + AWy, (3.20)

where Hpyt contains the kinetic energy and the contributions to the potential used
for the construction of the film-muffin-tin basis functions (making this part easy to
calculate), AVyg consists of the non-spherical corrections to the muffin-tin potential
and AWy contains the G # 0 contribution of the interstitial and vacuum potential,
called the warping and corrugation contribution, respectively.

The calculation of the overlap matrix S(k) is decomposed into the three regions

of space defined by the LAPW method:

Saak) = 3 / 6t (k, 1) (k, ) dPr + / %exp[i(G’—G)r]@(r)dsr

Y MTa cell

/ bei(k,r)da(k,r) d’r, (3.21)

Vac
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where we have inserted the plane waves in the interstitial explicitly and the step
function O(r) cuts out the interstitial region by being zero at positions in the vacuum
and inside the muffin-tin spheres and one everywhere else. While the two integrals
one and three of Eq. (3.21) can be expressed after some algebra by the matching
coefficients and specific values of the basis functions, the second part is equivalent to
finding the Fourier expansion of ©(r), which is slowly convergent. Since we are using
a cut-off for the basis functions the problem is fortunately simplified to finding the
appropriate representation of O(r) to integrate functions with a finite Fourier series.
It can be shown that for this purpose it is sufficient to truncate the Fourier expansion
at the maximum G of the function to be integrated:

S — Y e lGle) oxp (—iGR,)  if G < Grnax,

0(G) = a ‘ (3.22)
0 if G > Ghax.

Gmax must be twice the number of the cut-off k.« for the basis functions since these
enter twice in the calculation of matrix elements. A further simplification for both
matrices can be achieved by making use of an inversion symmetry center if present.
By placing the origin of the coordinate system at the inversion center the matrices
become real and symmetric.

3.6 Brillouin Zone Integrations

In the previous section the generation of the matrices has been discussed. Both,
the Hamiltonian and the overlap matrix, depend on the Bloch vector k, and the
eigenvalue problem is solved for a chosen set of k vectors. The electron density n and
any other quantity of the crystal are calculated by summing over all occupied states.
For a crystal these summations become integrals over the Brillouin zone (BZ):

o)=Y o = Y [ (o L (3.23)

(2m)?
Y BZ

The most common techniques to perform these integrals efficiently are the tetrahedron
method [45,46] and the special k-point method [47]. Obviously, it is quite important
to restrict the calculations to few k-points since each corresponds to the set-up and
the diagonalization of the eigenvalue problem.

The special k-point method applied in the code used in this work, i.e. the FLEUR
code, is based on the idea that smoothly varying functions can be integrated by
the knowledge of their values at specific points chosen to integrate plane waves up
to a certain cut-off without error. The integration is then replaced by a weighted
summation over these values. The weights do not account for the occupation and
problems occur when dealing with metals which possess intersecting bands at the
Fermi energy. The problem is solved by smearing out the occupation of the states at
the Fermi energy Er which is done by weighting each state with the Fermi distribution
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function:

/myﬁ

where kg is the Boltzmann constant, 7" is the temperature, and w(k) denotes the

Pk ,—E !
= Yl e (2 41 L )
” kgT

weight of the special point k. The temperature is chosen according to the density of
the mesh of special points and depends also on the energy difference between bands.
The Fermi energy is computed iteratively by the requirement that the number of
occupied states must be equal to the number of electrons in the crystal.

3.7 Calculating the Total Energy

The total energy is the most important of all ground-state properties since its vari-
ation leads to the correct ground-state density. Further, it is an important quantity
in terms of the equilibrium configuration of a crystal. For example, it depends on
the geometric arrangement of the atoms in the unit cell, the crystal lattice, the lat-
tice constant, the magnetic order, and other constraints externally exposed on the
system. By comparing the ground-state energy of different configurations we can
find the energetically most favorable one which the system will reach if the thermal
energies allow to overcome possible formation barriers. It is thus desirable to find an
accurate way of calculating this quantity.

As discussed in Eq. (2.7) we express the total energy of the electrons as a sum of
the kinetic energy of non-interacting electrons, the Hartree energy, the energy due to
the external potential caused by the nuclei, and the exchange-correlation energy of
the interacting electrons. In addition to these terms the Coulomb energy resulting
from the mutual interaction of the nuclei Fj; enters in the total energy:

Eln] = Ts[n] + Unn] + Fext[n] + Ei + Fxc[n]. (3.25)

The large kinetic energy term can be calculated reliably by making explicit use of the
Kohn-Sham equations which leads to:

core valence

=Y 6+ ) wkjaw - /N(r) [Vo(r) + Vie(r)] &r, (3.26)

where ¢, are the eigenvalues of the core states and n denotes the total electron charge
density, i.e. core and valence electron charge. The three next terms of Eq. (3.25) are
summarized as the potential energy U[n] and one can rewrite this term in the following
way:

€ n(r') 75
U[TL] = 5 / dSTTL(I') / dgrlm — Z m —
af

crystal rystal
a,B)#(a’,5") a
e? / n(r) ( Z
A N d®r — |, (3.27)
7 2% r-R3 42 [R;-Ry
af rystal o'
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where the atom core number a of the basis in unit cell 3 is located at R and possesses
a nuclear charge of Z5. The term in brackets of the first line of Eq. (3.27) is just the
Coulomb potential of the total charge distribution which we have calculated already
(see section 3.5). The term in brackets in the bottom line on the other hand is a
Madelung term without any divergence and denoted by Var(R3).

The exchange-correlation energy is given directly by its definition in the local
density approximation (Eq. (2.21)) and collecting all terms we receive for the total
energy per unit cell of the crystal:

core valence

En] = Y e+ Y w(k)cky—%ZZaVM(R“)

- / n(r) [ch(r) _ chomog( ) %vc(r)] &r. (3.28)

The above equation applies to the non-spinpolarized case. If a spin-polarized cal-
culation is performed the expression is still valid provided €9m°¢ is the exchange-
correlation energy per electron of a spin-polarized homogeneous electron gas and the
exchange-correlation potential V. is replaced by the term (n4VyI + n V) /n.



Chapter 4

Model of the STM

4.1 Basics of Scanning Tunneling Microscopy

While the technical realization of the scanning tunneling microscope (STM) is a sci-
entific challenge, its principle, the quantum mechanical tunnel effect, is rather simple
and discussed already in introductory courses to quantum mechanics [5]. Imagine an
electron propagating in the direction of a barrier with a kinetic energy which is lower
than the potential energy of the barrier. In classical physics the electron would be
totally reflected by the barrier. QQuantum mechanics, on the other hand, provides
the possibility for the electron to penetrate into the barrier and to be located at the
other side of the barrier with a non-vanishing probability, the electron can tunnel
through the barrier. Therefore a current, a tunneling current, can flow even if two
metal electrodes are separated by an insulating barrier (for example a vacuum gap).
In an STM one exploits this effect by approaching a thin metal wire, the STM-tip,
within a distance of 5 to 10 A to a conducting sample, e.g. a metal surface, while a
bias-voltage is applied between tip and sample. The tip is then scanned laterally, in
(z,y), above the surface on a sub-Angstrém scale with the aid of piezo-elements. At
each lateral position, (x,y), the vertical tip position, z, is adjusted so that a prede-
fined constant tunneling current flows. Thereby, a topographic image, z(z,y), of the
sample is measured. Since the current depends exponentially on the tip-sample dis-
tance as we will see below an enormous vertical resolution of below 1 pm is attainable
with the most stable STMs!.

We can get a more quantitative understanding of the way the tunnel effect is ap-
plied in an STM by discussing a one-dimensional model. It is capable of explaining
the high sensitivity of STM which opens the fascinating possibility to study (con-
ducting) materials down to the atomic scale. Imagine two metal electrodes, one
representing the sample and the other the STM-tip, separated by a vacuum gap of
approximately one nanometer. We assume for simplicity that the work functions, i.e.
the energy necessary to extract an electron from the surface, of both metals are equal
and their electronic states are described in terms of the free-electron-gas model. For
the sake of simplicity we choose the temperature T= 0 K leading to a sharp Fermi

Tn order to reach this limit low temperatures and an extremely efficient vibration isolation are
required.

31
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edge separating occupied and unoccupied states. The potential scheme is displayed in
Fig. 4.1. In equilibrium the two Fermi energies are equal and occupied energy levels
of the sample do not match with unoccupied energy levels of the tip and therefore
elastic tunneling, i.e. tunneling without change in energy, is impossible. Thus there
is no flow of a tunneling current. If we raise the Fermi energy of the sample by ap-
plying a small negative bias-voltage with respect to the tip, electrons from occupied
levels of the sample can tunnel elastically into unoccupied levels of the tip. A net
tunneling current flows. The value of the current can be estimated in the following
way. In the vacuum the wave functions of the sample and the tip are solutions of the
one-dimensional Schrédinger equation with a constant (vacuum) potential. Since the
energy of the electrons is lower than the vacuum potential the wave functions decay
exponentially with distance z measured from the surface:

P(z) =(0)exp (—kz) ,k=+/2m¢/h%. (4.1)

¢ is the work function, m the electron mass and « is called the decay constant. The
latter depends on the height of the energy barrier faced by the electrons. In the limit
of small bias-voltages, i.e. eV < ¢, all electrons contributing to the tunneling current
possess an energy approximately equal to the Fermi energy. Thus they have the same
decay constant. The probability density of an electron of the sample to be located at
the position of the tip, i.e. at z = s with s being the barrier width, is given by the

- Vacuum level

Sample

Figure 4.1: Scheme of the potential in a one-dimensional model of STM. Sample and
tip are assumed to be simple metals of equal work function ¢ and the temperature is
assumed to be 0 K leading to a sharp Fermi edge. The decay of a sample wave function
in the vacuum barrier is sketched. Figure is taken from Ref. [11].
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square of its wave function:

w = [(s)]* = [(0)]? exp (~2rs). (4.2)

The total tunneling current is proportional to the sum of all electron states available
within the energy interval relevant for tunneling. If we assume the same velocity for
all states we find:

Ep

I(s,V) o exp (—2ks) Z |4,(0)]%. (4.3)

Ey=Ep—cV

The sum is taken over the different electronic states p of the sample. Equation (4.3)
expresses an exponential dependence of the tunneling current [ with respect to the
vertical separation s between tip and sample. It originates evidently from the decay
of the (sample) wave functions. If we choose ¢ =5 eV an increase in distance of 1
A lowers the tunneling current by a factor of 9.8, i.e. one order of magnitude. Thus
even smallest changes in distance can be detected, and a vertical resolution on the
order of 0.01 A can be achieved. The constant-current mode of STM, mentioned
already at the beginning of this section, makes explicit use of this fact. Using an
electronic feed-back loop the vertical distance between tip and sample is adjusted
to yield a constant tunneling current at each lateral position (z,y) of the sample.
Scanning a surface in this mode and recording the changes in vertical distance Az
as a function of the lateral position (z,y) results therefore in a topographic image
Az(z,y) of the sample surface. Caution has to be taken when reaching the atomic
scale since the electronic structure, hidden in Eq. (4.3) in the sum over states, can
then alter the image significantly and it becomes impossible to discuss the images in
terms of sample topography. We will discuss this point in detail in chapters 5 to 9.

Another possibility to make use of the distance-dependence of the tunneling cur-
rent given by Eq. (4.3) is to measure the first derivative of the current with respect to
distance, i.e. dI/dz. Experimentally this is accomplished by varying the tip-sample
distance with a small ac bias-voltage applied to the z-piezo element of the scanner.
Divided by the tunneling current this quantity is a measure of the work function ¢
of the sample. Since its value depends on the material and the crystal orientation
it can be used to characterize these properties of a sample surface on a nanometer
scale. For example, surface alloying often changes the work function significantly and
one can easily separate alloyed and clean parts of a sample.

If we rewrite Eq. (4.3) by replacing the summation over discrete states by an
energy integration we arrive at another basic relation:

I(s,V) / dE Y " 5(E, — E)u(s)]” = / n(s, E)dE. (4.4)

The quantity n(s, F) is denoted as the local density of states (L.DOS). Replacing
the squares of the wave functions in the summation by ones leads to the commonly
used density of states [38]. Thus in the LDOS each state receives an extra weight
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given by its probability density at the position of the tip. Although equation (4.4)
has been derived in the limit of eV <« ¢ we will see below that it is applicable
also at larger bias-voltages. Therefore, we can mention another important mode of
STM at this point, the spectroscopic mode. In a spectroscopy experiment the tip
position is fixed at a constant height above the surface, and a small ac bias-voltage
AV is superimposed to the constant bias-voltage V. In this manner the differential
conductivity dI/dV can be measured directly. Differentiating the tunneling current
in the formulation of Eq. (4.4) with respect to the bias-voltage leads to:

dl
W(S7 V) x n(s, Ep 4 €V). (4.5)

Hence, the differential conductivity is related directly to the LDOS of the sample
at an energy selected by the applied bias-voltage. This fact is exploited in scanning
tunneling spectroscopy to correlate topographic features like islands, step edges, de-
fects, adsorbates or surface alloys to their electronic structure contained in the LDOS.
Questions addressed are the chemical identity of adsorbates or islands, the depth of
defects or even the magnetic state of structures?. Note, that this simple result is
quite problematic since the influence of the STM-tip has been totally neglected so
far. While the three-dimensional extension of the result of equation (4.3) is success-
fully applied to discuss even subtle problems in the analysis of STM-images, it is
often impossible to use equation (4.5) without modification for the interpretation of
spectroscopic data. The influence of the STM-tip has been neglected intentionally
in the one-dimensional model since basic ideas and results can be presented readily
based on these simple assumptions. In the following a three-dimensional model will
be derived which enables us to understand the limitations of such an ansatz and
provides different levels of sophistication in the simulation of STM experiments.

4.2 The Transfer Hamiltonian Method

In this section we present the Transfer Hamiltonian Method to describe the STM
current in three dimensions as it has been derived by Bardeen [16] in general and
extended by Tersoff, Hamann and Chen to STM [6,11]. The Tersoff-Hamann model
will be used throughout the present work. A model is naturally limited by its as-
sumptions and it is important to be fully aware of them. In the case of the Transfer
Hamiltonian Method, based on time-dependent perturbation theory, the following
assumptions enter:

First of all, the electron tunneling is treated as a one-particle process, i.e. it is
neglected that electrons can interact while tunneling. In the limit of low tunneling
current this is surely reasonable. However, there are cases which cannot be treated
within the independent-particle picture, e.g. when tunneling into a superconducting
system. Further, we assume elastic tunneling, i.e. no energy loss of the electrons by
interaction with quasi-particles of the electrodes, e.g. plasmons or phonons, is con-
sidered. The inelastic part of the tunneling current contributes only about 1% of the

2To establish the latter is the ambitious goal of several groups today. We will return to this point
in section 4.5 and in chapter 9.



4.2 The Transfer Hamiltonian Method 35

tunneling current making this a reasonable assumption. Finally, a direct interaction
of tip and sample resulting in the formation of coupled electronic states is not taken
into account. The validity of the last assumption is directly related to the tip-sample
distance. When the tip is brought very close to the surface the assumption will fi-
nally cease to be justified. However, a separation of > 4 A should exclude interaction
between tip and sample states. With the above in mind we can start to derive the
tunneling current.

Fig. 4.2 displays a schematic view of the system consisting of tip, sample and the
vacuum barrier. A bias-voltage is applied shifting the Fermi energies with respect to
each other. Since we want to apply perturbation theory a separation of the system
into subsystems is convenient. Space is therefore divided into two parts by a fictious
separation surface ¥. The potential U of the whole system can then be divided into
two parts, one connected with the sample, Ug, and the other with the tip, Ur. Two
requirements have to be met: Evidently, the sum of Us and Ur needs to be the
total potential U at every point in space. Second, the product of Us and Ur should
vanish at every point in space. This amounts to one of them being zero where the
other is non-vanishing. The second requirement minimizes the second order term in
the perturbation expansion [48]. If the separation of tip and sample is large these
requirements are fulfilled already by the potentials of the two subsystems unperturbed
by the existence of another system. Reducing the tip-sample distance leads to a
difference between the free potentials and those constructed along the lines sketched
above. This error can be corrected by applying time-independent perturbation theory
to the states of the unperturbed subsystems [11] and then using the modified wave
functions in the formalism presented below. Often the difference is neglected as in
the original Bardeen approach [16]. It remains a good approximation in the limit of
small bias-voltages compared to the work functions of tip and sample.

The potentials Us and Ur are connected with Schrodinger equations of the un-
perturbed systems:

EQ
(_%VQ—I_US)LZ);L = E5¢#7 (46)
2

Y, and x, denote the eigenfunctions of sample and tip and Ef and ET their eigen-
values. The time-evolution of a state ¥ in the system of tip and sample is governed
by a Schrodinger equation containing the full potential:

2
The time-evolution of states can be treated in perturbation theory. We assume that
the tip (potential) was not present at ¢ — —oc and an electron is stationary in a state
U = 1, of the sample. Now the tip is approached slowly towards the sample and
thereby the tip potential is turned on adiabatically, i.e. gradually. As the time-scale
for electrons is femtoseconds this is a reasonable description. We are now interested
in the probability of the electron to populate states of the tip per unit time which
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Figure 4.2: Scheme of the potential in a three-dimensional model of STM. (a) Geometry
of the tip-sample problem including the separation surface. (b) Potential of the combined
system with an applied bias-voltage eV. (c) and (d) Definition of the sample potential
Us and the tip potential Ur. Ugg and Urq are the potentials of the free systems. Figure

is taken from Ref. [11].
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is directly related to the tunneling current. The state ¥ of the whole system can be
expanded in a series of tip eigenfunctions, which form an orthogonal and complete
basis set:

V(1) =uexp(—iESL/R) + Y eo(t)xyexp (—iElL/R). (4.9)

The initial state is ¢, and therefore all coeflicients ¢, vanish at ¢ = 0. The probability
of the electron to be in a state x, of the tip is then given by |c,|?. Inserting the ansatz
into equation (4.8) leads to a set of differential equations for the coefficients ¢,. These
can be solved iteratively, and to the first order of time-dependent perturbation theory
the tunneling probability per unit time d|c,(¢)[*/dt is given by (e.q. [49]):

27
W) = E5(EUT—E§)|MW|2 (4.10)
My = (x UT|¢M>:/X§UT;/}MdV. (4.11)
Qr

This equation is called Fermi’s Golden Rule; it is a general result of first-order time-
dependent perturbation theory. Elastic tunneling is guaranteed herein by the delta
function. M, is the tunneling matrix element describing the projection of the initial
state 1, per-tubed by the potential Ur onto the final state y,. The integration is
limited to the volume of the tip Q7 since Uy vanishes in the outside by definition. The
tunneling matrix element is the central quantity of the Transfer Hamiltonian Method,
and in the following sections different approaches to compute it are discussed.

The total tunneling current can be calculated by taking all possible initial and
final states of tip and sample into account. Tunneling from a state 1, into a state x,
can only occur if the former is occupied and the latter is empty. At zero temperature
there is a sharp Fermi edge separating occupied and unoccupied states. At elevated
temperatures the Fermi edge is smeared out which is described by the Fermi-Dirac
distribution f(F — FEr) = {1 + exp[(E — Er)/kgT]}~". Accounting for the occupa-
tion in this manner and assuming an applied bias-voltage V', which shifts the Fermi
energies of the tip, KL, and the sample, £, with respect to each other, we can write
the tunneling current from sample to tip, Is_ 7, and tip to sample, I7_s:

dre
Isor = YZJC(EE_E}?) (1= f(E] — Ef)] %
Vi
(M, [P S(EL — ES — V) (4.12)
dme
Irs = YZJC(EZ_E% [1— f(E) — Ep)] x
Vi
(M [P S(E — ES —€V). (4.13)

A factor 2 has been introduced accounting for the two possible spin states of each
electron. The difference between the current flowing from tip to sample and sample
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to tip yields the net tunneling current:

B 4re

J= "
h

17

[F(E] = ER) = J(E] — ER)] M 8(E] — B} —eV).  (4.14)

The problem left at this stage is to calculate the tunneling matrix element. This
problem is discussed in the following sections. One can already guess that only a
description of tip and sample in terms of electronic states leads to a satisfactory
solution for the tunneling current.

4.3 The Tunneling Matrix Element

In order to compute the tunneling matrix element it is convenient to convert the
volume integral into a surface integral. The matrix element from Eq. (4.11) can be
transformed by applying the Schrodinger equation for the tip:

M, = /@ZJMUTX;dV
Qrp

Qrp
= [ =Ty (4.15)
Qrp
T is the operator of kinetic energy, i.e. T = —h*/2mV?2. In the last line we made use

of energy conservation in the tunneling process, i.e. Bl = Ef, contained in the delta
function of Eq. (4.11). Since the sample potential is zero in the volume of the tip
Q7 we can use the vacuum Schrodinger equation for the sample wave function which
results in a form of the integral that can be transformed by Green’s theorem into a
surface integral:

M, = /(X;Twu _quX;i) dv
Qrp
K2
- I [ ive -6 s (4.16)
h)

The surface ¥ separates the two subsystems tip and sample. Its exact position is
arbitrary if the full potential is considered, that is if the wave functions of free tip
and sample are modified according to the correction due to interaction [11]. In the
original Bardeen approach the error by neglecting the modification of wave functions
is minimized if the separation plane is located midway between the two subsystems
[12,50].

To use the Transfer Hamiltonian Method in the formulation derived up to this
point requires knowledge about the exact electronic structure of tip and sample,
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i.e. the energy levels and one-particle wave functions. In principle, it is possible to
calculate them for both systems within the FLAPW method described in chapter 3,
and to compute all tunneling matrix elements to gain the tunneling current. Although
this approach is quite elaborate and demanding, it is practicable. However, we face
one severe problem: While the atomic structure of the sample surface is usually well-
characterized and thus well-known it is mostly unknown for the tip. Consequently,
this amounts to a serious limitation of the approach. Therefore it is useful to take
a look at model assumptions for the tip. We will see that a large part of STM
interpretation can be made successfully on this basis with reasonable effort.

4.4 Approximations for the STM-Tip

The geometric structure and electronic properties of the tip, consisting of tungsten
or a platinum-iridium alloy and prepared by electrochemical etching or mechanical
ripping from a wire, is albeit its fundamental importance to gain atomic-resolution
images or reproducible spectroscopic data commonly unknown. Experimentally, a
number of recipes have been reported leading to tips with the desired tunneling
properties, and at this point the experimentalist can be (and usually is) quite content.
There are still a number of essential questions concerning tip properties. For example,
the contribution of electrons with different orbital character, i.e. s, p or d electrons, to
the tunneling current is heavily discussed. The answer is important for the possibility
of spin-polarized tunneling with ferromagnetic tips. If only s-electrons contribute
significantly it may be doubted whether their negligible spin-polarization is sufficient
to resolve magnetic structures.

From the viewpoint of theory there have been efforts to include the electronic
structure of realistic tips in the simulation of STM experiments to explain unexpected
results (e.g. [7,9,13,51]). However, even if the exact geometric structure was known
the complicated non-periodic arrangement of atoms at the top of the tip would present
a challenging problem to state-of-the-art ab initio calculation techniques. Cluster
models for the tip have been proposed [52] but they lack the electronic structure
of the underlying bulk. Including the electronic structure of the bulk by either a
jellium [7] or a W(001) [53] surface has up to now limited the modelling of the tip to
a single adsorbed atom on such a surface. Further, there have been no first-principles
calculations of the electronic structure of supported magnetic transition-metal STM
tips used in spin-polarized STM experiments. In other approaches [13], e.g. based on
scattering theory, very simple descriptions of the tip are used. Therefore, it remains
an open field, and further efforts have to be made in the future. On the other hand,
the exponential distance dependence of the tunneling current as it has been derived
in section 4.1 gives a clue that the tunneling current should be dominated by the
outermost atom of the tip. Thus there is hope to model the electronic states of a tip
successfully by the orbitals of a single atom. This approach is presented below.

At the separation surface ¥ the potential of both, tip and sample, have approxi-
mately reached the value of the vacuum potential. To compute the matrix element
from Eq. (4.16) the wave functions are only needed at the separation surface ¥ where
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they obey the Schrodinger equation for zero potential:
(V2= &Hx(r) =0, &* = —|F| (4.17)

k is the decay constant which has already been introduced in section 4.1. Keeping
in mind the idea of electronic states of a single apex atom we expand the tip wave
functions into a series of spherical-harmonic functions Y, (6,¢) and a radial part

Jim(Kp):
X(r) = i fim(59) Vi (0, ). (4.18)

im

p = [r —Ry| is the radial distance from the center Ry of the outermost tip atom, the
apex atom, and (6, ¢) defines the direction of r — Ry. The coefficients ¢, contain
the information on the electronic structure of the specific tip under consideration.
They can be computed by fitting this solution for the vacuum continuously to the
wave functions near the apex atom known for example from ab initio calculations.
Inserting this ansatz into Eq. (4.17) shows that the radial part is independent of
m. The differential equation for f; is of second order and the solutions are known
as modified spherical Besselfunctions. Since Eq. (4.17) is of second order there is
a regular as well as an irregular solution. Since the irregular solution diverges for
large arguments, that is in our context for large distances from the outermost tip
atom, it is not a physically relevant solution in the sense of quantum mechanics and
is discarded. The regular Besselfunctions are given by:

() = (—fat (1L xR (=) (4.19)

udu u

On this basis we can discuss two approximations for the electronic states of the tip.

4.4.1 Tersoff-Hamann Model

Tersoff and Hamann proposed the following assumptions for the electronic structure
of the tip [6] in order to calculate the tunneling matrix element and thus also the
tunneling current. (i) The tip wave function is a spherically symmetric wave function,
i.e. an s-wave. (ii) The limit of small bias-voltage and temperature is considered.
The second approximation has been dropped in the extension of the Tersoff-Hamann
model by Lang [8] to which we are refering here. In order to discuss the tunneling
current only in terms of the properties of the sample one further assumes the density
of states of the tip to be rather structureless as compared to that of the sample. The
resulting model has been successfully applied to a large variety of problems and is
still the most commonly used approach to interpret STM data.

The assumptions (i) and (ii) are easily expressed in Eq. (4.18) by replacing the
summation by a single term, the spherical symmetric part [ = 0, with Yyo(8, ¢) = 1:

M@:C%@m:cﬁﬁiﬂl (4.20)
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Inserting this ansatz for the tip wave function into the expression for the matrix
element before transforming it by Green’s theorem into a surface integral (upper line

of Eq. (4.16)) yields:

M, s(Rr) = o [Fo(kr — Rr|) Adhu(r) — o, (r) Ako(r|r — Rr[)] dV. (4.21)

2m Qr

Since the sample potential vanishes in the body of the tip we can apply the vacuum
Schrodinger equation (Eq. (4.17)) to the first term of the integrand. The second term
has a singularity at r = Ry similar to A(|r—1—r’|) and can be simplified by recalling that
the 0th Besselfunction kg is related to the Green’s function of the vacuum Schrodinger

equation, i.e. it solves:
[A - k*G(r—1') = —4nd(r — /). (4.22)

Inserting this into Eq. (4.21) gives the final result for the matrix element in the
Tersoff-Hamann model:

My, (Re) =~ [ dmse— Ry dv = — 220 Ry (4.23)

m Ja, Km

Hence, the tunneling matrix element is directly proportional to the value of the sample
wave function at the position of the apex atom Ry. This result for the matrix element
can be inserted into Eq. (4.14). We further replace the delta function by an energy
integration over two delta functions:

S(Ef — EJ —eV) = /5(E3 — eV = €)§(ES — ¢)de. (4.24)

Note, that including the term eV in the second delta function leads to an equivalent
formula for the tunneling current. The chosen form is more convenient in order
to discuss the current in terms of sample properties. We arrive at the following
expression for the tunneling current in the approximation of an s-wave tip orbital:

1673 C?he
I(Rp,V) = 5 /nT(e + eVns(Ry, €)[f(e — E;?) — fle+eV — E;)] de.
(4.25)
The current is thus expressed as an energy integral containing the density of states

(DOS) of the tip, ny, and the local density of states (LDOS) of the sample, ng, at
the position of the tip apex atom Rr:

nr(e) = Z 5(E3 —¢) and ns(Ryp,€) = E5(E§ — o). (Rr)[ (4.26)

I

At this point our last assumption enters, i.e. the density of states of the tip is chosen
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to be constant. This reduces the tunneling current to its final result:

16m3C?%R3e
I(Rr,V) = oy T / ns(Rry,e)[f(e— Ep) — f(e + eV — EF)] de
1673C?%R3e
- K2m?2 nT/”S(RTaE)QV,T(é) de (4.27)
BOQBB EF-|—6V
T=0K 167 e
- K2m?2 nr / ns(Rr, €) de. (4.28)
Ep

Eq. (4.28) is the T' = 0 K limit and expresses that the integral includes all states
between the Fermi energy and the Fermi energy shifted by the applied bias voltage:
the tunneling current is proportional to an integrated local density of states (ILDOS)
of the sample. For elevated temperatures the integral limits are smeared out, and for
convenience we have introduced the function gy r(e):

gva(e) = fle— Ep) — f(e+eV — Ef), (4.29)

where f is the Fermi distribution function. Note, that Eq. (4.28) is a direct three-
dimensional generalization of the result we derived in section 4.1 with rather hand-
waving arguments. Since this formula of the tunneling current is widely used —
also throughout this work — and led to a variety of successful explanations of STM
experiments on the basis of the sample electronic structure we will discuss it in
more detail. The first and most important aspect of Eq. (4.28) is the dependence of
the tunneling current only on properties of the sample. All electronic effects of the
tip have been eliminated. This is on the one hand highly desirable since it is the
sample we wish to study, not the tip. At the same time it is a drawback because
effects related to special tip states are excluded right from the start. A quantitative
interpretation of STM images in terms of a measured tunneling current given in nano-
Ampere as a function of the bias voltage, tip-sample distance, and further details of
tip and sample is obviously impossible within this model. The great success of the
Tersoff-Hamann model rests on the qualitative interpretation of STM images. This
justifies the seemingly crude assumptions, and it is an excellent starting point for the
interpretation of STM data.
In the low bias-voltage limit the tunneling current reduces to:

[(RT, V) X eVnS(RT, EF) (430)

and (topographic) STM images gained in the constant-current mode represent con-
tours of constant sample LDOS at the Fermi energy. A direct consequence of this
result is that there is no one-to-one correspondence between atomically resolved STM
images and imaging the atoms as protrusion as would follow naturally for metals if
the total charge density was probed. The LDOS at the Fermi energy can and quite
often does differ from the charge density which in metals simply screens the positive
charge of the nuclei. While the Tersoff-Hamann model agrees often quite well qualita-
tively with experimental results it cannot explain the values of measured corrugation
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amplitudes, i.e. the maximum vertical difference as the tip scans the sample surface,
for closed-packed metal surfaces. We will see in the following section that an exten-
sion of the presented model provides an explanation. Nevertheless, with increasing
length scale of the imaged structures the tunneling current becomes independent of
the tip orbital considered, and the s-wave model of Tersoff and Hamann becomes a
satisfactory description.

As it has been shown explicitly for the one-dimensional model in section 4.1
the exponential dependence of the tunneling current with respect to the tip-sample
distance is a direct consequence of the exponential decay of sample wave functions
into the vacuum. This result is not altered in the three-dimensional case. Further,
the differential conductivity df/dV measured by scanning tunneling spectroscopy is
related to the LDOS of the sample at an energy given by the applied bias-voltage:

By varying the applied bias-voltage, particular electronic states of the sample can
thus be observed. Recording these spectra as a function of the lateral tip position
(z,y) while simultaneously measuring the topography in the constant-current mode
enables one to correlate structural and electronic properties of the sample. Chemical
identification of adsorbates is only the simplest application of this technique and
many others have been reported. A criticism concerning the validity of this simple
expression 1s the neglect of tip features. They appear in experimental data and
complicate matters. Taking the tip fully into account is the only satisfactory solution
to this problem. Still, the influence of tip states should only be pronounced at negative
sample voltages, i.e. when electrons tunnel from occupied sample to unoccupied tip
states®. Hence, Eq. (4.31) remains a sensible first order approximation to understand
scanning tunneling spectroscopy.

4.4.2 Extension to Arbitrary Tip-Orbitals

The materials commonly used for STM-tips are tungsten and platinum-iridium alloys
which belong to the class of transition-metals. Their electronic structure is dominated
by d-electrons at the Fermi energy and thus it is reasonable to include other orbital
types than the s-wave used in the previous section. This extension of the Tersoff-
Hamann model has been proposed by Chen [11], and the derivation presented above
has been based on his ideas. The extension leads to a simple rule to account for
arbitrary orbital types, the derivative rule [11]. In order to calculate matrix elements
for orbitals of larger angular momentum higher order Besselfunctions are needed.
These can be related to the Green’s function of the vacuum Schrodinger equation and
its partial derivatives. The calculation is similar to the one demonstrated explicitly
in the last section for the simplest case, the s-orbital. There is a relation between the
orbital character and the form of the matrix element which led to the name derivative
rule. It states that the matrix element is given by replacing the notation of orbital

3The reason is related to the electric field and its influence on the shape of the potential barrier.
A nice, detailed discussion of this effect and of further theoretical aspects of the spectroscopic mode
is given in [50].
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Tip orbital | Tunneling Matrix Element
s S v(Ry)
Pe o S (Rr)
Py O 2 (Ry)
p- 20 2% (Ry)
d. 202 2L (Ry)
dopys | 228 (34(Rey) — So(Rr))

Table 4.1: Table of tunneling matrix elements according to Chen’s derivative rule.

characters through partial derivatives of the sample wave function 1, at the position
of the tip apex atom Ry in the following way:

r — 0/0x
y — 0/0y (4.32)
z — 0/0z.

For example a p.-type orbital yields a matrix element proportional to dv,/0z (Rr).
Table 4.1 summarizes the matrix elements for arbitrary tip orbitals. In principle
it is possible to expand the states of a realistic tip, calculated for example by ab
initio techniques, in these orbitals and to compute the matrix element by adding
the contributions according to their weight. Whether this approach is convenient
depends on the applied ab initio method and its basis function set.

The extension by Chen provides an explanation of the high corrugation amplitudes
Az measured on close-packed metal surfaces contradictory to the low corrugation am-
plitudes due to their local density of states n. Applying the derivative rule to the p.-
and d_2-orbital leads to a large enhancement of the calculated corrugation amplitude
in much better agreement with experimental values. Since the p,- and d_:-orbitals
possess charge densities stretching out further from the tip apex atom into the vac-
uum than that of an s-wave they act similar to an s-wave at a reduced distance from
the sample surface. As the local density of states and also the corrugation amplitude
decrease exponentially with distance this leads to an enormous enhancement in the
measured corrugation amplitude which can be expressed by an enhancement factor.
This factor is given for a d,2-orbital by:

fi, = (1+43¢*/2%)" with ¢ = G, /2. (4.33)

() is the length of the reciprocal lattice vector corresponding to the Fourier compo-
nent of the STM image (in section 4.6 this connection is discussed in more detail).
In the case of a square lattice with lattice constant a; of the surface unit cell of the
sample we get (G = 27 /q, for an image showing the lattice sites. Assuming a typical
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close-packed surface with ¢ = 4.5 eV and a; = 2.87 A leads to a factor of 6.5 for
a d,2-type tip. From Eq. (4.33) we find the enhancement factor to be reduced with
increasing lattice constant a; or equivalently with increasing length scale of the struc-
ture. In the limit of large length scales the model becomes independent of the type of
the tip orbital. This is in accordance with experiments performed on reconstructions
of the Au(111)-surface [54]. The fact that atomic-resolution on close-packed metal
surfaces cannot be achieved with every tip is a further experimental clue in favor of
this explanation relying on special tip configurations.

On the other hand, orbitals of m # 0 like the d,,, and d,., ,. are expected to produce
a large tunneling current not with the tip apex atom located on top of a surface atom
but rather at a hollow site of the surface. Due to their particular charge density
distribution a large overlap with sample orbitals occurs in this configuration. These
orbitals thus explain STM-images showing anti-corrugation, i.e. imaging atoms as
depressions (low tunneling current) and hollow sites as protrusions (high tunneling
current). In chapter 5 we will see that it is also quite often possible to find anti-
corrugation for transition-metal samples as a result of their electronic properties.

We have implemented the derivative rule in the FLEUR code for p.- and d,2-orbitals
(see section 4.6.1) and tested the importance of these orbitals for the example of

W(110) (see chapter 5).

4.5 The Spin-Polarized Tunneling Current

In the derivation of the tunneling current presented in the previous sections we have
taken the spin of the electron into account only by the double occupation of single-
particle states. However, in order to describe the tunneling in the set-up of the
spin-polarized STM (SP-STM) (Fig. 4.3) we need to take the spin-polarized electronic
structure of both tip and sample explicitly into account. The SP-STM can be realized
by coating a common STM tip with a magnetic material, for example Fe or Gd
have been successfully used [27,132], and using this spin-sensitive probe to scan the
surface of the magnetic sample. In the following we assume the coated tip to be
ferromagnetic with a spin-polarized bandstructure of spin-up (1) and spin-down ()
states with respect to a quantization axis given by the magnetization axis My of the
tip. With the concept of Pauli-spinors we can write electronic states of the tip as:

W) = o) (o) and WG = el (7). (4.34)

The orientation of the magnetization axis Mt of the tip with respect to the geometric
axis of the tip depends on the material and the geometric structure, and it is called the
magnetic anisotropy. It results from a competition between the crystal anisotropy
energy, a consequence of spin-orbit interaction, and the shape anisotropy energy,
accounting for magnetic dipole interaction.

The sample, on the other hand, may possess a variety of different magnetic struc-
tures. A ferromagnetic, antiferromagnetic, or ferrimagnetic configuration as well as a
commensurate or incommensurate spin-density wave or a non-collinear spin-structure
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Figure 4.3: Schematics of spin-polarized STM (SP-STM) using a magnetically coated
STM tip. (a) shows the geometry of the experimental set-up including the magnetization
axes of tip Mg and sample Mg. In general a non-collinear orientation of the two mag-
netization axes occurs. (b) displays the situation in terms of the electronic structure of
tip and sample. In the case of a perfect parallel alignment of Mt and Mg only majority
electrons can tunnel into unoccupied majority states and only minority electrons into
unoccupied minority states.

is possible. The magnetization axis of the sample Mg is in general non-collinear with
respect to the magnetization axis of the tip My. Therefore a transformation into
a global reference system for the spin must be performed for the calculation of the
matrix elements. We work with the assumption that the spin is conserved within the
global reference system during the tunneling process. A loss of spin information can
occur by scattering processes connected with a spin-flip in the tunneling barrier. For
the vacuum tunneling of STM these can be excluded to a high degree since the only
scattering processes are given by many-particle processes which seem to play a minor
role in most cases.

For the sake of simplicity, we derive the spin-polarized tunneling current for a
collinear magnetic structure of the sample. Nevertheless, we will be able to give
a direct generalization of the obtained result for an arbitrary spin-structure of the
sample. In the case of a collinear spin configuration of the sample, i.e. when we can
discuss spin in terms of majority or spin-up (1) and minority or spin-down (] ) single-
particle states, each state can be decomposed into its real-space and spin-space part
similar to the tip states:

WS, (1) = 5, () (é) and US| (r) = ¢S (1) G) (4.35)

Since in general, tip and sample do not share the same quantization axis, we define
a global magnetization axis of tip and sample, which in many cases is either the
magnetization axis of the tip or of the sample. The spin states, defined such that the
expectation value of the z-component of the spin S, is diagonal with respect to the
local quantization axis, are transformed to the global quantization system. This is
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accomplished by means of the rotation matrix U(6):

_ [cos(8/2) —sin(6/2)
) = (m(e/:z) cos (6/2) ) ’ (4.36)

where 6 is the angle between the magnetization axes of tip and sample. The tunneling
matrix element for the tunneling from a state |uo) of the sample into a state |vo’)
of the tip (Eq. 4.11) can be separated accordingly into a part depending only on the
rotation in spin-space and a part depending on the real-space tip position:

M7 (R:,0(Rp)) = (UL, |Ur|U(B(R))S,)
= [ WIS, 610) UrU(O(RL))S, (5“) .

Qr
= G ) VR (§77) [ litirt,eav
= Usw(0(Rr)) MZZ (Ry). (4.37)

o and ¢’ denote the spin of the sample and tip state, respectively, and can be of values
T or |. The real-space dependent part of the matrix element is calculated as derived
in the previous sections (in the chosen approximation) using the real-space part of
the wave functions for the desired spin direction. Note, that the angle § between the
magnetization axes of tip and sample depends in general on the position of the tip

R ;. Inserting this expression of the matrix element into the formula for the tunneling
current (Eq. (4.14)) yields:

2
IR, VOR,) = %ZIUW DI DI (RO — ), —eV)

oo’

= Z Ui (0(R2))|* T (RT, V). (4.38)

For the sake of simplicity, the T' = 0 K approximation has been used in the upper
line but the second line still holds for arbitrary temperatures. From Eq. (4.38) we
conclude that the total tunneling current I(R;,V,0(R;)) is given by a sum over
the tunneling currents [,,/(R,, V) for the different possible spin channels o — o’
weighted by the squares of the rotation matrix U,, (6(Rz)).

The decomposition of the spin-polarized tunneling current in Eq. (4.38) allows a
convenient discussion in terms of the different spin channels. Three particular cases
are of special interest: § = 0,7 and 7/2. The related tunneling currents can be
expressed by:

I(R:,0) = In(Rr) + 1(Rr) = Ip(Ry) (4.39)
I(Ry,m) = Iy(Rr)+ 114(Re) = Lap(Ry) (4.40)
IRem/2) = 5 U(Re) + u(Re) + Fu(Ry) + Ly(Ry)

= [Ip(Ry) + Lip(Ry)] /2. (4.41)
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Figure 4.4: Scheme of spin-polarized STM with ferromagnetic tips. In (a) the magne-
tization axes of tip and sample are perpendicular to each other and scanning domains of
opposite magnetization direction does not result in a change of the tunneling current. On
the other hand (b) displays the case of a collinear alignment of magnetization axes and
the tunneling current between different domains changes from Ip to I4p leading to an
image of the magnetic structure.

For convenience, we have neglected the bias-voltage in the notation above. We ob-
serve that in the case of § = m/2 all possible channels contribute equally. Hence it is
impossible to measure a different tunneling current on magnetic domains of antipar-
allel magnetization axes if the magnetization is in-plane for the sample and out-of
plane for the tip or vice versa. This is sketched in Fig. 4.4.

In order to analyze STM-experiments in terms of sample properties we general-
ize the Tersofl-Hamann model to the case of a spin-polarized STM by assuming a
magnetic tip which has a constant DOS for each spin direction of unequal values,
n; =const. and n%« =const. but n; # n% Further, we use the same s-wave func-
tion for both spin directions, i.e. C' = C4 = C} and & = k4 = k. Analogously to
Eq. (4.28) we find the spin-polarized generalization of the tunneling current:

872 C*h’e 9 o -
IR, V.OR:) = —5—— > |Us(0(R2))*ng [ gva(e)nG(Rr,c)de  (4.42)

K%m —
8r3C e s
- K22 Z |U00’(0(RT))|27LT nG (R, V) (4.43)
Am3C?*h%e B }
= = (nras(Re, V) 4 iis(Rr, V) cos O(Ry) ), (4.44)
non—spinpolarized spin—polarized

where n% (R, ¢) is the spin-dependent local density of states of the sample at the
position of the tip and nZ(R;, V) denotes the integrated spin-resolved local density
of states (ILDOS) of the sample for an applied bias-voltage V:

ng(R,, V) = /gVVT(e)ng(RT,e) de. (4.45)

ny is defined as the sum of the constant majority and minority DOS of the tip,

nr = n; + n%, and my is the difference of these, mp = n; — n% An analogous
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definition is used for the sample, but the quantities depend on the tip position and
on the applied bias-voltage:

is(Rr, V) = ih(Ry, V) 4+ 05 (Ry, V) (4.46)
and
ms(Rr, V) = #l(Rr, V) = iig(Rr, V), (4.47)

where ng(R,, V) is the integrated local density of states of the sample and ms(R, V)
is the integrated local spin density of states. Eq. (4.43) expresses a weighting of
the majority and minority spin parts of the LDOS by the tip DOS, while we have
rewritten the result in Eq. (4.43) into a decomposition of the non-spinpolarized and
spin-polarized part. In the case of an arbitrary spin-structure of the sample Eq. (4.44)
can be generalized in the form (see Appendix A for the derivation):

473 C? e

KkZm?2

[(RT,V,Q,qb) [nT ns(RT,V) + mr ms(RT,V)] (448)
where my = mp(cos ¢sin §,sin ¢psin 0, cos §) is the magnetization vector of the tip
and mgs(R;, V) is the vector of the integrated local spin density of states of the
sample defined by:

s(R,, V) = / gvr(e 25 — )V (Ry)o ¥, (R;) de. (4.49)

o is given by the Pauli spin-matrices, i.e. o = (01, 09, 03).

The consequences of Eq. (4.44) shall be illustrated by two examples. The first nat-
ural application of SP-STM is to image directly, i.e. in the constant-current mode, the
difference of the tunneling current above adjacent domains. This kind of experiment
has been performed by Wiesendanger et al. [23] to prove the topological antiferro-
magnetism between adjacent terraces of the Cr(001) surface predicted by Bliigel et
al. [55]. In order to estimate the height difference achievable in the constant-current
mode we assume a perfect collinear alignment between the magnetization axes of tip
and sample, i.e. § = 0,7 for adjacent magnetic domains. Requiring the tunneling
current to be equal above two magnetic 180° domains leads to:

nT'Fbs(Zl, V)(l + PTps(Zl, V)) = nTﬁs(Zg, V)(l — PTps(ZQ, V)), (450)

where Pr = mg/ny is the spin-polarization of the tip and ]55(2, V) =
ms(z,V)/ns(z,V) is the integrated local spin-polarization of the sample. From the
one-dimensional model we know already that the local density of states decays expo-
nentially with distance z (see Eq. (4.3)). In a first approximation the spin-polarization
of the sample is thus constant with respect to z. After some elementary transforma-
tions we arrive at the final result for the corrugation amplitude Az = z9 — 2;:

Az = iln w ) (4.51)
2K 1-— PTps(V)
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Figure 4.5: Spin-polarized STM-measurements of 1.3 ML Fe on W(110) using a Gd-
coated tungsten tip. The left image shows the surface topography, i.e. the constant-current
image, while the right image is a map of the differential conductivity dI/dV at a bias-
voltage of 40.7 V. At the chosen coverage and growth conditions a closed monolayer of Fe
decorates the W-substrate plus double layer thick Fe-nanowires along the step edges of the
substrate which appear black and white in the right image. The magnetization axis of the
double layer is out-of-plane while it is in-plane for the monolayer [56]. There is domain
contrast observable on both, the monolayer and the double layer areas, hinting at a canted
magnetization axis of the Gd-coated tungsten tip. Figure by courtesy of M. Bode.

Az = 0 in the case of vanishing spin-polarization PTpS(V) = 0 and for a perfect
spin-polarization of both systems, i.e. PpPs = 1, the corrugation amplitude becomes
infinite since there is no current above one domain. For reasonable values of the tip
spin-polarization, Pr = 0.4 and Py = 0.8, and a sample with a work function of about
4.5 eV we compute maximum corrugation amplitudes, i.e. if IBS(V) =1,0f 0.4 A and
1.0 A, respectively. In the literature there is only one report of a successful application
of this mode to a magnetic surface [23] where corrugation differences of 0.2 A have
been reported. This is connected with an effective spin-polarization PTISS(V) of
0.2. A disadvantage of this approach, making it difficult to apply in general, is
given by Ps(V) entering Eq. (4.51). Ps(V) depends on the bias voltage. With
increasing voltage the number of states between Er and Er + eV is monotonically
increasing while the difference between spin-up and down electrons may be constant.
Thus ]55(‘/) may be a decreasing function of the bias voltage. Nevertheless, one can
circumvent this problem quite elegantly by using the spectroscopy mode of STM and
mapping the value of the measured differential conductivity dI/dV (V) for a specific
bias-voltage V' as a function of the lateral tip position. This map can be correlated
directly to the topography of the surface which is measured simultaneously. The
advantage of this contrast mechanism can be understood if we differentiate Eq. (4.44)
with respect to V:

dI/dV (V) < nrng(Ry, Er + €V) [1 + cos (0(Rr))PrPs(Ry, V)], (4.52)
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where Ps(R,,V) = ms(Ry, Er 4+ €V)/ns(Ry, Ep + €V). Since the differential con-
ductivity is proportional to the (local) spin-polarization of the sample at a certain
bias-voltage V' one can select a special feature in the DOS of the sample which shows
a high spin-polarization and thereby leads to a large contrast for the dI/dV-maps.
Recently, applications of this mode have been very successful in the study of Fe-
nanowires on W(110) [27]. An example of such a measurement is shown in Fig. 4.5.

Although the constant-current (topography) mode is clearly unfavorable in the
imaging of domain structures of magnetic surfaces it provides a great potential in the
resolution of magnetic structures on the atomic scale. This aspect of SP-STM will
be discussed in chapter 9 along with a presentation of the first measurement on this
scale.

4.6 Applying the FLAPW Method

The basis of the simulation of STM experiments has been presented in the previous
sections. This section deals with some technical aspects of applying the results.
Further consequences concerning the connection between electronic structure and
bias-voltage dependent STM images are discussed. This leads naturally to a method
for the analysis of STM images on the basis of the electronic structure. Results
discussed in chapters 5 to 9 refer to this method.

Under normal tunneling conditions the distance between the outermost tip and
surface atom is estimated to be between 4 and 10 A. Due to the exponential decay of
the wave function into the vacuum the reliable representation of the wave functions
in this region of the vacuum is a non-trivial problem. For example in supercell cal-
culations using a plane-wave basis, it is difficult to go beyond 3 to 4 A. Therefore, it
is especially useful that we apply the full-potential linearized augmented plane wave
method in film geometry as it has been described in chapter 3 to calculate the elec-
tronic structure. We recall that it is a truly two-dimensional method consisting of a
semi-infinite vacuum region, which is solved in real space, and of a finite number of
atomic layers to describe the substrate. The vacuum wave function ¢, , character-
ized on the basis of Blochs Theorem (e.g. [38]) by a band index v and a wave vector
k, of the two-dimensional (2D) Brillouin zone, is expanded into basis functions:

¢k||u(1'||7 z) = Z cﬁ”u ﬁll (2)exp [i(ky + Gﬁ)r”], (4.53)

n

which are 2D plane waves parallel to the surface and linearized z-dependent basis
functions dﬁ” (z) with

ﬁ”(z) = aﬁlluﬁ”(eu, z) + bﬁ”uﬁn(ev, z). (4.54)

aﬁ” and bﬁ” are determined by the continuity of the basis function and its derivative
at the vacuum boundary to the film interstitial. The vacuum energy parameter ¢,, for
which the wave functions are solved is usually positioned in the vicinity of the Fermi
energy. The function uﬁ”(ev, z) (and analogously its energy derivative uﬁ”(ey, z); see
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also section (3.3)) is the exact numerical solution of the one-dimensional Schrédinger
equation to the laterally averaged z-dependent part of the effective vacuum potential

Ve (2):

h? d? n? 2
o 4ot + Ver(2) — e, + %(k” + Gﬁl) uﬁn(évaz) = 0. (4.55)

This choice of the basis functions is ideally suited to describe the vacuum region as
it already includes the exponential decay of the wave functions with respect to the
correct potential. The maximum distance in z-direction we have taken into account,
was about 13 A. Thus we were able to calculate the tunneling current at realistic
tip-to-sample separations.

4.6.1 The 2D Star Functions

In general, quantities possessing the crystal symmetry of the lattice can be expanded
into a set of symmetrized functions. The local density of states n(r,z|¢), needed
in the Tersoff-Hamann model to compute the tunneling current, is invariant with
respect to the 2D symmetry operations of the surface structure. Thus, we use the
rotational part of the 2D space group operations to form out of plane waves sym-
metrized plane waves, so-called star functions ¢?P(r;). A star function corresponds
to a representative rec1procal lattice vector G, which is equivalent with respect to
symmetry operations to a star of reciprocal lattice vectors Gj'. This allows the re-
striction of the Brillouin-zone summation over the irreducible part of the 2D Brillouin
zone (12BZ).

The LDOS n in the vacuum region determining the tunneling current in the
Tersoff-Hamann model is written as:

n(ry,zle) = Z n’(z|e) ¢§D(I‘n) (4.56)

S

with
n’(zle) = 25 — €k nk”y() (4.57)
kv
and
(2] = 3 ey () ()5 — G G (4.5%)

n,n’

For arbitrary tip orbitals, dﬁ” (z) in Eq. (4.58) is replaced by derivatives of dk”( z) with

respect to z according to the derivative rule of Chen (section 4.4.2). The expansion
coefficients n®(z | €) are called star coefficients.

As an example for star functions ¢?P(r,), we show the first three of them cor-
responding to the three smallest stars (s=1,2,3) of reciprocal lattice vectors for a

square lattice (see Fig. 4.6) (e.g. representing the bee- and fee-(001) surfaces): Gy,

G(l) (0,0), G( ) = (1,0), G|(|3) = (1,1), expressed in units of 27 /a, with a being
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Figure 4.6: Star functions for a square lattice. (a) unit cell of a square lattice with a two
atom basis, i.e. representing a c¢(2 X 2) checkerboard structure typical of a surface alloy.
The first star function is a constant. (b) corresponding second star function displaying
the black atoms as protrusions and the white ones as depressions. Note, that the sign of
the expansion coefficient can be negative leading to an inversion of this image. (c) third
star function showing both types of atoms.

the lattice constant:

¢3D(rn) = 1 (4.59)
1
Pry) = §[COS (Gyary) + cos (Gyory) | (4.60)
P(ry) = cos[(Gya+ Gya)ry ). (4.61)
G and G2 are the two-dimensional reciprocal lattice vectors:
2m 2m
Gi=—(1,0) and Gy2=—(0,1). (4.62)

a a
In Fig. 4.6 the star functions are displayed together with the 2D unit cell for a checker-
board structure of two different atom types. The first star function is a constant and
represents the lateral constant part of the LDOS and thereby also of the tunnel-
ing current in the Tersoff-Hamann model. Its expansion coefficient n'(z|e) (see Eq.
(4.56)) must be positive as it corresponds to a local charge density if we integrate the
LDOS over the 2D unit cell and energy. Higher star coefficients can be of both signs.
In our example of a square lattice and a checkerboard arrangement of two different
atoms the second star function distinguishes between the two kinds of atoms. Only
one type is shown as a protrusion while the other corresponds to a depression. If
the star coefficient is positive the black atoms can be seen in the LDOS (or corre-
spondingly in the STM image). The image is inverted for a negative coefficient, and
the white atoms are observed as protrusions. The third star function does not dis-
tinguish between the two kinds of atoms, i.e. there is no chemical sensitivity in this
part of the LDOS. If the corresponding star coefficient is positive atoms are shown
as protrusion if it becomes negative the hollow sites appear as protrusions and the
atoms as depressions (this is denoted as anti-corrugation).

4.6.2 The k-Selection for Star Coefficients

In order to analyze our first-principles results in terms of a simplified model we
follow Sacks et al. [57] by approximating the z-dependent part of the vacuum wave-
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function dﬁ“(z), Eq. (4.54), by its simplified tail. The vacuum is described by a

barrier V(z) = 0. Then, the vacuum wave-function can be solved exactly and the
wave function of energy € will decay inside the barrier as:

ﬁ” (z) = exp (—fiﬁ”z) (4.63)

with z pointing into the barrier and with the decay constant:

o () = \/2m|e|/h2 + (ky + GP)?. (4.64)

The energy € is measured with respect to the vacuum potential at large distance
from the surface, which is zero in our case. We can write the k- and Gj-resolved
contribution to the LDOS for the eigenstate |kjv) at the energy €k» in the form:

i (2) = ) e exp[=(sg, + Rl )Z10(G — G GY). (4.65)

n,n’

where € of Eq. (4.64) is replaced by €k »- In this model the electronic structure is
contained in the coeflicients ¢  and the exponential z-dependent decay into the
vacuum is now seen explicitly.

In order to find those states, which contribute most to the different patterns of
STM-images we take a look at the z-dependence of the wave functions at different
points in reciprocal space. From our simplified model we can see, that the k- and
Gj-resolved contribution to the surface topography at the surface plane z =0 is
detected at the distance z after k- and Gj-dependent weighting expressed by Eq.
(4.63). Consequently, waves with the smallest lattice vectors Gy and the highest
energy € will reach out furthest into the vacuum and contribute most to the STM
image. Thus a k- and Gj-dependent filtering of the available electronic states takes
place.

For a selected reciprocal lattice vector G| those reciprocal lattice vectors G of
the wave function contribute most which are the smallest. Additionally, the Bloch
vector k; of the states plays a role in the selection of the largest contributions from the
Brillouin zone. For Gy = 0 the highest contributions are thus expected for n = n' =0
and k; = 0, i.e. the I'-point of the 2D Brillouin zone. Analogously we find for the

smallest non-vanishing representative reciprocal lattice vector, i.e. G| = Gl(ll), n=1
and n’ = 0 (and all symmetry related combinations) and k; = —Gl(ll)/Q (and all

symmetry related points of the 2D BZ).

The kj-dependent filtering effect in Eq. (4.65) on nl‘i”y(z) is analyzed graphically
in Fig. 4.7a-c for the three smallest stars (s=1,2,3) of reciprocal lattice vectors G of
a square lattice. Fig. 4.7a-c display the exponential decay of nf(” (20| EF) in terms of
grey scale plots over the 2D Brillouin-zone calculated for the Fermi energy, € = Ep,
at a tip-sample distance of zp = 5 A. In these plots the electronic structure has
been explicitly ignored by replacing in Eq. (4.65) all coefficients cﬁ”y by a constant
and replacing fiﬁ”y by ffﬁ”(EF). We used Er = —4.5 €V as calculated for a Fe(001)-

surface. There is only a minor dependence on the exact Fermi energy which is usually
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(€)

Figure 4.7: Grey-scale plots showing the decay of star coefficients in k-space for the
case of a square lattice. The white square denotes the boundaries of the 2D Brillouin
zone. (a) displays the k-dependence for the first star coefficient. Clearly states from the
I-point contribute most significantly. (b) and (c) show the same for the second and third
star coefficient. Again high symmetry points of the 2D Brillouin zone contribute most to
the different star coefficients.

around 4 to 5 €V. On the basis of Fig. 4.7 we can discuss the importance of various
contributions to the tunneling current over the k-space.
The first term nl(:”) corresponding to Gl(ll) = 0 leads to an r; independent, i.e. lat-

(1)

erally constant contribution to the tunneling current (cf. Eq. (4.59)). 0% is always
positive. It does not make any contribution to the corrugation pattern but it adds to
the total tunneling current (total LDOS) and becomes important in scanning tunnel-
ing spectroscopy. By Fig. 4.7a one concludes that this star coefficient is dominated
by states near the center of the BZ, i.e. the I'-point.

The decay of the second star coefficient nl(f”) of the LDOS is displayed in Fig.
4.7b. The STM topography pattern resulting from the second star function (see Eq.
(4.60)) depends on the sign of the star coefficient and contributes to imaging either
one or the other atom type in our example. One finds that in this case the main
contribution results from states around the X-point.

Finally the third star coefficient is plotted in Fig. 4.7c. The z-dependent k-point
filtering shown in Fig. 4.7c projects out states near the M-point. The third star
coefficient can become positive or negative, and shows either both atom kinds or all
hollow sites of the lattice. The relation between the second and third star coefficient
thus decides whether chemical resolution is possible. In chapter 6 we will see how
we can exploit this in realistic electronic structure calculations. The influence of the
electronic structure on the STM-images can then be clarified by taking the coefficients
cﬁ”y explicitly into account.

Because the average values of the star coefficients n® decrease exponentially with
the length of the star vector as can be concluded from equation (4.65) higher star
functions can be neglected (see also Table 4.2). This cut-off depends on the scale of
the 2D unit cell since, if the lattice constant increases, the difference in reciprocal
lattice vectors decreases. To illustrate the different orders of magnitude, we present in
Table 4.2 a comparison of the decay factors at the high symmetry points contributing
most significantly to each star coefficient. The values are given relative to the decay of
the lateral constant part of the LDOS, i.e. the first star. We have taken the Fe(001)-
surface as an example. The p(1 x 1) unit cell corresponds to a clean surface, a ¢(2 x 2)
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Unit cell | (yo/3) (4 A) | (va/m) (4 A) | (va/m) (4 A)
p(l x 1) 0.026 0.002 2-107°
f=6.5 f=16.7 f=150.6
xf=0.17 x f=0.03 x f=10.001
c(2 x 2) 0.136 0.026 0.002
f=31 f=6.5 f=16.6
x f=0.43 x f=0.17 x f=10.03
p(2 x 2) 0.351 0.136 0.026
f=19 f=31 f=6.5
x f=0.67 xf =043 xf=0.17
Table 4.2: Table showing a comparison of decay factors v(z)/v1(2) =

exp[—22((k% + (Gﬁ/2)2)1/2 — k)] for the leading contributions to star s. As an example
we have chosen different superstructures based on the square unit cell of Fe(001) with
¢ =4.5¢eV, ag = 2.87 A and a tip-sample distance of z = 4 A. The second line for each
superstructure displays the corresponding enhancement factors for a d,» orbital as given by
Eq. (4.33) and the third line shows the product of decay and enhancement factor.

to the checkerboard structure of a surface alloy with every second Fe atom replaced
by another kind (see Fig. 4.6), and a p(2 x 2) cell can be used to model a single
impurity atom incorporated in a surface. In the second line of each superstructure
we have given the enhancement factor for a d,» orbital (Eq. (4.33)) to this star
function, i.e. Fourier component, of the image. The Table quite clearly expresses
that for a clean surface only the second star coefficient should be significant. Even
if we take an enhancement factor into account the third star coefficient values are
negligible. This is also physically reasonable since the third star function possesses
maxima at both the atom and hollow sites of the surface unit cell. As we have pointed
out earlier (see Fig. 4.6) this is different for a ¢(2 x 2) structure. The second star
function then shows maxima at only one atom position of the unit cell while the third
star function now shows maxima at every atom site. Accordingly, the difference of
the decay factors is less significant and taking the enhancement factor into account
leads to a factor of 2.5 between the decay factors of second and third star coefficient.
Again we find this in agreement with our intuition. Experimental STM images of
the CuAu/Au(001) surface alloy actually show contributions of both the second and
third star function [58]. The sketched trend is continued for the p(2 x 2) unit cell.
We also recognize that the enhancement factors are considerably lower in accordance
with the statement that the STM images become independent of tip orbitals with
increasing scale of the structure.

4.6.3 Calculating the Corrugation Amplitude

The star function method is also valuable in calculating the corrugation amplitudes,
as will be shown next. The corrugation amplitude Az, defined as the maximum
difference in tip height as the surface is scanned, is calculated making use of the
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observation that the corrugation is of the order of typically Az ~ 0.10 A for all r
within the entire unit cell, which is tiny compared to the average tip—sample distance
2o of about zg ~ 5 A. We write

Z(I‘H) = 29+ AZ(I‘H) (466)

and linearize the tunneling current I(r, z(r) | V) = I(r), z0 + Az(r)) | V) around =z,

ol

I(ry, 2(ry) | V) =~ I(rg,20|V)+ @kr”,zO vy Az(ry) (4.67)
~ I(V)+dl(r,|V) (4.68)
with
ol
d[(rll) = v1"||]|(1f||720)dr|| + $|(P||7Zo)dz(rll) (469)

The explicit V dependence in Eq. (4.69) was dropped for convenience. In the constant
current mode the tunneling current (and in the Tersoff-Hamann model the ILDOS
n) is kept constant

I(ry, 2(ry) | V) = /QV,T(G)n(rnaZ(rn) | €) de = n(ry, 2(ry), V) = consi(V) (4.70)

— 00

and thus dI(r;) = 0. Taking Eq. (4.69) and integrating the local change dz(r;) from

the position of minimal ILDOS r[™" to the position of maximal ILDOS r|*** we obtain
the maximum corrugation amplitude:

z(rﬁwm) rﬂ"‘w
or !
( mm) min (r”’ZO)
2T "l

We can now replace the tunneling current [ by the ILDOS according to Eq. (4.70)
using the expansion of the LDOS n(r|,2) in terms of star functions ¢?P(r,) (Eq.
(4.56)). Since higher star coefficients become quickly negligible (see also Table 4.2),
the summation over the stars can be approximated by the leading star contributions.
This is s = 1 for 91/0z, i.e. we replace 91/0z at (r|, z9) by an r| independent 91/0z
at (zo) for all rj and pull this term in front of the integral, and s > 1 for Vi, 1. With
this we arrive at our final result for the corrugation amplitude:

+o0
S AP [ gua(e)n®(zo] ) de
S s>1 —00
+oo 1
' gva(e)2my)_o(enM(z0 | €) de

3 AGP (20, V)
_ g1 - 4.72
7D (20, V) )

&

Az(zo, V)
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In this equation, A¢*” is the difference of the star function at the location of the
maximum and the minimum ILDOS (x|, z(r,) | V):

AGP = GP () — G0, (4.73)
In order to calculate the derivative with respect to z in Eq. (4.72) the z-
dependence of the 1st star coefficient n(")(z | €) has been approximated by n(!)(z | €)
eXP(_Q’fE“):oZ)- k is the energy-dependent decay length: KZ{:”):O = [2ml]e| /¥ /2.
The k| dependence of £ has been approximated by k; = 0, since k; = 0 dominates
the n(®) contribution to the tunneling current as has been pointed out in the previous
section.

In Eq. (4.72) a factor S has been introduced that needs to be explained. The origin
of the coordinate system for the r| integration is usually located at the position of
a surface atom, and r["** and rﬁ“m are taken from the positive quadrant of the 2D
surface unit cell. In connection with the star functions of a square lattice (Fig. 4.6)
we have discussed the possibility to image either one or the other kind of atoms in
a checkerboard structure. It is convenient to define a sign S for the corrugation
amplitude allowing us to express the two possible STM patterns. Let us call the
corrugation amplitude positive if the tip—sample distance at the position of the black
atom in Fig. 4.6 is larger than at the white atom site. We can do this by introducing

S defined as follows:
+oo
S = sign / gvj(e)n@)(zo le)de| . (4.74)

— 00

S is thus the sign of the integrated second star coefficient. This definition makes use
of the fact that the second star function has a maximum at the site of the black atom
and a minimum at the site of the white atom taken the definition of star functions
(Eq. (4.60)). A negative sign of the second star coefficient turns the maximum to a
minimum and vice versa.

The quality of Eq. (4.72) has been tested calculating n(r,z) on a fine z grid in
real space and evaluating Az directly from the condition that n(r,z(r;)) = const.

The two different approaches are in good agreement although the evaluation of Eq.
(4.72) is much faster.

4.6.4 Distance-Dependence of the Corrugation Amplitude

Using the result for the corrugation amplitude from the previous section and our
analysis of leading contributions to the star coefficients we can estimate the distance-
dependence of the corrugation amplitude. Let’s assume that the image is dominated
by the second star coefficient and that we can neglect higher order terms (this is
usually the case). Taking the low bias-voltage limit we can then write the corrugation
amplitude as:

Az(z,V) = Az(zo]V)exp [—2(2 - ZO)(\/KZ +(GP2)2 — k)| (4.75)
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The distance-dependence of the first and second star coefficient has been approxi-
mated by the most significant contributions from the Brillouin-zone. Since the value
of (GI(IQ)/Q)Q decreases with increasing unit cell size the decay of the corrugation am-

plitude, given by (x* + (G|(|2)/2)2)1/2 — k, decreases as well. This is in accordance
with the experimental observation of STM images becoming nearly independent of
tunneling parameters (by varying the constant current at a given bias-voltage the
distance between tip and sample can be altered) [54].

4.6.5 Corrugation Amplitude for Magnetic Surfaces

A point of importance in the case of magnetic surfaces is the contribution of the two
spin directions to the total corrugation amplitude. Additionally, the possibility of
applying spin-polarized STM on the atomic-scale can be discussed in this context.
The generalization of Eq. (4.72) for a sample with a spin-polarized electronic structure
and an STM-Tip with a non-vanishing spin-polarization Pr = my/nr yields:

> A¢§D [TLT n*(zo, V') + mp m®(z0, V') cos 0]

Az(z,V) ~ S22 : : , 4.76
(20, V) nr ﬁgl)(zo,V) + mr ﬁl,(il)(zo,\/) cos 0 ( )

where we have used the definitions introduced in section (4.5) and the spin-polarized
generalization of the Tersoff-Hamann model as discussed there. The sign .5, discussed
previously, is now used in the modified form:

+oo
S = sign / gv,r(€) (nT n(Q)(z, €) +mr m(Z)(z, €) cos 9) de| . (4.77)

— 00

In the nominator as well as the denominator of Eq. (4.76) we find the decomposition
into non-magnetic and magnetic contributions to the ILDOS, i.e. the tunneling cur-
rent in the applied model. While we can neglect the magnetic contribution in the
denominator since the charge density is usually much larger than the magnetization
density and the first star coefficient is related to these quantities, care has to be taken
in the nominator. In general, the chemical and the magnetic unit cell are not the
same and therefore also the star functions that apply are different. In the previous
sections we have demonstrated the strong dependence of the decay of different con-
tributions to the STM image on the length of their representative reciprocal lattice
vector G. A magnetic superstructure for example has a larger lattice constant than
the chemical unit cell and thus smaller reciprocal lattice vectors. According to what
has been said before the contribution of the magnetic superstructure to the STM
image will thus decay more slowly into the vacuum. This argument does not change
the denominator as it is determined by the G = 0 terms which are independent
of the size of the unit cell. Thus the second term in the nominator may very well
dominate depending on the magnetic superstructure. An example of this effect will
be discussed in more detail in chapter 9. In the definition of the sign S the lowest
non-vanishing star function of the chemical and the magnetic unit cell has to be used
accordingly.
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Even in a non-spinpolarized experiment, Pr = 0 — mp = 0, the total corrugation
is in general neither the average nor the sum of the corrugation amplitudes

DAY ni(z0, V)

Azp(z0, V) = Sy 22 SoTT (4.78)
for majority and
; AGEP i3 (20, V)
Az(z,V) = S, AT (4.79)

for minority electrons. There are two limiting cases. First, if ﬁg%(zo, V) > fzgi(zo, V)
then the total corrugation amplitude is approximately given by Azt(zo, V') and wvice
versa. Second, if fzg%(zo,V) R ﬁgi(zo,V) then the total corrugation amplitude is
approximately equal to the average of up and down corrugation amplitudes. In both
cases the weighted integral over the lateral constant part of the LDOS fz,({{,),(zo,e)
decides about the contribution of the different spin directions. In chapter 8 we will

present an application of these arguments.



Chapter 5

Bias-Voltage Dependent
Corrugation Reversal

In this chapter we explore the interpretation of STM images with atomic resolution
of pure transition-metal surfaces. Being able to image a surface on the atomic scale
has but recently! been the speciality of the STM. To interpret these STM images
unambiguously is of great importance for the studies of new materials since the
exact atomic structure is critical for many surface properties. Experience over the
past 10 years has proven that the knowledge of the electronic structure is particularly
important for the interpretation of atomically resolved topography images for surfaces
of covalently bonded semiconductors [59-64], which show spatially oriented occupied
and unoccupied dangling bonds. In this case the STM image may differ drastically
from a surface topography. A crucial experimental clue for the interpretation of
images on the basis of the electronic structure is provided by the dependence of
the image upon tunnel voltage. The combination of voltage dependent images with
theoretical electronic structure calculations developed to a successful approach for
the analysis of atomically resolved images [62-67].

On the other hand for metals the conventional wisdom [22] says, that the inter-
pretation of metal surfaces is fairly straight forward and rather simple: In metals,
electrons screen the nuclear charge and thus follow to a good approximation the
atomic structure. Thus areas of high and low tunneling current should be assigned
to protruding atoms or atomic interstices, respectively. The STM image may corre-
spond quite closely to a topography of the surface, even on the atomic scale. This
type of interpretation has been widely used for atomically resolved STM-images of
metal surfaces [68-70]. Although this argument might be true for simple metals such
as Au, Al, or Cu, theoretical evidence is given here that for transition-metal surfaces
and in the following chapters also for transition-metals in semiconductor (chapter 6)
and noble-metal surfaces (chapter 7) the interpretation of STM images is far from
being trivial.

In this chapter we discuss the (110)-surfaces of transition-metals with a bee bulk
lattice structure as an example of one-component transition-metal systems. Although

!By using the dynamic mode of the atomic force microscope true atomic resolution was demon-
strated for the first time with another scanning probe microscope [3,4]
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we are limiting our analysis to these systems the presented effect, a bias-voltage
dependent change of the STM-image for bee-(110) surfaces leading to images where
protrusions relate to the hollow and not the atom sites, was found also for other
surface orientations. This is contradictory to common wisdom a rather probable
effect (see also section 8.5). We performed the detailed analysis for the W(110)
surface and comment on other materials, also ferromagnetic ones, in the last two
sections.

5.1 Computational Details

A film consisting of 11 layers has been chosen to simulate the W(110)-surface using
the experimental W lattice constant (ag = 5.972 a.u.). No vertical relaxation of
the surface has been included, since it is experimentally known to be less than 2%
[71]. For the exchange-correlation potential the local density approximation in the
parametrization by Moruzzi, Janak, and Williams [72] has been applied. The basis set
used for the valence states consists of about 100 augmented plane waves per atom in
the unit cell. Non-spherical terms in the potential, charge density and wave functions
are expanded within the muffin-tin spheres with radius Ryr = 2.456 a.u. up to
lmaz < 8. The self-consistent electronic structure was determined with 36 k-points
in the irreducible part of the two-dimensional Brillouin zone (I12BZ). The integrated
local density of states (ILDOS) resolved over the 2D-BZ has been analyzed using
630 k;-points in the 12BZ. All star coefficients and by this also the STM-images and
corrugation amplitudes were calculated on this k-point basis.

Calculations of Ta(110) were performed with the same parameters as in the case
of W(110) using the experimental lattice constant of Ta (ap = 6.25 a.u.) and a
muflin-tin radius of Ry = 2.65 a.u.

Calculations of ferromagnetic bee Fe(110) were carried out employing the local
spin density approximation. The Fe(110)-surface was described by a 15 layer Fe film
and the theoretically determined lattice constant of ap = 5.23 a.u., determined by
minimization of the total energy with respect to the lattice constant. A muffin-tin
radius of Ry = 2.151 a.u. was chosen. All other parameters are identical to those
of the W(110) calculation.

The vacuum energy-parameter ¢, was set close to the Fermi energy Fr. We
tested the influence of the energy parameter on the LDOS at the position of the tip
(z0="5 A) Setting €, to the Fermi energy Fr did not change the LDOS significantly.

5.2 STM-Images of W(110)

The experimental data were measured with a commercial ultra-high vacuum (UHV)-
compatible scanning tunneling microscope (Micro-STM, Omicron) operated in a
home-built UHV chamber with a base pressure in the low 10~'" torr range. The
chamber was equipped with facilities for substrate heating by electron bombardment
and a combined LEED/Auger-optic for checking surface crystallographic order and
cleanliness of the sample prior to imaging with the STM. We prepared the W(110)
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single crystal by cycles of heating in an oxygen atmosphere (pox = 1 x 1077 torr)
for 30 min and subsequent flashing up to 2600 K [73]. Imaging was carried out in
constant current mode at room temperature. Typically, when trying to obtain atomic
resolution images we took 50 A scans with a 0.1 A per pixel increment. The piezo-
tube scanner was calibrated on highly—orientated pyrolytical graphite (HOPG) and
Si(111)-7 x 7 ex- and in situ, respectively.

Figure 5.1: Comparison of experimen-
tal and calculated STM-image. a) Atom-
ically resolved clean W(110)-surface at a
bias voltage of about 40 mV and a tunnel-
ing current of about 10 nA. The scan area
is 33 A x 25 A. b) Calculated ILDOS at
a distance of 5 A above the surface atoms
in an energy range equivalent to a). Line-
section as indicated in a) is presented in
Fig.5.3.

Figure 5.1a shows a 33 x 25 A? constant current topography of the W(110)-surface
taken at a bias voltage of about +40 mV and a tunneling current of 10 nA. This image
shows atomic scale corrugation appearing as an equidistant array of black interstices
and nets of protrusions. The length scale and orientation of the arrays are consistent
with a p(1 x 1) unit cell of W(110), which suggests that the observed corrugations
are associated with the positions of the W atoms. The features of this image where
typical of those taken at different locations on the surface.

Fig. 5.1b displays the calculated ILDOS at a distance of 5 A from the surface atoms
in the energy range of (Er, Er 4+ 50 meV). This tip-surface distance is a typical value
for which little tip-surface interactions is expected. We find a good agreement between
experiment and theory. Both images show a pattern of dark spots with the symmetry
of the 2D surface unit cell. Looking more carefully one finds also a pattern of bright
spots, with the same symmetry, which are connected by feeble fuzzy-lines. Although
the atomic resolution of the STM-image can already be deduced by the symmetry
and lateral scale of the pattern, it is @ priori not clear whether the bright or the dark
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spots or none of them correspond to the atomic sites. From the calculated image
we find that at this particular bias voltage the interpretation of the STM image is
indeed in line with the intuitive assumption that large tunnel current (bright spots)
corresponds to the atomic sites. The dark spots correspond to the hollow sites of
the (110)-surface unit cell. To our knowledge the presented STM-image is the only
experimental evidence of an atomically resolved STM-image of the W(110)-surface
to date. Images at other particularly negative bias voltages could not be obtained in
this experiment and other results are not known to us.

5.3 Voltage Dependent Corrugation Reversal

On the other hand, STM images were recalculated for different bias voltages. We
found a surprising result: depending on the bias voltage we predict that sites of high
tunneling current correspond to the hollow sites or interstitial sites, respectively, and
sites of low tunneling current correspond to the atom positions, e.g. vice versa to the
results of Fig. 5.1.

0.04F
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0.00f

~0.02F

Corrugation Az (4)

~0.04 L

Voltage (V)

Figure 5.2: Dependence of the corrugation amplitude Az, on the bias voltage of the
calculated STM-image of W(110). Insets show the surface unit-cell (bottom right) with
atomic sites marked by dots and typical STM-images calculated for different bias voltages
V. The full line displays Az = z42 — Zmin, calculated by Eq. (4.72), between the lateral
points r; of maximum and minimum corrugation within the unit cell. The dashed line
displays Az = zZ4tom — Zhollow, the corrugation measured between the position of the atom
and the hollow site. All results are calculated at a distance of zy = 4.6 A. Area of dark
grey scale means small tunneling current.

This corrugation reversal is documented in Fig. 5.2 at a distance zy = 4.6 A from
the surface. The maximum corrugation amplitude Az = z,,,, — Znin between the lat-

eral points r|"*” and ri"” of maximum and minimum tip-sample distances is plotted
as function of the applied bias voltage V' together with the corrugation amplitude
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Az = Zuytom — Zhollow Measured as difference between the tip—sample distances at the
position of the atom and the hollow site.

In the case of V' > 0, corresponding to the bias voltage in Fig. 5.1, we determined
a positive corrugation amplitude of the order of 0.01 A, which rises at higher voltages
up to 0.04 A. The positive sign of the corrugation amplitude means that atoms are
imaged as protrusions (normal image) and representative topography images of the
rectangular surface unit cell are shown in Fig. 5.2 as insets for voltages of 0.2 and
1.4 V. In the case of high negative voltages (V < —0.9 V) we find that the image is
reversed and hence the sign of the corrugation amplitude is negative. The absolute
value is of the same order as in the positive voltage regime. A typical image is shown
as an inset in Fig. 5.2 (V = —1.4 V). Comparing the insets at positive voltage and
high negative voltage, the effect of image-reversal is quite apparent (see the 2D unit
cell as reference).

In the intermediate voltage regime, in which the corrugation reversal occurs, the
images display a pattern of bent stripes parallel to the short side of the rectangular
unit cell. Starting from a voltage with a normal image (i.e. +1.4 V) and reducing
the bias voltage continuously there is a gradual change and absolute maxima change
to local maxima at the positions of the atoms in the intermediate voltage regime.
At a voltage of about V = —0.4 V even the local maxima have disappeared. The
change is also pointed out by the dashed line in Fig. 5.2, which shows the difference
Az between an atom position and a hollow site of the unit cell and does not coincide
with the corrugation amplitude. The analogous discussion occurs starting with a
reversed image at large negative voltages, but in this case absolute maxima change
to local maxima at the hollow position (see inset in Fig. 5.2 for V = —1.4 V and
V=-07V).

The voltage, which can be identified as the border between normal and reversed
image, is about —0.4 V. However, this is not an absolute number since it changes with
the distance zg, which corresponds experimentally to the chosen constant current.
The trend is, that for separations larger than zy = 4.6 A the critical voltage rises
linearly. At a distance of 7.2 A it is equal to 0 V.

Obviously, these observations are in contradiction to conventional wisdom that on
metal surfaces there is a one to one correspondence between high tunnel current and
atom positions. The effect of image reversal makes the determination of atomic sites
by the STM image rather difficult. Finally we would like to stress one more point: In
the transition regime of image-reversal at bias voltages between —0.7 V and 0 V, the
corrugation amplitude becomes extremely small and we speculate that this might be
the origin of the experimental difficulties in resolving the W(110)-surface with atomic
resolution at negative bias voltage.

5.4 Corrugation Amplitude

Figure 5.3 shows a typical corrugation profile taken along the [001] direction of the
W(110)-surface as indicated by a straight line in Fig. 5.1a. The experimental value
for the corrugation amplitude is about 0.13 A. This is about one order of magnitude



66 5. Bias-Voltage Dependent Corrugation Reversal

g 015 b

S o0} -

=

>

E 0.05 | -

= Figure 5.3: A corrugation profile taken

Q o0.00f . : Coct]

o by a line scan along the [001] direction
. of the W(110) surface as indicated by a

0 S i 10 15 29 straight line in Fig.5.1a using scanning pa-
lateral displacement [A]

rameters as given in Fig.5.1.

larger than the theoretically determined corrugation in Fig. 5.2, which is on the order
of 0.01 A at a distance zo from the surface of 4.6 A.

We attribute this tiny and in reality by STM non-detectable corrugation ampli-
tude to the application of the Tersoff-Hamann model [6], which is based on s-like tip
wave-functions (see section (4.4.1)). As also described in chapter 4, Chen [11] has
extended this model to arbitrary tip orbitals. We have applied the derivative rule
(section (4.4.2)) to the calculated STM-image of Fig. 5.1b and extracted new corru-
gation amplitudes, using the same procedure as before. In addition to the s-orbital,
which corresponds to the description of Tersoff and Hamann, the tip-states with p,-
and d.2-character are considered.

0.0100

Corrugation Amplitude (A)

3 4 5 6 7
Distance between Tip and Sample (A)

Figure 5.4: Corrugation amplitude as function of the tip-sample distance for three differ-
ent orbital symmetries of the tip state. Using Chen’s derivative rule [10] the corrugation
amplitudes for s, p, and d,2 type tip-orbitals have been calculated at a bias voltage of +0.1
V. The experimental corrugation amplitude obtained from the STM-image of Fig.5.1a is
given by the horizontal dotted line. Symbols indicate calculated values. The full line is
a linear interpolation of the values calculated for an s type tip. The dashed and dotted-
dashed lines are given by the interpolated values of the s-type tip multiplied by Chen’s
enhancement factors [10] for a p,- and d,2-tip, respectively.

Fig. 5.4 shows the corrugation amplitude as function of the tip-sample distance
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for the three different tip orbitals. The corrugation amplitudes were calculated at
different tip-sample distances for a fixed bias voltage of +0.1 V. The linear scaling
of the corrugation amplitudes as function of the tip-sample distance in the semi-
logarithmic plots describes the exponential decay of the tunneling current with the
distance. Comparing the corrugation amplitudes of a p,- or d,2-state tip with that
of an s-state one, the amplitudes are larger by factors of 2 or 6.25, respectively,
as predicted by Chen’s derivative rule [11]. These results are consistent with the
experimentally measured corrugation amplitude (cf. Fig. 5.3) of 0.13 A, added in Fig.
5.4 as dotted horizontal line, for a tip-sample separation of about 4 A. This distance
is already quite small, but it is consistent with an estimation of the experimental
tip-sample separation by means of the tunnel conductance:
2

G = é = 2% exp [—2k(2 — Zeontact)]- (5.1)
In Eq. (5.1) we make the assumption that the tunnel conductance becomes equal to
the conductance quantum at (single atom) contact z = z.oniaer and that it decreases
exponentially with increasing distance from the surface. Applied to the tunneling
conditions of Fig. 5.1a, this leads to a value of z — 2z, 100t = 2.4 A. Taking z.optact as
the lattice plane separation in tungsten of 1.6 A [(100)-directions] to 2.2 A [(110)-
directions| one ends up with a tip-sample separation of 4.0 — 4.6 A. This result is
in accordance to our estimation comparing the calculated and measured corrugation
amplitude.

The orbital character of the tip-state depends much on the tip material used.
Experiments discussed in section (5.2) have been carried out with W tips. For W
tip atoms the tunneling is mostly due to d-electrons at the Fermi energy. This has
also been confirmed by electronic structure calculations of Ohnishi et al. [52] on W
clusters, which makes the assumption of d,» rather realistic.

We may draw one important conclusion from this investigation: The corrugation
reversal shown in Fig. 5.2, and calculated for an s-state tip, should be also scaled-up
by the enhancement factor [11] and thus should be detectable by STM-experiments.

Although more realistic tip-orbitals magnify the corrugation amplitude we found,
however, that the STM-images obtained from p,- or d,2-state tip orbitals do not
differ qualitatively from the s-tip images. Therefore, we can safely restrict the fur-
ther discussion and analysis on the corrugation reversal to the model of Tersoff and
Hamann.

5.5 Analysis of Corrugation Reversal

To give an explanation of the image-reversal on the basis of the electronic structure
we start with the Fermi surface of W(110) as displayed in Fig. 5.5. Fig. 5.5a shows
the centered rectangular 2D-BZ of the bce-(110)-surface and in Fig. 5.5b calculated
electronic states at the Fermi energy are marked. Small open circles distinguish
bulk-like states from surface localized states represented by full dots. One finds three
surface resonance bands and a surface-state band which have also been studied ex-
perimentally by photoemission [74]. The experimentally observed surface resonances
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and surface state at the Fermi surface were explicitly mapped [74] over the 2D-BZ
and a comparison shows a good agreement to our calculation (cf. Fig. 5.5).
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Figure 5.5: Fermi surface of W(110). a) 2D-Brillouin zone corresponding to the centered
rectangular unit cell of bee transition-metal (110) surfaces (e.g. W(110)). b) States of
W(110) at the Fermi energy. Open circles mark bulk states while filled circles represent
surface states or resonances with a localization (expectation value) of either more than 10%
within the vacuum region or more than 45% within the muffin-tin spheres of the surface
atoms including the vacuum region or more than 65% within the surface atoms, subsurface
atoms and the vacuum region.

The surface state surrounds the S point of the Brillouin-zone while one resonance
is around T, and around N, and a third one is stretching along the axes I'H and
I'N. In order to see the dispersion of these different surface localized states Fig. 5.6
shows the bandstructure in I'S-direction. One recognizes the surface state located
in an energetic gap of bulk bands as well as two types of resonances. The surface-
state band has its energetic minimum at —1.3 eV and from a more detailed analysis
it can be concluded that its character changes from predominantly d-character at
the minimum to a p-type state at the zone boundary. This change occurs gradually
and states near the Fermi energy have comparable contributions of both types with
a small admixture of s-electrons. While the resonance around I' exhibits a rather
flat dispersion, the resonance crossing the Fermi energy approximately half way to
S, rises quite steeply. Thus, there is a considerable number of possible electronic
states responsible for the observed phenomena and one has to understand the relative
importance of these states as well as their quantitative contribution to the corrugation
inversion. In order to find those states, which contribute most to the corrugation in
STM-images we are looking at the z-dependence of the wave functions at different
points in reciprocal space. Following Sacks et al. [57] we begin the analysis in terms
of the simplified model introduced by Eqs. (4.63-4.65). In this model we can see, that
the k- and Gyj-resolved contribution to the surface topography at the surface plane
z = 0 is detected at the distance z after k- and Gj-dependent weighting expressed
by Eq. (4.63). Consequently, waves with the smallest lattice vectors Gj and the
highest energy e will reach out furthest into the vacuum and contribute most to the
STM image. In Fig. 5.7 the first three star functions ¢?P(r,) are explicitly shown
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Figure 5.6: Calculated surface bandstructure
of W(110) along the ['S-direction of the Bril-
louin zone. States marked with square, dot or
diamond are localized with more than 5% in
the vacuum, more than 60% within the vacuum
plus the muffin-tin sphere of the surface atom,
or more than 70% within the vacuum plus the
muffin-tin spheres of the surface and subsurface

atoms, respectively. The Fermi energy Er de-
fines the energy zero.
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Figure 5.7: Star functions for a bee (110) surface, i.e. a rectangular-centered two-
dimensional unit cell. (a) 2D unit cell. The first star function is a constant. (b) cor-
responding second star function displaying the atoms as protrusions. Note, that the sign
of the expansion (star) coefficient can be negative leading to an inversion of this image.
(c) third star function showing parallel stripes along the short axis of the rectangular cell.

for a bee-(110) surface lattice, corresponding to the three smallest stars (s=1,2,3) of

reciprocal lattice vectors Gy, Gl(ll) = (0,0), G|(|2) = (1,/2), Gl(ls) = (2,0), expressed

in units of \/§7r/a0, with ag being the lattice constant:

%D(rn) =1 (5.2)
1
P3P (ry) = 5[005 (Gyary) + cos (Gyary) | (5.3)

3P(ry) = cos[(Gyi+ Gya)ryl. (5.4)
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G, 1 and Gy, are the two-dimensional reciprocal lattice vectors

Gy = ?(1,\/5) and Gy, = {—20”(1, —V2). (5.5)

0

The k-dependent filtering effect of exp (—ffﬁllz) on nf,k” (z) is analyzed graphically
in Fig. 5.8a-c for these three smallest stars. Fig. 5.8a-c display the exponential decay
of ni”(zo | Er) in terms of grey scale plots over the 2D Brillouin-zone calculated for

the Fermi energy, ¢ = Ep, at a tip-sample distance of z5 = 4.6 A. In these plots
the electronic structure has been explicitly ignored by replacing in Eq. (4.65) all
coefficients cﬁk” by a constant and replacing /{Zk” by /iﬁ” (Er). We used K = —5.69
eV as calculated for our W(110)-film. These results need to be compared to Fig.
5.8d-f, which show the actual coefficients nf,k”(zo) for the first three stars, including

the electronic structure, calculated according to Eq. (4.58) by FLAPW calculations
in the energy interval (Erp—0.2 eV,Er). On the basis of Fig. 5.8 we can discuss the
importance of various contributions to the tunneling current over the k;-space.

The first term ngn) corresponding to Gﬁl) = 0 leads to an r; independent, i.e.

(1)

laterally constant contribution to the tunneling current (cf. Eq. (5.2)). Ny, is always
positive. It does not make any contribution to the corrugation pattern but it adds to
the total tunneling current (total LDOS) and thus it is important in scanning tunnel-
ing spectroscopy. By Fig. 5.8a one concludes that this star coefficient is dominated
by states near the center of the BZ as is commonly accepted. Comparing Fig. 5.8a to
Fig. 5.8d, it is clear, that the particular electronic structure of the surface still leads
to some deviation of the simple picture. One can recognize the surface resonance
around I' as well as a part of the resonance which stretches along the axes of k-space

(1)

(see Fig. 5.5 for comparison). The area in the BZ which is of importance for M, is

thus still influenced by the particular electronic structure.
The decay of the second star coefficient nf”) of the LDOS is displayed in Fig. 5.8b.

The STM topography pattern resulting from the second star function (see Eq. (5.3))
depends on the sign of the star coefficient and contributes to corrugation or anti-
corrugation as seen in Fig. 5.2 for voltages V = 4+1.4 Vor V = —1.4 V, respectively.
One finds that in this case the main contribution results from states around S. From
Fig. 5.8e we analyze the contribution to the STM-image made by different states
in the BZ. Fig. 5.8e displays positive nl(f”) coefficients in yellow color and red for
coefficients with negative sign. Now one can easily understand the different role of
the surface resonance and the surface state on the corrugation. We find that all
bulk states and all surface resonances have positive ng”) coefficients and contribute
to a normal STM image, consistent with the general wisdom for metal surfaces that
electrons try to screen the positive charge of the nucleus and the STM topography
and the atom position should coincide. The surface states located around S are the
only states with negative nl(f”) and are the single source of the anti-corrugation of the

STM image. In addition the negative ngl) contributes to the total n(?) by a large

weighting factor because of its position close to S while the resonances are of rather
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Figure 5.8: Star coefficients in k-space at a tip-sample distance zy of 4.6 A. Panels a)
to ¢) show the first three star coefficients decay function as calculated by equation (4.65)
with EFr = —5.69 eV and d) to f) first three star coefficients of the FLAPW-calculation
for W(110) in the energy range (Er — 0.2 eV, EF). Images d) to f) have been calculated
using 630 k-points in the [2BZ. Yellow shows positive coefficient values while red marks
negative values.

(2)

small value due to the little weight of ny, at the I' or H-point. The resonance along

the axes I'H and I'N contributes the highest values among the normal states.

The actual STM-image for a chosen bias voltage depends upon the integral value
of the second star coefficient of the LDOS over the 2D-BZ. This quantity, n®(z | €),
is displayed in Fig. 5.9 for the first three star coefficients as a function of energy at a
tip-sample distance of zo = 4.6 A. We see n(V(¢) is always positive, since it represents
the total charge density integrated over the 2D unit cell. The second star coefficient
of the LDOS n{®(¢) is three orders of magnitude smaller than n{")(¢) and changes
sign at an energy of about —0.2 eV. Thus for energies below —0.2 eV the negative
contribution of the surface states is higher in absolute value than the contribution
of all other states, which is positive. Since the tunneling current at a certain bias
voltage V' is given by an energy integral of the LDOS between Fr and Fr + eV (Eq.
(4.28)), the corrugation does not change its sign until a voltage of —0.4 V is reached
(see Fig. 5.2). Then the positive values of n(?) states between Fp—0.2 eV and Fp are
compensated by negative values between Er —0.4 €V and Fr —0.2 eV. Reducing the
applied Voltage below —0.4 V results then in an image reversal. A maximal negative
value of n(?(z|e€) is reached at —1.3 V, which is the minimum of the surface state
band (Fig. 5.6) consistent with the interpretation that the surface state is responsible
for the anti-corrugation. The change in sign of the second star coefficient and its rise
for energies above Ep is due to the competition between the surface state and the
resonance.

Finally the third star coefficient is plotted in Fig. 5.8c and f. The z-dependent k-
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point filtering shown in Fig. 5.8c projects out states near the N-point. The emphasis
on these states becomes also evident in the plots including the electronic structure
(Fig. 5.8f). One observes the strong influence of the resonance around the N-point
on this star coefficient of the LDOS. The third star coefficient can become positive
or negative, but the third star function (see Eq. (5.4) and Fig. 5.7) is simply a
cosine function in the [110]-direction of the surface and hence it is not responsible
for the effect of corrugation reversal. Nevertheless, the actual FLAPW calculation
demonstrates that n(? and n® can be of comparable value. This happens for the
energy regime between —0.4 eV and 0 eV, when the second star coefficient becomes
quite small (see Fig. 5.9) or zero due to the compensation between the surface state
and the resonance. In this regime the superposition of the star function ¢2(r)
and ¢2”(r,) leads to new images exhibiting patterns of bent stripes from the cosine
function ¢2P(r;) (see patterns in Fig. 5.2 at the voltages —0.7 V and —0.3 V). Stars of
even higher order do not contribute significantly anymore because the average value
of the star coefficients n® decreases exponentially with the length of the star vector
as can be concluded from equation (4.65) and is also evident from Fig. 5.9.

In Fig. 5.10 the charge density contours in real space of typical surface states and
surface resonances along the I'H and T'N lines are displayed. Fig. 5.10a and b show
cross sections through the W(110)-film of states lying on the surface-state band. One
finds a charge density between surface atoms which spills into the vacuum and causes
the anti-corrugated image. The behavior of the resonance states shown in Fig. 5.10c
and d is quite different. The d,.- and d,2-type states lead to vacuum LDOS located
at the atom and thus to a normal STM-imaging of atomic sites.
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Figure 5.10: Single-state valence charge-density contour maps, nk, (r) for W(110) on the
(001) plane. Contours start from 10~7 electrons/(a.u.)® and increase by a factor 4. Panels
a) and b) show plots for states on the surface-state band at k;, = (0.35,0.39v2)7/aV/2,
¢, = —0.05 eV and k; = (0.58,0.38v/2)7/av/2, ¢, = —0.11 eV, respectively. Panels c)
and d) show plots for states on the surface-resonance bands at k; = (0.15,0.18v/2)7/av/2,
€, = 40.04 eV and k; = (0.15, 0.61\/5)77/@\/5, €, = +0.04 eV, respectively. Atom positions
are marked by filled circles.

In order to understand the formation of the charge density contour of the surface
state as exhibited in Fig. 5.10a or b and the surface state itself from the bulk bands
we follow the formation of the W(110)-surface from the bulk by pulling apart the W
bulk in discrete steps long the [110]-direction. We have chosen a (110) unit cell of 4
(110)-planes in z-direction and increased the separation between these unit cells by
0.5 A, 1.0 A and 2.5 A along the z-direction starting from the bulk separation. At each
separation we calculated the projected bandstructure and confirmed that the surface-
state band described above is a split-off state from binding bulk states and is lifted
in energy. The evolution of the charge density contour associated with a particular
surface state along with the formation of the surface is shown in Fig. 5.11 for the
different unit-cell separations. In the bulk, the state under discussion is a bonding
state with bonding charges between the atoms along the short side of the centered
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rectangular [the (001)-directions] unit cell of the bee-(110) surface. Along the long
side of the unit cell [the (110)-directions| there are charge density zeros between the
atoms and it is thus an anti-bonding state along the long side of the unit cell and
perpendicular to the surface. As the surface is formed, the bond strength between
atoms at the forming surface is increased, the symmetry of the forming surface state
changes, the hybridization of this state with the underlying substrate decreases und
leads to a de-hybridization of subsurface charge, the charge density of the so formed
surface state releases energy by spilling out into the vacuum and causes the anti-
corrugation. The behavior of the surface state reminds at the formation of dangling
bond states of covalently bonded semiconductors with directed sp® hybrids, which
are also responsible for anti-corrugation. For the surface resonance states displayed
in Fig. 5.12 the picture is quite different. The charge density is located at the atom
and the symmetry does not change by the formation of the surface and a resonance
state supports a normal image.

[110]

[110]

[001]

Figure 5.11: Change of the surface state charge density when a W(110)-surface is created
from a bulk calculation. A single state of the band at k = /27 /aq (0.35, 0.351/2,0.35) with
energy e, = Er — 1.2 eV is displayed. a)-d) in [110]-direction: a) bulk, b) 40.5 A, ¢) +1.0
A and d) 42.5 A. e)-h) in [001]-direction: e) bulk, f) 40.5 A, g) +1.0 A and h) +2.5 A.

In order to confirm our interpretation of the formation of the surface-state band
as being partly due to the de-hybridization of subsurface states in favour to the
surface state, which gives the characteristic charge density features leading to anti-
corrugation in STM-images, we also calculated a free monolayer of W(110). In that
case we expect to find no states which exhibit an anti-corrugation image since there
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is no subsurface layer. The bandstructure of the monolayer is presented in Fig. 5.13.

[110]

[110]

[001]

Figure 5.12: Change of the surface resonance charge density when a W(110)-surface is
created from a bulk calculation. A single state of the band at k = v/27/ag (0,0.35v/2,0.3)
with energy ey, = Er + 1.4 eV is displayed. a)-d) in [110]-direction: a) bulk, b) 40.5 A, ¢)
+1.0 A and d) 4+2.5 A. e)-h) in [001]-direction: e) bulk, f) 4-0.5 A, g) +1.0 A and h) +2.5
A.

Comparing this bandstructure with the 11 layer calculation of Fig. 5.6 one notices
that the surface-state band with its characteristic energy minimum in the middle of
the I'S-direction is missing. There is a band in the monolayer bandstructure with a
behavior near S-point (at +0.5 eV, see Fig. 5.13) similar to the surface-state band of
the W(110)-surface but the calculation of the second star coefficient displays no sign
reversal (not shown here). We have thus analyzed that the surface-state band, which
leads to anti-corrugation in STM-images, originates from a hybridisation of surface
and subsurface states. This concludes the analysis of the electronic structure with
respect to the phenomena of image-reversal.

5.6 Other Transition-Metals: Nb, Mo, and Ta

It is well-known [75] that the overall form and structure of the LDOS and of the band-
structure depend on the crystal symmetry, while the actual peak positions relative
to the Fermi energy, peak heights or energy dispersions depend on the crystal poten-
tial or chemical element, respectively. Thus, we speculate that the image-reversal,
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predicted for W(110), is a rather general phenomenon for all bee-(110)-transition-
metal surfaces although the image change may occur at different voltages depending
on the metal. Therefore, we have calculated Ta(110) as an additional example of
non-magnetic bee-(110)-transition-metal surfaces. The corrugation amplitude at a
distance of zy = 4.6 A is displayed in Fig. 5.14. As for W(110) there is a corrugation
reversal which in this case occurs at V' = +1.3 V. Thus in a wide voltage regime
around 0 V only anti-corrugation images will be observed. Also the change from one
corrugation type to the other takes place on a much smaller voltage scale (i.e. the
curve is much steeper near the critical voltage). The surface-state band responsible
for the effect has its band minimum at an energy of 0.6 eV below Fr. It has shifted
up by 0.7 eV compared to W, which is due to the fact that Ta has one electron less.

Mo, as another possible candidate, is isoelectronic to W and hence we expect for
the Mo(110)-surface an image-reversal around Er. Nb is isoelectronic to Ta and we
estimate that the bottom of the surface-state band should be also around 0.6 eV
below Ep and an image-reversal should occur around V' = +1.3 V.

5.7 Magnetic Systems: Fe(110)

A more complicated scenario may develop for the (110)-surfaces of the magnetic bce
3d transition metals Cr, Mn, and Fe. The electronic structure is spin-split by an
exchange splitting, whose size is proportional to the local magnetic moment. There-
fore, the image-reversal should occur twice, once for the majority states and once for
the minority states. If the majority states are located below Fr and the minority
states are located above Er or a magnetic tip is used, then the observation of both
anti-corrugations should become possible. In general, however, non-magnetic tips are
used and electrons of one spin character dominate the tunneling current. In this case
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Figure 5.14: Dependence of the corrugation amplitude Az of the Ta(110)-surface on the
bias voltage. The full line displays Az = 2,45 — Zmin, calculated by Eq. (4.72), between the
lateral points r; of maximum and minimum corrugation within the surface unit cell. The
dashed line displays Az = z,¢0m — Zhollow, the corrugation measured between the position
of the atom and the hollow site. The distance from the surface was zg = 4.6 A.

one expects only the anti-corrugation of the leading vacuum spin character. The mi-
nor vacuum spin character, which is not necessarily identical to the minority states,
may contribute to a small intensity variation of the tunneling current.

To explore this further we have investigated ferromagnetic Fe(110) as a typical
example of a magnetic bee transition metal in more detail. Fe has two valence
electrons more than W. Since ferromagnetic Fe has a moment of about 2 ug, both
additional electrons occupy majority states and the number of Fe minority electrons
and of W valence electrons per spin state are about the same. Therefore, similar to
W, Fe minority spin states should drive the anti-corrugation effect at energies close
to the Fermi energy, e.g. small bias voltage, and thus should be accessible by STM-
experiments. The anti-corrugation effect driven by the majority electrons may be
well below Er and probably not accessible by STM-experiments.

We have calculated the electronic structure of ferromagnetic Fe(110). The bulk
magnetic moment was determined to 2.06 pyp in good agreement with the experi-
mental value of 2.12 pug. The surface magnetic moment was enhanced to 2.35 up.
As expected we found a spin-split electronic structure. Looking at the LDOS of a
surface Fe atom displayed in Fig. 5.15 we find an exchange splitting of about 2 eV
for a surface atom. The minority spin states are the dominating spin character in
the vicinity of the Fermi energy. Moreover, at Er the majority states are mostly
bulk states and the minority states are mostly surface states located in the typical
bce bonding-antibonding gap dominating the tunneling current through the vacuum
barrier (cf. Fig. 5.15).

Figure 5.16 exhibits the surface bandstructures of the Fe(110) minority and ma-
jority states along I'S direction. Both are similar to the bandstructure of the W(110)-
surface (cf. Fig. 5.6). In particular the surface-state band, responsible for the anti-
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Figure 5.15: Spin-resolved density of states of ferromagnetic Fe(110) as a function of
energy. Upper part of each panel displays majority states (spin +), lower part minority
states (spin —). Top panel contains the DOS in the vacuum at a tip-sample distance
of zg =5 A in a volume determined by §z = 1.3 A. Middle and bottom panel show the
angular momentum decomposed density of states projected in muffin-tin spheres for surface
atom and center atom, respectively. The latter corresponds to the bulk LDOS. Full line
represents the total contribution while the broken line represents the insignificant amount
of s+ p+ f contribution. Arrows indicate the minimum of the surface state band. The
Fermi energy is the origin of energy zero.

corrugated images of the W(110)-surface, can be found for both spin characters. For
the Fe minority state, the bottom of the surface-state band is located at about —0.7
eV [76], indeed close to the value of —1.3 eV for W(110). For majority states, the
bottom of the surface-state band is located at —2.4 eV [76]. The zero curvature at the
bottom of the surface-state bands lead to narrow peaks in the LDOS of the surface
Fe atom and the vacuum exhibited in Fig. 5.15.

Corresponding to the minority-state surface-band starting at —0.7 eV we deter-
mined the corrugation-reversal from the anti-corrugated image to the normal STM-
image in the minority-state-channel at a voltage of about +0.7 V, shown in Fig.
5.17. Since in general the STM-tip is not sensitive to the spin direction of tunneling
electrons, majority spin states will also contribute to an image taken at this energy.
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Figure 5.16: Calculated surface
bandstructure of Fe(110) majority
(left) and minority (right) states
along the I'S-direction of the 2D BZ.
States marked with a square, dot or
diamond are localized with more than

5% in the vacuum, more than 60%
within the vacuum plus the muffin-
tin sphere of the surface atom, or
more than 70% within the vacuum
1F 1  plus the muffin-tin spheres of the sur-
1ol Spin + 11 Spin — 1 face and subsurface atoms, respec-
tively. The Fermi energy Fr defines
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the energy zero.
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Figure 5.17: Dependence of the corrugation amplitude on the bias voltage of the ferro-
magnetic Fe(110)-surface. The full line displays Az = 2,40 — Zmin, calculated by Eq. (4.72),
between the lateral points r| of maximum and minimum corrugation within the unit cell
at a distance of zy = 4.5 A. The sign of corrugation amplitude has been defined by the
sign of the (integrated) second star coefficient. The dashed and dotted-dashed lines display
the contributions of majority and minority electrons, respectively. Notice that the total
corrugation amplitude is not simply the sum of majority and minority contributions.

From Fig. 5.17 we see, that for this energy range, majority electrons always lead to
a normal corrugation pattern and work against the corrugation reversal caused by
the minority surface state. However, their contribution to the tunneling current is
much smaller than that of the minority states and the image-reversal will take place.
The critical voltage at which the reversal takes place is shifted to +0.4 V. Since the
contributions of majority and minority states to the corrugation amplitude are of
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different sign the total amplitude becomes extremely small (compare to W(110), Fig.
5.2). Thus one might not be able to gain atomic resolution on the Fe(110)-surface at

all.



Chapter 6

Chemical Sensitivity in
Multi-Component Systems

In the previous chapter we have demonstrated that even in the simple case of pure
metal surfaces the interpretation of the STM images may not be unambiguous. As
we will see in this chapter, it can even be essential to perform electronic structure
calculations in order to verify structural models of surfaces with two or more chemical
species on the basis of STM images. Although we are not dealing with a pure metal
system in this case but with a silicide, CoSiy, the influence of the transition-metal
atom (Co) and the type of analysis is rather typical also for pure metal surface
alloys, for example MnCu/Cu(001) [20,77]. In one-component systems, the STM
has given valuable information on the atomic structure of semiconductor surfaces
[78]. In multi-component systems, where two or more different chemical species are
expected at the surface, the chemical identification on the atomic scale turned out to
be more difficult. For some binary systems like GaAs [79] or Al on Si(111) [80] STM
measurements at different bias-voltages or spectroscopic measurements proved to be
successful. However, for other systems like Ge/Si, the silicides or the perovskites, the
chemical identification atom by atom is an open problem.

The surface of CoSiy presents a case study for this type of problem. Due to
the specific requirements of growing flat silicide layers [81-83] or growing silicide is-
lands [84] on Si(100), for applications of silicides in microelectronic devices, a detailed
knowledge of growth and structure is desirable. CoSis is the best investigated silicide
surface of all, but no clear conclusion on the chemical nature of the surface structure
exists. CoSiy crystallizes in the CaF, lattice structure, characterized by adjacent
(100) lattice planes stacked along the [001] direction alternately occupied with 8 Si
or 4 Co atoms. Correspondingly, two different bulk terminated surface structures
exist: a Si and a Co terminated one. Experimentally it was found, that both surfaces
reconstruct. The Co rich surface (C-surface) was found to be (\/§>< \/§)R45° recomn-
structed. In models reported for this C-surface, one monolayer of Si resides on top
of the Co layer [83,85-87]. A structural model of the C-surface is shown in the top

81
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S-surface C-surface

Figure 6.1: Structural models of differ-
ent terminations of CoSiz(100). Models for
the S- and C-terminated surfaces are shown
in the left and right dashed squares in the
top, respectively. In the lower part of the
top view a model of a mixed surface ter-
mination is shown. Part of the surface is
S-terminated, in the other part of the sur-
face the top Si atom is replaced by a Co
atom (cf. side view).

side view

right part of Fig. 6.1'. The Si rich surface (S-surface ?) shows also a (v/2x+/2)R45°
reconstruction with 1.5 ML Si on top of the upper Co layer illustrated in the top left
part of Fig. 6.1 [83,86]. A recent STM study shows that the C- surface has a complete
occupation of the lattice sites and only the S-surface has an incomplete one [83].

In this chapter, we interpret atomically resolved STM images of CoSi, islands,
taken at different tunneling voltages, on the basis of the electronic structure calculated
with the FLAPW-method and the analysis of STM images introduced in chapter 4.
We find that the comparison of experimental and theoretical images resolves the
chemical nature of the protrusions observed in the STM images. When we image
the surface applying a sample bias voltage Ug larger than ~+0.5V above the Fermi
energy (Fr), the observed protrusions can be assigned to Co atoms. On the other
hand, when we image with bias voltages lower than ~+0.5V the observed protrusions
can be assigned to Si atoms. This is exactly opposite to simple arguments based on
the bulk density of states of Co and Si. These results show, (i) that the combination of
voltage dependent STM measurements and ab initio electronic structure calculations
open the possibility to identify the chemical nature of the atoms observed in STM
images, and (ii) we propose a new model with an inhomogeneous occupation of the
surface lattice sites by Co or Si atoms.

!The model of the C-surface shown in Fig. 6.1 is (1x1) terminated. For the sake of simplicity the
relaxations towards the (\/Ex \/§)R45° reconstruction are not shown.

2Tt should be pointed out that although the terminology ”C- and the S-surface” is widely used
and we refer to this terminology here, it is misleading, because both, the C- and the S-surface are
known to be Si terminated, the C-surface with 1 ML Si and the S-surface with 1.5 ML Si.



6.1 Experimental Details 83

6.1 Experimental Details

The STM experiments were performed at room temperature in the constant current
mode with a tunneling current of several 100 pA and typical bias voltages between
-2V and +2V, applied to the sample. To study the bias voltage dependence of the
STM images, we use the following procedure: Each scan line is recorded up to six
times with up to six different sample bias voltages. This way, we scan six images
simultaneously with six different bias voltages. Here we used: 0.3V, 0.6V, 0.9V,
1.2V, 1.5V and 1.8 V. For the negative polarities we took another six images.

The silicide films were prepared by reactive deposition epitaxy, i.e. depositing
1.5 ML of Co with the Si(100) sample held at a temperature of 500°C. It was shown
earlier, that under such conditions formation of CoSiy occurs [87]. We observe for-
mation of (3D) islands with aspect ratios (length /width) of 3...5 and heights of ~ 15
A [88]. The morphology of these 3D islands is described in detail in Ref. [88]. Some
of these silicide islands have flat tops. In the following, we will concentrate on the
structure of the top facets of these islands.

6.2 Bias-Voltage Dependent STM-Images

Figure 6.2: Atomically resolved image of
the top facet of a silicide island. (1.5 ML
Co deposited, Tg; = 500°C, Ug = +1.2V,
[=200 pA). The surface unit cell is indi-
cated corresponding to a (v/2xv/2)R45° re-
construction. Only 50% of the lattice sites
are occupied by atomic protrusions shown
as bright dots.

Figure 6.2 shows an atomically resolved STM image of the plateau of an 3D is-
land (Ug=+1.2V). The atomic protrusions shown as bright spots are located on a
square lattice with a periodicity of 5.5 A along the (110) directions of the substrate.
The unit cell of this reconstructed surface is /2 times longer in linear dimension
and rotated by 45° relative to the underlying Si substrate. This shows, that exper-
imentally a (v/2xv/2)R45° reconstructed lattice is observed by STM. However, this
reconstruction lattice seems not to be occupied completely. For about 50% of the
lattice positions in Fig. 6.2, no atomic protrusions are observed. Stalder et al. [83] ob-
served a similar behavior. They interpreted the incomplete occupation of the lattice
sites as vacancy defects.

To analyze the reason for this incomplete occupation of the lattice sites in detail,
we performed voltage dependent STM measurements. In Fig. 6.3(a) we show another
atomically resolved STM image of the top plateau of a silicide island (Ug=+1.2'V).
Also on this island a (\/§>< \/§)R45° reconstruction lattice is present. In Fig. 6.3(a)
25% of the lattice positions are occupied by bright protrusions. When we change
the sample bias voltage from +1.2V in Fig. 6.3(a) to 4+0.3V in Fig. 6.3(b), we



84 6. Chemical Sensitivity in Multi-Component Systems

observe that different lattice sites are displayed as bright protrusions. A detailed
comparison of the images shown in Fig. 6.3(a) and (b) shows, that both images are
complementary in the sense that the lattice sites, on which bright protrusions are
present at a Ug = +1.2V, have no protrusions at Ug = 40.3 V and vice versa.

Figure 6.3: The top facet of a silicide
island is shown in (a) and (b) imaged at
4+1.2V and +0.3 V sample bias voltage, re-
spectively (I=150 pA). Complementary sets
of lattice positions are imaged as bright
protrusions at the different bias voltages.

The general trend with respect to the voltage dependence of the images is as
follows: At bias voltages of +0.6V and higher always the same lattice sites show
bright protrusions, and for bias voltages of +0.3V and lower (and for negative bias
voltages) the complementary set of lattice positions is imaged as bright protrusions.
This voltage dependence of the observed corrugation at different lattice sites precludes
a purely morphologic nature of the observed image contrast. Therefore, vacancy
defects are excluded as a reason for the observed incomplete occupation of the lattice
sites and we propose a new model with an inhomogeneous occupation of the surface
lattice sites by Co and Si atoms. The model is based on the S-surface, which has
1.5 ML Si on top of CoSiz(100). In our model a certain amount of the top Si atoms
are replaced by top Co atoms (cf. bottom of Fig. 6.1). In order to prove our model,
we aim to relate the voltage dependent behavior of the STM images to the chemical
identity at the CoSiy(100) surface by performing ab initio calculations based on the
method described in chapter 4.

6.3 Computational Details

Electronic structure calculations are carried out within the local-density approxima-
tion using the parametrization of Moruzzi, Janak, and Williams [72]. Ab initio cal-
culations for an inhomogeneous distribution of Co and Si surface atoms as proposed
in our model are at present unattainable. To simulate a mixed termination, with
Co and Si atoms randomly distributed at the lattice positions of the (\/§>< \/§)R45°
reconstructed surface, we use a ¢(2x2) unit cell shown in Fig. 4 (d) with an equal
amount of Si and Co at the surface. We think that this is a good structural model
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r, of the ILDOS [ n(r|, 20|E)dE at a dis-
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since the STM images show little difference in the brightness when nearest neighbor
atoms are of the same kind. We have chosen a 9 layer film consisting of 7 layers
bulk CoSi; made up of an alternating sequence of 4 Co or 8 Si atoms per layer. We
have chosen the experimental lattice constant of 5.356A. Structural relaxation are
not taken into account.

6.4 Understanding the STM-Images

Theoretical STM images have been calculated based on the Tersoff Hamann model [6]
and are thus directly related to the energy integrated LDOS (ILDOS). Thus the
energy integrated LDOS (ILDOS) of occupied (Ug < 0) or unoccupied (Ug > 0)
states in the energy range (Er, Fr + eUp) contribute to the tunneling current,
Ep+eUp
[(T‘()) X Ep

of constant current STM images.

n(ro|F)dE, and can be directly compared with the grey scale plots

Figure 6.4 shows grey scale plots of the LDOS integrated over energy intervals
characteristic for different STM images observed. For energies corresponding to tun-
neling voltages probing the occupied states, the image is dominated by large ILDOS
located at the position of the Si atoms. The ILDOS does not change much for bias
voltages in the range between —1.5 eV and Er and Fig. 6.4(a) provides a typical ex-
ample at Ug = —1.0eV. Even for tunneling voltages probing the unoccupied states till
close to 40.5eV the ILDOS remains nearly unchanged. At about +0.5eV above the
Fermi level, an approximately equal amplitude of the ILDOS is calculated at the po-
sitions of the Co and the Si atoms (Fig. 6.4 (b)). For higher energies, £ > 40.75¢€V,
a contrast reversal is observed and the largest ILDOS is observed at the positions
of the Co atoms (Fig. 6.4 (¢)). This type of image remains nearly unchanged up to
an energy of about +1.2eV, then the ILDOS located at the Si site recovers partly
leading to a smaller corrugation between Si and Co atoms.

Comparing these results with the STM images, we find that the theoretically pre-
dicted and experimentally observed contrast reversal at a tunneling voltage of about
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+0.5V agree very well. Combining the STM results with the ab initio calculations,
we assign the protrusions observed for tunneling voltages below ~40.5V to Si atoms
and the ones observed above ~4+0.5V to Co atoms.

This assignment is in opposite to the intuition based on the simple arguments
derived from the LLDOS of bulk Co and Si [72]. For Co we find a large LDOS within
+0.5eV, i.e. within the vicinity of Ep while Si shows a band-gap in this region.
Therefore, it 1s expected that mainly Co states contribute to STM images at energies
below +0.5eV and the observed STM image is thought of probing the Co states rather
than the Si ones. An understanding of the STM images on the basis of the electronic
structure is provided by the comparison of the LDOS of the surface Si and Co atoms
and the bandstructure with the star coefficients show in Fig. 6.5.
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Figure 6.5: Comparison of the electronic
structure, in terms of the bandstructure
and density of states of the surface Si and
Co atoms, with the STM images, in terms
of the first and second star coefficient. A
positive (negative) value of the second star
coefficient corresponds to an STM image
where the Co (Si) atoms are observed as
protrusions. Note, that there is a sign
reversal in the second star coefficient at
about 40.3 eV. Filled (open) circles in the
bandstructure denote states of odd (even)
symmetry with respect to a mirror plane
along the high symmetry direction. Fur-
ther, states located at the Co surface atom
and the vacuum with more than 50 % are
marked by open squares while states lo-
cated at the Si surface and the vacuum
with more than 20 % are marked by open
squares.

o
w o

DOS (states/eV)
[=]
=)

'S

Although for £ < Er the DOS is clearly dominated by Co, the constant part of
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the vacuum LDOS given by the first star coefficient follows the Si LDOS. Also the
second star coefficient, representing the corrugated part of the vacuum LDOS which
discriminates between the Co and Si surface atom, is negative defined as showing
the Si surface atom as a protrusion in the STM image. This is due to the orbital
character for the different atoms. For an energy interval between about —1eV and
Er the Si states are of p, character and extent further into the vacuum than the
Co d,; and d,, states. We can see two bands marked by squares and diamonds just
below the Fermi energy corresponding to these states. Also at positive energies we
find a peak at about +0.2 eV in the vacuum, the Si and the Co surface LDOS, which
is due to p, and d,,, states localized at the Si and Co surface atoms, respectively,
leading to the same ILDOS as for the occupied states. This interpretation is verified
by the negative second star coefficient. At about +0.3 eV above the Fermi energy a
sign reversal occurs accompanied by a decrease of the Si surface LDOS. For energies
between 0.4eV and 1.0eV the LDOS of Si is very small but the constant part of the
vacuum LDOS; the first star coefficient, shows several bumps. These are due to Co
states and the states between 4+0.5 eV and +0.75 eV are responsible for the contrast
reversal. In this energy range there are flat bands to be found near the X-point of
the 2D-BZ. The energy integrated (0.5eV< F <0.75eV) LDOS n(r) shows that these
states are of d,2 character and dominate the STM image. At +1.2 eV we find a peak
in the vacuum LDOS causing a negative second star coefficient which is basically of
Si-sp character reducing the corrugation in the STM image at larger bias voltages.
There is no further reversal of the image though.

-_-

Figure 6.6: The second star coeffi-
cient is plotted as a function of the
wave vector k| in the 2D-BZ. Posi-
tive (negative) values of the second
star coefficient are marked by yellow
(red). The sign reversal at +0.3 eV
can be readily seen from the plots
and one can identify the responsible

bands.

ml
X

In order to find out which bands contribute most significantly to the different
STM images and finally cause the image reversal Fig. 6.6 displays the second star
coefficient as a function of the wave vector k. From these plots we can easily deduce
the responsible states. At an energy of —0.5 eV below the Fermi energy there is only a
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small negative contribution from bands near the I-point of the BZ2. With increasing
energy we see how the band spreads in the BZ and just above the Fermi energy it
vanishes from the plots. Comparing with Fig. 6.5 we can relate this band to the
one marked by diamonds in the bandstructure, i.e. which is highly located at the Si
surface atom. At an energy of 40.3 eV we find the first positive contributions to the
second star coefficient becoming dominant at 40.5 eV. This corresponds to the peak
position seen in Fig. 6.5. Again a correlation with bands from the bandstructure plot
is possible. With the aid of these plots we can finally choose states responsible for
imaging the Si or the Co surface atoms and decide on their orbital character.

[100]

B

[011] [001]

Figure 6.7: Single eigenstate at k; = (0.375,0.125)7/a responsible for the imaging of
Co as a protrusion at bias-voltages above +0.5 V. At the far right the surface unit cell is
displayed. Small light circles denote subsurface Si atoms. Large light (dark) circles denote
Si (Co) surface atoms. The left (right) cross-section in [001]-direction intersects the Co (Si)
surface atoms. Note, that the d,»-orbital character at the Co atom is clearly visible.

Fig. 6.7 and Fig. 6.8 display cross-sections of specific states with a local density of
states leading to an STM image with the Co surface atoms as protrusions and with
the Si surface atoms as protrusions, respectively. The orbital character at the Co
atom changes from d,2 for the Co imaging states to d,,,., for the Si imaging states.
For the Si surface atom a significant p,-type contribution can be seen in Fig. 6.8.
Both plots lead to gigantic corrugation amplitudes of up to 1 A.

3Notice, that the two-dimensional unit cell is quite large and correspondingly the BZ rather small
in this calculation. Therefore, the k;-selection rule discussed in chapter 4 does not rule out large
contributions also from other than the most favorable high symmetry points, which is the X-point
in this case.
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Figure 6.8: Eigenstates in the energy range [Fr—0.2 eV,Fr] showing the Si surface atoms
as protrusions in the STM-image. At the far right the surface unit cell is displayed. Small
light circles denote subsurface Si atoms. Large light (dark) circles denote Si (Co) surface
atoms. The left (right) cross-section in [001]-direction intersects the Co (Si) surface atoms.
Notice, that the character of the state is d,, . at the Co surface atoms and of s, p,-type at

the Si surface atoms.
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Chapter 7

Imaging Buried Transition-Metal
Structures

Structural, catalytic, magnetic, and electronic properties of metal surfaces and ul-
trathin films are strongly altered upon alloying. Novel ordered and disordered alloys
are formed at the surface or surface near region due to surface segregation of bulk
alloys or upon metal-on-metal growth, where intermixing takes place between de-
posited and substrate metals, even between metals, which are immiscible in bulk.
Over the past few years, the scanning tunneling microscopy (STM) developed to a
very powerful real-space probe providing an unprecedented wealth of new insight
into this field [20,58,89-95]. It permitted i.e. the correlation between the surface
compositional structure of the alloy on an atomic level and macroscopic properties.
Two key issues in this context are (i) the chemical sensitivity of the STM, necessary
to discern different chemical components of the alloy which we have treated in the
last chapter, and (ii) the depth sensitivity of the STM, the capability to image alloys
below the surface layer or to discern alloy components at different layers below the
surface. While it is quite often possible to achieve chemical resolution, no evidence
for imaging more than the surface layer exists although sub-surface growth of Pd on
Cu(110) and Ag(110) has been studied by STM [93]. This seems to be in accordance
with the conventional wisdom of effective screening of impurities below the surface
by the nearly free electrons of the metals and that the STM tip follows the surface
topography of surface atoms. In the case of semiconductors screening is weaker and
imaging even of uncharged impurities down to the third layer below the surface has
been reported [96].

In this chapter it is demonstrated that transition-metal structures buried below a
metal surface can be imaged by STM. The experiments have been performed! com-
bining STM, Ton Scattering Spectroscopy (ISS), X-ray Photoelectron Spectroscopy
(XPS) and Low-Energy Electron Diffraction (LEED) [97]. With the aid of the ab
initio calculations the imaging of buried structures is shown explicitly for the sub-
surface alloy formed after deposition of Ir on Cu(001). Arguments and results are
provided showing that this is not particular to the Ir/Cu(001) system but applies

!The experiments are part of the PhD Thesis of G. Gilarowski, carried out at the Humboldt
University in Berlin.
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to a wide class of transition-metals buried in noble-metal substrates. Further, the
calculations reveal that impurities are detectable by STM for a few layers below the
surface, while two-dimensionally ordered structures develop quantum-well states and
are therefore detectable to much larger depth.

7.1 STM and ISS Experiments

STM images were taken at room temperature with an OMICRON combined
STM/AFM operated in constant-current mode. Fig. 7.1(a) shows a typical STM
image with atomic resolution for Ir deposited on a Cu(001) surface at low cover-
age. It exhibits a regular array of white dots and reveals disordered star-like defects
as depressions. As carefully checked by the ab initio calculations no bias-voltage-
dependent corrugation reversal as discussed in chapter 5 occurs on Cu(001) and the
regular array of dots is interpreted as Cu atoms. The apparent depth of the star-like
depressions is about 0.3 A and is assigned to single Ir atoms. Note that the center
of gravity of these defects is not located on regular Cu sites in the surface lattice,
but instead at the fourfold-hollow sites. Excluding interstitial positions for Ir due to
the large radius of the atom, Ir must be located below or on top of the surface. The
latter can be discarded on the basis of He™ ISS measurements, which are known to
be sensitive to the topmost surface layer only [98]. No Ir signal was detected by ISS.

A closer inspection of the image further reveals that sometimes the star-like defects
overlap when two Ir atoms are located at nearest-neighbor sites. As a consequence
dark lines start to form along the [011] directions (c.f. dark line in the lower right part
of Fig. 7.1(a)). After direct deposition of Ir (0.5-0.6 ML) at elevated temperatures
long range ordering occurs which is indicated by a (2x 1) LEED superstructure
exposing two domains. The amount of Ir visible in 1SS is then below 1%, whereas XPS
results show that Ir is segregated into the surface but remains in a surface near region,
e.g. in the second layer. The corresponding STM image of the ordered surface exhibits
a distinct chain like structure orientated along the two equivalent [011] directions
(Fig. 7.1(b)). The distance between adjacent chains of the same kind is measured to
about 5 A (i.e. twice the nearest-neighbor distance) in agreement with a (2x1) LEED
structure. The ordered alloy shows an apparent corrugation of 0.3 A as measured by
STM. Successful imaging of the sub-surface alloy was only possible for negative bias
voltages Usymple (0ccupied sample states) in a range between —0.2 V and —0.5 V,
indicating electronic effects as the origin of the measured corrugation. Summarizing
the experimental findings from the STM, LEED, ISS, and XPS measurements we
propose the following structural model: 0.5 ML of Ir deposited on Cu(001) leads to
the formation of an ordered (2x1) Culr alloy layer of adjacent Cu and Ir chains along
the [011] directions buried under one monolayer of Cu.

Although above experimental findings lead to a consistent structural model of an
ordered Culr sub-surface alloy, (i) the result is quite surprising as Ir and Cu exhibit
a large miscibility gap in the bulk phase diagram [99], and (ii) the model relies on
the assumption that STM is able to image Ir impurities and chains buried in the
substrate, for which there is no experimental evidence so far and disputed by the
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Figure 7.1: STM images of the Cu-Ir surface: a) Low Ir coverage. 0.05 ML of Ir deposited
at 200 K and annealed at 650 K (Usgpmpre = 0.02 V, I = 2.1 nA). b) Ordered Culr/Cu(100)
sub-surface alloy. 0.6 ML of Ir deposited at 620 K (Usgmpie = —0.3 V, I = 0.5 nA). Image
sizes: 40 A x 40 A. Tip-to-sample distance z~ 6 —9 A.

conventional school of thought that STM follow the topography of surface atoms. In
order to shed light onto the question of detectibility of buried Ir structures, and to
interpret and understand STM images of Ir point defects and Culr adjacent chains
STM images were calculated on the basis of the method introduced in section 4.6.

7.2 Computational Details

Electronic structure, total energy, and force calculations are carried out within the
local-density approximation using the parametrization of Vosko, Wilk, and Nu-
sair [100]. The surface and surface near region are modeled by eleven-layer (001)
films, at the experimental lattice constant of Cu (a¢, = 3.616 A), consisting of nine
layers of Cu and one layer containing Cu and Ir atoms placed on both sides of the film
at the surface (S), sub-surface (S—1) or deeper (S—2, S—3) layers. The Ir impurity is
modeled using a p(2x2) surface unit cell containing three Cu atoms and one Ir atom
per impurity layer which leads to 44 atoms in the film unit cell. Similarly the Culr
chain structure is treated in a p(2x1) unit cell with 2 atoms per layer. To investigate
the energetic competition with a checkerboard arrangement of Cu and Ir atoms we
performed also calculations for two-dimensional (2D) ¢(2 x2) Culr alloys. For the
system with the p(2 x 1)-Culr chains at S—1 all atom positions are fully relaxed,
minimizing the total energy by force calculations. We found a buckling of the Ir and
Cu atom at the S—1 layer of AZ/d = 2.9 % of the interlayer distance d = a¢, /2
between two (001) plains. This increases the corrugation amplitudes of STM-images
presented below by Az ~ 0.05 A, which is a minor contribution in the context of the
effect discussed in the following sections and the relaxation is therefore not considered
any further. For the self-consistency calculations 36, 32 and 10 k-points were used
in the irreducible wedge of the 2D Brillouin zone (12BZ) for the ¢(2x2), p(2x1) and
p(2 % 2) structure, respectively. The STM images were analyzed using 465, 288 and
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66 k-points in the I2BZ, respectively.

For the deeply buried 2D chains a 23 layer film was used additionally in the
p(2 x 1) unit cell. A test calculation has been performed with an asymmetric 13 layer
film where the 2D Culr alloy layer was covered by one Cu layer with respect to one
vacuum region and by 11 Cu layers with respect to the other inequivalent vacuum
region.

7.3 Energetic Stability of Buried Culr Alloys

Ir site | p(2x2) | ¢(2x2) | p(2x1) | ¢(2x2)—p(2x1)
Surface 750 721 374 433
(S—1) +0 +0 +0 86
(S—2) 33 20 49 57

Table 7.1: Total energy differences in meV /Ir-atom for calculated 2D Culr alloy structures
placed at layer S, S—1, and S—2. Energies are given relative to the configuration S—1. The
last column shows the energy difference between the ¢(2 x 2) checkerboard and the p(2 x 1)
chain structure where a positive sign favors the chain structure.

In Table 7.1 we summarize the total-energy differences of the 2D Culr layer in
the p@2 x2) impurity, the c@2 x2) checkerboard, and in the p@2 x 1) chain structure
located in the layer S, S—1, and sub-sub-surface layer (S—2). The results show, Ir
being at the surface is the most unfavorable configuration. This is consistent with
the argument that the surface free-energy for Ir is higher than for Cu and the energy
is lowered when Cu terminates the surface. In accordance with the STM analysis, Ir
located in the sub-surface layer is the energetically most stable configuration. This
can be understood in terms of bond-strength arguments: The bond strength increases
with the reduction of nearest neighbors. Thus, among all Cu atoms, the Cu atoms
at the surface form the strongest bonds to Ir atoms in the sub-surface layer. The
energy of 49 meV for Ir in the p2 x1) Culr structure to diffuse to deeper layers can
be overcome by temperature 7" and indeed, it is experimentally found, that Ir diffuses
into the bulk for 7" > 650 K. The p@2 x 1) chain structure at S—1 is 86 meV more
favorable than the checkerboard arrangement of Ir and Cu atoms, which is due to
the direct d—d hybridization between Ir atoms along the chains, which is missing in
the ¢(2 x2) structure.

7.4 Calculated STM-Images

The theoretically determined STM images for the Ir impurity (p(2x2)) and chain
(p(2x 1)) structure buried in the sub-surface layer S—1 (Fig. 7.2) calculated for the
bias-voltage U = —0.6 V clearly reproduces the experimental images of star- and
chain-like patterns.
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a) [100] b)

Figure 7.2: Calculated STM images at U = —0.6 V, z = 5 A for Ir impurity (a) and chain
(b) located at S—1. Open (full) circles represent Cu (Ir) atoms, big (small) circles represent
atoms at S (S—1).

A wide range of the bias-voltage dependence of STM-images is covered in Fig. 7.3
in terms of calculated corrugation amplitudes for Ir impurities and chains at the
Cu(001) surface layer S or buried in the sub-surface layer S—1. From Fig. 7.3 it can
be concluded that Ir atoms and chains in the surface should be imaged as protrusions
(Az > 0) while depressions (Az < 0) should be found for the buried structures,
and vice versa for Cu atoms. Strikingly the absolute corrugation amplitudes are
of comparable values, irrespective whether Ir is in the surface or sub-surface layer.
Note the distinct bias-voltage dependence for the buried structures. The maximum
corrugation amplitudes for the buried structures were found around —0.5 eV and
an atomic resolution becomes possible only at negative bias voltages, i.e. occupied
sample states, which is in perfect agreement with the experimental observation.

Since the corrugation amplitudes for Culr chains buried at different layers are very
similar, and from Fig. 7.1(b) it is @ priori unknown whether Cu or Ir is imaged as
protrusion it is impossible to conclude from Fig. 7.1(b) at which layer the Culr alloy
is located. On the other hand in the low coverage limit, single defects (Fig. 7.1(a))
are clearly related to single Ir atoms. Since they appear as depressions with a similar
corrugation amplitude as the chains we conclude that Ir is located in the sub-surface
layer.

7.5 Correlation with the Electronic Structure

In order to correlate the bias-voltage dependence of the corrugation amplitude to the
underlying electronic structure of the p(2x1)-Culr chain structure buried in S—1,
we present in Fig. 7.4 a comparison of the bandstructure with the first and second
star coefficient of the vacuum LDOS and the DOS in the muffin-tin spheres of the
surface Cu and sub-surface Ir atoms. We recall from the discussion of section 4.6.1
that the corrugation pattern is determined by n,. For a perfect Cu(001) surface,
the two Cu atoms in a p(2x 1) surface cell are indistinguishable, the difference in
the corrugation between Cu atom 1 and 2 is zero and thus ny is identically zero.
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Figure 7.3: Calculated corrugation amplitudes of a tip at z = 5.3 A, as a function of
the applied bias-voltage U for the Ir impurity and the Ir chain. In the insets at the upper
and lower right corners, filled (open) circles denote Cu (Ir) atoms. Positive (negative)
corrugation amplitudes are defined as imaging the Ir site as a protrusion (depression).

Replacing one chain of Cu atoms by Ir atoms breaks the symmetry and n, will be
non-zero. In Fig. 7.4 we find, ny is basically zero over a large energy range, except
around —0.5 eV, where ny shows a negative peak. According to our definition, a
negative value of ny means Ir is imaged as depression and Cu as protrusion. The
fact that ny is zero for positive bias voltages explains why no resolution of the chain
structure was found in the experiment at U > 0.

The peak of ny is a consequence of electronic states (see dashed vertical line) close
to the X-point and along the TM” direction of the 2D BZ. These are marked by open
circles in the band structure by the criterion that they are localized at Ir atoms at
S—1 as well as the Cu atoms at S, and possess a large weight in the vacuum. The
hybridization of the state between the buried Ir and surface Cu atom is also visible
in the DOS shown in the bottom panel of Fig. 7.4 where peaks appear in both panels
close to —0.5 eV below the Fermi energy.

For the Ir chain system buried at S—1, a real space view of a typical state at the
energy of the peak of ny is shown in Fig. 7.5 in terms of a charge-density contour-plot.
Fig. 7.5 displays that the hybridization of the Ir d-states [largest charge density in
Fig. 7.5] with the Cu sp-states results in tilted pd-orbitals at the Cu surface atoms
(and of the Cu atoms below the Ir atoms, S—2). The bond between the Cu surface
atom and the Ir atom is of antibonding nature and the tilted pd-orbitals form a
bond charge above the Cu sub-surface atom, which implies that the charge density
maximum, which is for a plain Cu(001) surface above the Cu surface atom, shifts to
the position above the Cu sub-surface atom. Depending on the structural symmetry
this results in the star-like or stripe-like pattern observed in experiment (Fig. 7.1)
and theory (Fig. 7.2) for the Culr impurity and chain structure at S—1.
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7.6 Generalization for 4d- and 5d-Metals

The arguments based on the hybridization of the Cu sp- and Ir d-states are rather
general and the visibility of buried transition-metal atoms should also hold for other
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Figure 7.6: Comparison of corrugation amplitudes at a distance of zy = 5.3 A for the 5d-
elements in the chain structure, i.e. p(2x 1), buried beneath one monolayer of Cu(001) (S-1).
The plots for Pd, isoelectronic to Pt, and Rh, isoelectronic to Ir, do not differ qualitatively
except for a small (< 10%) decrease in absolute values due to a stronger localization of the
4d-states.

transition-metal atoms. First candidate is Rh, isoelectronic to Ir. As expected there
is only a neglectable difference between the two corrugation amplitude plots. Still,
the maximum is slightly smaller for Rh which is probably due to the more localized
4d-states influencing the Cu sp-states a little less. The same holds for the comparison
of Pt and Pd. With increasing number of d-electrons (Ir, Pt, Au) we expect that the
d-band energy lowers with respect to the Fermi energy and thus the tunneling barrier
of the state seen in STM becomes higher. This increases the decay of the wavefunction
into the vacuum and the corrugation amplitudes should drop. In addition a lower
d-band energy reduces the symmetry breaking between Cu and the 3d metal, ny
approaches zero and again the corrugation amplitudes should drop. For elements with
decreasing number of d electrons (Ir, Os, Re, ---), the opposite trend is expected.
This picture is confirmed by the calculations for Ta, W, Re, Os, Pt, and Ag chains in
Cu(001) at S—1 presented in Fig. 7.6. For Pt, the corrugation amplitude drops to a
maximum value of 0.15 A at U = —1.2 V and an amplitude lower than 0.05 A within
an energy of U = £0.5 V. We conclude it is most likely impossible to image buried Pt.
We speculate that this is the reason why the sub-surface growth of Pd, isoelectronic
to Pt, in Cu(110) [93] was impossible to image with STM. For Ag buried in Cu(001),
we found corrugation amplitudes of 0.03 A, which will hardly be measurable by STM.
For Os, Re, W, and Ta, on the other hand, corrugation amplitudes of ~ 0.4 A are
found in a bias-voltage interval of ' = £0.5 V. The maximum corrugation amplitude
increases in energy with decreasing number of d electrons and the buried Ta chains
can only be detected for U > 0.
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Figure 7.7: Comparison of theoretical corrugation amplitudes calculated on the basis
of Eq. (7.1) for three different values of the energy position of the peak in the second
star coefficient. The peak positions are given relative to the Fermi energy and an energy
width I' = 0.15 eV has been chosen. An increase of the latter results in a decrease of the
corrugation amplitude.

Before we continue the discussion on the depth dependence of the corrugation
amplitude for the buried Ir chains, we shall present a simple model to faciliate the
understanding of the corrugation amplitude plots. As we have seen in Fig. 7.4 the
second star coefficient is zero almost everywhere except for one peak at an energy
Eo = Er + AFEy, which we can describe by a Lorentzian function of energy width I'.
We further approximate the first star coefficient n(E) by a constant n;. If we insert
these assumptions into Eq. (4.72) and neglect higher order stars, we find:

T 4 (8 - By an
Az(V) Er

%

et

arctan [%(GV — AEO)] — arctan [%(—AEO)]
26(Ep)nieV

%

. (7.1)

The energy dependence in k(F) has been neglected by taking the value at the Fermi
energy Fp. Fig. 7.7 displays the result of this bias-voltage dependence for three
different values of Fy. Two features of the calculations presented so far can be readily
explained with this plot. First of all, the overall form of the calculated corrugation
curves (see Fig. 7.3 and 7.6, compare Ir, Re and Ta) resembles the curves of the model
of Fig. 7.7 very well. The second more important aspect concerns the maximum
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value of the corrugation amplitude. It is obvious from the graphs that the value is
greatly increased if the peak is located closer to the Fermi energy. This is due to
the denominator of Eq. (7.1) which increases linearly with the voltage and therefore
the corrugation amplitude Az(V) is inversely proportional to the bias-voltage. This
effect is also visible in the calculation for the 5d-elements (Fig. 7.6) and becomes
important in connection with the imaging of quantum-well states, investigated in the
following sections. In Fig. 7.7 the energy width I' which depends on the dispersion of
the bands responsible for the peak in the second star coefficient is equal for all plots.
An increase of the width leads to a decrease in the corrugation amplitude.

7.8 Depth-Dependence of STM-Images
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Figure 7.8: Comparison of corrugation amplitudes at a distance of zy = 5.3 A for the Ir
chains, i.e. in the p(2 X 1) unit cell, at different Cu coverage. Coverages of zero (S), one
(S—1), two (S—2), and three (S—3) monolayers of Cu are displayed. The enormous increase

of the corrugation amplitude for (S—2) is due to the peak location near to the Fermi energy
(compare with Fig. 7.7).

Since it has been shown in the previous sections that it is after all possible to
image transition-metal atoms and structures beneath a monolayer of Cu, it is natural
to ask whether the buried structure can also be resolved at a higher Cu coverage.
This question is explored in the following for the buried Ir chains in the p(2 x 1) unit
cell. Fig. 7.8 displays the resulting corrugation amplitudes where the sign convention
is the same as before. If the Cu coverage is increased in steps of additional monolayers
from one, such that the Ir chains are located in the subsurface layer (S—1), to two
monolayers (S—2) Cu(001) the maximum corrugation amplitude does not decrease
as one might expect but instead it increases enormously. This increase is due to a
shift of the peak in the second star coefficient closer to the Fermi energy connected
with an enhancement of the corrugation amplitude as discussed at the end of the
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previous section. Further, the profile is very symmetric in agreement with the model
(Fig. 7.7). An additional layer of Cu (S—3) leads to a decrease of the amplitude but
still a value above 0.15 A is reached in a broad energy interval around zero bias-
voltage. The expectation of an exponential decrease of the signal due to screening is
thus not satisfied at all. On the other hand, the calculations for the Ir impurities in
the p(2 x 2) unit cell showed a significant decrease for a location at (S—2) and (S—3)
with a maximum corrugation amplitude of 0.15 A (see Fig. 7.9). A coverage of five
monolayers reduces the corrugation below 0.1 A which fulfills our expectation that
the perturbation caused by an impurity should become unobservable rather quickly.
However, the Ir impurity calculation has been performed in a p(2 x 2) unit cell and
there is actually a two-dimensional periodic array of Ir impurities. Therefore, it is
impossible to find the limit of an exponential decay from such a calculation. We
can conclude that a periodic structure does not show a decrease of the corrugation
amplitude by screening of nearly free Cu electrons while an impurity does. The reason
is connected with the development of quantum-well states in the covering Cu layers
as we can see from the following section.
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Figure 7.9: Comparison of corrugation amplitudes at a distance of zy = 5.3 A for Ir
impurities in Cu(001) calculated in the p(2x2) unit cell at different Cu coverage. Coverages
of zero (S), one (S—1), two (S—2), three (S—3), and five (S—5) monolayers Cu are presented.
Note, that the corrugation amplitude does not exceed a value of 0.1 A for a coverage of five
monolayers Cu.

7.9 Imaging Quantum-Well States

Already in elementary quantum mechanics the problem of a particle in a box is
treated [5]. It is known that the energy eigenvalue spectrum is discrete and the
eigenfunctions are standing waves. A similar situation occurs if a noble-metal, like
Cu, with nearly free sp-electrons is grown pseudomorphically on a transition-metal
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substrate, like Co? or Ir. While the electrons of the noble-metal are still free in the
lateral film direction they are confined in the direction perpendicular to the surface
by the vacuum on one side and the transition-metal substrate on the other side
which also produces a potential shift. For example, the 5d-bands of Ir are located
in the same energy range as the Cu sp-electrons resulting in a barrier for these Cu
electrons. As a result a discrete set of nearly free electron bands develops which can
be characterized by a wave vector k, of values:

9 1
- %(n — ) withn=1,2.3,... (7.2)

k.
where d denotes the thickness of the film. The situation is a little bit more complicated
in our case though. First of all, we do not have a crystal substrate but only one two-
dimensional alloy layer (of Cu and Ir atoms) which is covered on both sides with
monolayers of Cu(001) in the film calculation. Thus this barrier will not be as strong
as that of a substrate. Still, a potential shift occurs at this layer possessing the lateral
periodicity of the alloy layer. Since we are interested in changes of the corrugation
amplitude the wave vector dependent selection rule discussed in section 4.6.2 requires
that states near the X-point and not near the I'-point of the 2D-BZ have to be
investigated.

One technical aspect of the film calculations becomes important in these investi-
gations, and it is necessary to rule out any influence on the results from the beginning.
Every system described within the film geometry is actually a quantum well confined
by vacuum barriers on both sides. Thus we find discrete bands in the 2D band-
structure where a continuous energy spectrum should occur from a projection of the
bulk bandstructure. However, if the film thickness is increased the bands become
denser and denser and the semi-infinite crystal is approximated better and better.
Even though the bandstructure differs from the projection of the bulk bandstructure
quantities calculated by Brillouin zone integrations describe the surface properties
very well since the additional (bulk) bands are very similar to the ones included. For
the present treatment of quantum-well states within our intrinsic film quantum wells,
care has still to be taken that the observed effects are not caused by our particular
geometry. This problem has been checked quite extensively in Ref. [77] for ¢(2 x 2)
MnAg alloys in Ag(001). It was concluded there [77] that the film calculations pro-
vide the correct physics if a symmetric geometry of the buried layer is chosen ® which
we usually do in order to minimize the computational effort. To test the conclusion of
Ref. [77] for the present system, i.e. Ir chains in Cu(001), we performed a calculation
using an asymmetric 13 layer film where the p(2 x 1) Culr alloy was covered by a
monolayer of Cu(001) on one side and eleven monolayers Cu(001) on the other side.
Thereby two inequivalent vacuum regions are created. Comparing the results for the
star coefficients and corrugation amplitude plots of each vacuum region with the one
from a symmetric film calculation with the same Cu coverage gave no qualitative dif-

2Co has been chosen as an example because it has become very famous in connection with
spin-polarized quantum well states and was investigated thoroughly by photoemission [101].

3In the case of a coverage of five or more monolayers only one alloy layer is needed in order to
create a sufficiently thick film. The alloy layer is then located at the center of the film.
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ference. Thus, we can safely use our setup of a symmetric film to study the influence
of quantum-well states on the STM images.

Corrugation Amplitude (A)

-0.2 I I I H I | |
-2 15 -1 05 O 0.5 1 15 2

Bias Voltage (V)

Figure 7.10: Comparison of the corrugation amplitudes as a function of the applied bias-
voltage at a distance of zp = 5.3 A for Ir chains buried beneath five (S—5) and eleven
monolayers (S—11) of Cu(001). In both cases only one layer of the chain structure has been
used which was located in the center of the film. There is a distinct increase in oscillations
for the corrugation amplitude at a coverage of 11 monolayers caused by an increase of
available quantum well states in the covering Cu layers. The sign convention from the
previous sections has been used, i.e. a positive (negative) sign is related to imaging the Ir
(Cu) chains as protrusions.

Fig. 7.10 displays the corrugation amplitudes for a coverage of five and eleven
monolayers of Cu on the p(2 x 1) Culr chain structure. Both curves show oscillations
as a function of the bias-voltage leading several times to a sign reversal. For the
five monolayer coverage the amplitude is well above 0.1 A in a voltage regime of
—0.2 V to 40.5 V, which is very large compared to the case of an Ir impurity atom
(see Fig. 7.9). For the higher coverage there is a strong reduction of the amplitude
but it is still justified to expect the possibility to observe the stripe pattern of the
chains located at such an enormous depth. The overall similarity of the two curves
is also quite striking although the number of oscillations increases for the larger
coverage. This is related to an increased number of available quantum-well states
in the thicker Cu film as we shall see in the following. The enhancement of the
corrugation amplitude in the vicinity of zero bias-voltage can again be explained on
the basis of the simple model discussed in section 7.7. This point is of importance, as
in the end, it is responsible for the expectation of being able to observe the presence
of the quantum-well states with an STM.

In order to understand the corrugation amplitudes shown in Fig. 7.10, it is again
necessary to correlate the electronic structure, given by the energy bands and the
density of states, with the calculated STM images, contained in the second star coef-
ficient. The correlation is presented in Fig. 7.11 for the 11 layer (L) Cu(001)/p(2x 1)
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ture (middle panel), second star coefficient
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Culr/11L Cu(001) film calculation. The plot additionally includes the bandstruc-
ture of a pure 12, Cu(001) film in order to explain the creation of the quantum-well
states?. Focus on the panel for the second star coefficient first. Starting at about
FEr—1.5 eV oscillations are setting in with an increasing period length and oscillation

*We will explain later why we are using a 12 layer film instead of 11 layers which seems more
obvious.
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amplitude as the energy increases. In the energy range of the oscillations Ir 5d-bands
are present while the Cu 3d-bands end at the starting point of the oscillations (see
the Cu and Ir DOS in the two lower panels). In the bandstructure of the 12I. Cu(001)
film we also notice the dense Cu 3d-bands at the far left almost lacking any disper-
sion. At higher energies strongly dispersing Cu sp-bands appear with an increasing
energy difference between adjacent bands (easily seen at the X-point of the upper
panel). In the p(2 x 1) surface unit cell all of these bands are degenerate for the
121, Cu(001) film. The corresponding energy eigenstates possess charge densities of
the same type but showing one or the other of the two atoms of the p(2 x 1) unit
cell. Since these states are degenerate their contribution to a p(2 x 1) pattern cancels
out and the STM-image shows all Cu atoms equally as required by symmetry for a
pure Cu(001)-surface. That means ny is identical zero. However, if we replace one Cu
atom of the center layer by an Ir atom creating a real p(2 x 1)-unit cell the degeneracy
is lifted (see lower bandstructure plot) with bands splitting into a branch favoring
the Ir atom position and another favoring the Cu atom position. Furthermore, the
two states do not possess the same strength anymore since the Ir atom produces a
shift in the potential. Thus the p(1 x 1) symmetry of the local charge density in the
vacuum is broken and non-zero contributions to the second star coefficient, i.e. the
p(2 x 1) pattern, are possible. The energy splitting is easily seen at the X-point of
the bandstructure of the 111 Cu(001)/p(2 x 1) Culr/11L Cu(001) film and its value
amounts to about 0.15 eV. The band edge of one branch is always located inside a
shaded area coinciding with a maximum or a minimum of the second star coefficient
(see the arrows; note that there is one exception from this rule). The band edge of
the other branch correlates with the sign reversals of the second star coefficient (see
the boundaries of the shaded boxes). The energy splitting of bands is largest at the
X-point and reduces to zero for the higher bands shown in the plot along the XM-line
of the 2D-BZ. The oscillation period grows with increasing energy which is due to
the larger energy differences between adjacent bands of the 12, Cu(001) film and the
period length is in good agreement with these differences.

In a similar case of buried ¢(2 x 2) MnAg alloy layers in Ag(001) it has been
demonstrated [77] that the energies of the sign reversals in the star coefficient are
given by the band edges of the degenerate bands of the covering Ag(001)-film and the
center between two adjacent ones. This is nearly fulfilled for the 11L Cu(001)/p(2x1)
IrCu/ 11L Cu(001) if we choose a 12 layer Cu(001) for comparison. Using an 11L
Cu(001) film leads to an even worse agreement which may be caused by the fact that
the reflection of electron waves confined in the covering Cu-film takes place rather
beneath the two-dimensional Culr alloy layer than above it. Another reason why the
sign reversals do not correlate as nicely as for the MnAg case is connected to the
wide spread of the bands in the 2D-BZ. This makes the attempt of using a single
high symmetry line for the correlation inappropriate. Thus it is necessary to take a
look at the star coefficient as a function of the wave vector k; which is done in the
following.

Fig. 7.12 and Fig. 7.13 show the plots of the first and second star coefficient,
respectively, in the 2D-BZ in an energy range of (—1.4 eV,4+1.4 €V) around the
Fermi energy. Let us start with the first star coefficient which is limited to positive
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Figure 7.12: First
star coefficient of the 11L
Cu(001)/p(2x1) Culr/11L
Cu(001) film at a distance
of zo = 5.3 A from the
surface as a function of
the wave vector k; in
the 2D-BZ at different
energies relative to the
Fermi energy. Intervals
of 0.1 eV and a mesh of
512 kj-points have been
chosen. The scaling is the
same for all plots which is
the reason that the plots
at higher energies give
the impression of equally
important  contributions
from the entire BZ. At low
energies the focusing to
states near the I-point is
clearly visible.
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values as it is related to the lateral constant part of the local charge density in the
vacuum (see section 4.6.1). As expected the highest contribution results from states
near the T-point of the BZ and we can observe the different parabolic sp-bands as
ellipses. These plots give an impression of the bandstructure.

Now we turn to the plots for the second star coefficient, presented in Fig. 7.13,
where positive and negative values are possible which are marked by yellow and
red scales while black areas denote a zero value. Again, our expectation of high
contributions from a high symmetry point is fulfilled which is the X-point in this
case. We can correlate these plots once more with the oscillations of the second
star coefficient as a function of energy shown before. We start with a negative BZ-
integrated value at Er — 1.4 eV due to bands close to the X-point. Because of their
dispersion they move away from the X-point with increasing energy and new bands
with a positive contribution appear at the X-point. These shift as well and new bands
with negative values are seen. In this manner oscillations of the second star coefficient
are created. Thus our interpretation of the bandstructure which did not contain the
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Figure 7.13: Second
star coefficient of the 11L
Cu(001)/p(2x1) Culr/11L
Cu(001) film at a distance
of zo = 5.3 A from the sur-
face as a function of the
wave vector k; in the 2D-
BZ at different energies rel-
ative to the Fermi energy.
Yellow corresponds to pos-
itive and red to negative
contributions while black
areas denote the zero. In-
tervals of 0.1 eV and a
mesh of 512 k-points have
been chosen. The scaling is
the same for all plots which
is the reason that the plots
at higher energies give the
impression of equally im-
portant contributions from
the entire BZ. At low ener-
gies the focusing to states
near the X-point is clearly
visible.

information of the second star coefficient for specific bands is justified by these plots.
It is also possible to observe the reduced splitting as bands move to the M-point
since there are almost no contributions from this area. On the other hand, we do
find major contributions in quite a large area around the X-point making it necessary
to go beyond the discussion of one high symmetry line of the BZ only. Especially
at the high absolute values of the second star coefficient at about Fr — 0.2 eV and
Er + 0.05 eV one needs to take the entire BZ into account in order to find the
responsible states.

At the end of the discussion, after having related the origin of the oscillations to
the formation of quantum-well states with the covering 11 layers of Cu(001), we can
plot the responsible states in real space to get an impression of their appearance.
The states shown here are representative for all energies at the X-point. Fig. 7.14
shows two cross-sections through the film for the two branches of a split band at the

X-point. We can nicely see the close relation between the two states if we compare
Fig. 7.14(b) and Fig. 7.14(d), which show the sections with only Cu atoms. There
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[001]

Figure 7.14: Quantum well states at the X-point of the 2D-BZ for the Ir chains covered
by 11 monolayers of Cu(001). (a) and (b): Cross-sections (i) and (ii) through the 2D unit
cell (see also (e) and (f)) for the quantum well state with an energy of Fr — 0.7 eV, and
(c) and (d): the same for Fr — 0.5 eV. (e) and (f) show the film unit cell. Note, that the
two states possess an opposite second star cofficient, i.e. at an energy Fr — 0.7 eV the Cu
chains are seen as protrusions while the Ir chains are visible at Fr — 0.5 eV.

is a canting of sp-orbitals, as discussed for the STM images of the Ir chains buried
beneath only one Cu layer, and the two states differ only by a shift of half a lattice
vector of the p(2 x 1) unit cell. A similarity can also be seen for the two other cross-
sections, Fig. 7.14(a) and Fig. 7.14(c). Along the z-direction two different types of
orbitals occur, one being a d,,- and the other a d,:-type. Thus the quantum-well
states are not exclusively of sp-character but hybridize also with d-states. If the state
possesses a d,z2-orbital at the Ir (Cu) atom of the inner layer the STM image displays
a protrusion above the Ir (Cu) atom. The characteristic oscillations of quantum-well
states along the axis of confinement, the [001]-axis in our case, can also be seen in
Fig. 7.14(a) and Fig. 7.14(c) but with a phase shift between the oscillations above the
Ir and Cu atom. This phase shift is due to the corrugated potential of the confining
inner layer.

Although the experimental verification of imaging the quantum-well states of
buried Ir chains in Cu(001) is still missing, there is justified hope that it will be
achieved soon. On one hand, it seems to be possible to prepare these structures since
the Ir chain alloy in the subsurface position is quite stable and one may thus grow
additional layers of Cu without destroying the alloy underneath. On the other hand,
there has been an analogous work by Altfeder et al. [102] where Pb has been deposited
on the famous Si(111) (7 x 7)-reconstruction. The unit cell of the buried Si-structure
was still observable at a coverage of 100 A of Pb. Even a contrast inversion of the
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images as a function of the applied bias-voltage were reported in accordance with the
expectations from the present study.
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Chapter 8

Influence of Thin Film Magnetism
on STM and STS

In the field of low-dimensional magnetism there is a huge current interest in the
development of well-defined nanomagnets, laterally and vertically structured ultra-
thin films, or magnetic nanowires [103]. These systems are expected to open new
vistas for magneto-electronics and magneto-optics. Thus, there is a great demand to
investigate magnetic properties in real space on the nanometer and even down to the
atomic scale. Ideally suited to cope with these demands is a spin-polarized scanning
tunneling microscope (SP-STM) combining the high resolution of common STM with
magnetic sensitivity. In order to achieve magnetic sensitivity several approaches have
been proposed [23-28]. Recently, the coating of the STM tips with a thin film of a
ferromagnetic material like Fe or Gd has proved to be very successful [26,27]. A
recent highlight of this method will be discussed in chapter 9.

In the future, this approach will doubtlessly lead to new insight into the field of
nano-magnetism but it is still quite sophisticated and not yet commonly applicable.
Therefore, we take a different theoretical route in this chapter, which is to explore
the feasibility to distinguish different magnetic configurations by probing the local
electronic structure applying non-spinpolarized STM and scanning tunneling spec-
troscopy (STS). Very recently STS combined with ab initio electronic structure cal-
culations was successfully applied for bee-(001) transition-metal surfaces. For Cr(001)
and Fe(001) [66] characteristic STS peaks were identified as d,2-surface resonances
and were used to distinguish between Cr and Fe on the atomic scale, which is other-
wise impossible. This form of chemical identification was applied to investigate the
growth of Cr on Fe(001) [94]. It led to the experimental evidence of the formation
of a two-dimensional CrFe surface alloy with random occupation of substitutional
Cr atoms with repulsive Cr-Cr interaction and a local ¢(2 x 2) order. Until now,
STS on metal surfaces and particularly on magnetic surfaces is not widely applied.
In this chapter we investigate cases where STM and STS makes the discrimination
of magnetic configurations possible. Further we point out the additional benefit of

SP-STM for these systems.

We take Cr on Fe(001) and Mn on Fe(001) under close scrutiny. Both systems
present case studies for this type of problem. For example theoretical investigations

111
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on Cr and Mn monolayers on Fe(001) [104] show several magnetic states in close ener-
getic vicinity. Particularly Mn/Fe(001) [105-111] draws a large attention and several
recent experiments report on partly contradictory magnetic couplings of Mn with
Fe as a function of the coverage, growth mode and temperature, which ranges from
non-magnetic to ferromagnetic and antiferromagnetic configurations. This indicates
a complicated relationship between growth condition, electronic structure, and mag-
netic coupling, which is ideal to be tackled by a real space probe. The magnetism of
1 ML Cr and Mn on Fe(001) [105] as well as the surface alloy formation of a c¢(2 x 2)
CrFe/Fe(001) and MnFe surface alloy has been investigated theoretically [112]. The
different considered magnetic configurations for these systems are presented in Fig.
8.1, and the corresponding ground-state configurations for the 3d-elements are dis-
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Figure 8.1: Schematic representation of a ferromagnetic, a layered antiferromagnetic, and
a ¢(2x2) (anti)ferrimagnetic superstructure of a monolayer film (broken line) grown as
overlayer on a magnetic substrate (full line). Upper panel is a view onto the surface, lower
panel shows sideviews. Arrows indicate the relative spin direction at the positions of the
atoms. Figure has been taken from Ref. [104].

In the case of Cr monolayers the layered antiferromagnetic state is found to be
the ground-state although it is nearly degenerate to the c¢(2 x 2) (anti)ferrimagnetic
solution (see Fig. 8.2). As a consequence of the small energetic difference it cannot
be excluded that there is a transition from one magnetic state to the other during
the monolayer formation from islands [113]. Experimentally it was observed that
conditions normally used for layer-by-layer growth lead to a surface alloy formation
in the case of Cr [94]. Cr monolayers have not been stabilized experimentally yet,
although such temperature regimes might exist. For Mn the monolayer ground-state,
as calculated by ab initio methods (see Fig. 8.2), is the ¢(2 x 2) (anti)ferrimagnetic
configuration. The tendency to alloying has not yet been investigated with a real
space probe for Mn. Ab initio calculations predict a behavior similar to Cr [112,114]
in contrast to recent experiments which claim to find growth of perfect monolay-
ers [108,110]. In the first part of this chapter we focus on the relationship between
magnetic configurations and scanning tunneling spectra and answer the question
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whether different magnetic configurations can be distinguished by STS for these sys-
tems. The excellent agreement we find between calculated and measured ST-spectra
in the case of the CrFe surface alloy as well as that of earlier ab initio calculations
for the Fe(001)-surface [66,67] gives us the confidence to carry on to a system which
has not been studied by STM up to now, i.e. Mn on Fe(001).

In the second part the influence of the magnetic configuration on the expected
STM image is investigated and consequences of using a spin-polarized STM are
pointed out. Since we are using a ferromagnetic substrate, Fe(001), the electronic
structure of the two 3d-atoms in the ¢(2 x 2) antiferrimagnetic structure is not equiva-
lent and thus even with non-spinpolarized STM an image differing from the chemical
p(1 x 1) unit cell might occur. If on the other hand a non-magnetic substrate is used
the two antiferromagnetic coupling atoms of the monolayer are indistinguishable by
common STM as we will discuss in the following chapter.

8.1 Computational Details

The calculations of the electronic structure were performed using the local spin-
density approximation of Barth and Hedin [29] in the parameterization by Moruzzi,
Janak and Williams [72]. The films consisted of 7 layers Fe(001) in the ¢(2x2) two-
dimensional (2D) unit cell covered by one layer of the monolayer or surface alloy
on each side giving a total of 9 layers. The theoretical lattice constant of Fe has
been used (al® = 5.23 a.u.), and for the monolayers the relaxed interlayer distances
according to Ref. [104] were taken, while the surface alloys were calculated in the
perfect geometry.

The basis set used for the valence states consisted of about 80 augmented plane
waves per atom. Non-spherical terms in the potential, charge density, and wave
functions are expanded within the muffin-tin spheres with radii R]\Fj’TCT = 2.151 a.u.

and R%TTZ = 2.171 a.u. up to [, < 8. The self-consistent electronic structure was
determined with 10 special k-points in the irreducible wedge of the 2D-BZ (12BZ).
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| System | M(ug) | (eV)| dus (%) |AE (meV) |
Cr-ML
F +1.01 5.2 —5.0 +110
LAF —1.40 5.1 —7.3 0
c(2x2) AF | 40.64/ —1.83 5.3 —5.0/ = 5.0 +53
c(2x2) AF | —0.02/ — 1.59 5.3 —5.0/ —17.3 +37
Mn-ML
F +3.28 4.7 +5.40 +100
LAF —3.03 4.7 —0.25 +228
c(2x2) AF | 42.95/ —3.26 5.0 —0.25 0
c(2x2) AF | +3.09/ —3.26 4.9 +5.40/ — 0.25 +27
CrFe
AF —2.54/ 4+ 2.50 5.4 0/0 +16
AF —2.33/ +2.48 5.5 —6.9/0 0

Table 8.1: Table of calculated moments M, work functions ¢, interlayer distances dg,,. ¢
and relative energies of all presented systems on Fe(001) (notice that the ¢(2x2) AF config-
uration has been calculated in two geometries). The moments are given for the Cr and Mn
atoms. For the surface alloys the second value is that of the Fe surface atom. Notice that
positive values indicate ferromagnetic alignment with respect to the Fe-substrate, and in
the case of the ¢(2 x 2) AF configuration of the ML there are two inequivalent atoms. The
interlayer distance is given relative to the unrelaxed value of 2.615 a.u. . The energies are
given in meV per surface atom relative to the ground state. Work function measurements
usually provide chemical sensitivity in STM on a large scale. The calculated work function
of the pure Fe(001)-surface is 4.5 eV which should be kept in mind as a reference value.

The LDOS has been analyzed using 465 k-points in the 12BZ.

8.2 The Fe(001)-Surface

Figure 8.3: Calculated spin-resolved
muffin-tin density of states for bulk (dashed-
dotted line) and surface atoms (full line) of
the ferromagnetic Fe(001)-surface. A surface
state is clearly visible in the majority and
minority surface DOS at an energy Fr —2.4
eV and EFr 4+ 0.19 eV, respectively. The cal-
culation has been performed using a 31 layer
thick film, a lattice constant of a= 5.205 a.u.
and the parametrization of the local den-
sity approximation of Vosko, Wilk, and Nu-
sair [32].

DOS (states/eV)
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As an introduction to the field of STS in combination with ab initio calculations
we discuss the clean Fe(001)-surface in this section. The results computed for the
monolayers and surface alloys possess a lot of similarities with this case because of
the geometrical and chemical relationship. The Fe(001)-surface has been studied by
Stroscio et al. [66] in connection with STS and was the first example of a metal sur-
face with a characteristic d-band related feature in scanning tunneling spectroscopy.
Fig. 8.3 displays the density of states (DOS) calculated for the surface and bulk
atoms. In the pseudo gap between bonding and antibonding states of the majority
and minority bulk DOS, shifted against each other by the exchange splitting, the sur-
face DOS has a sharp peak. This feature is located slightly above the Fermi energy
(+0.19 V) in the minority spin channel and is caused by a surface resonance state

of d,> character at the I' point of the 2D-BZ [66].
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Being located at the center of the 2D-BZ this state decays rather slowly into the
vacuum (see section 4.6.2). Thus, it is also present in the calculated lateral con-
stant part of the local DOS (LDOS) in the vacuum given by the first star coefficient
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ni(z)! (Fig. 8.4). The displayed L.DOS is directly comparable to the measured spec-
trum of STS within the Tersoff-Hamann model (see Eq. (4.31)), and one finds an
excellent agreement with the experiment (see Fig. 8.4). A similar state is found for
the Cr(001)-surface located at —0.05 eV (see Fig. 8.5). This d,2 surface resonance,
characteristic for bee-(001) transition metal surfaces, encouraged the idea of gaining
chemical sensitivity by scanning tunneling spectroscopy. In the following sections,
we check on the applicability of this method when several structural and magnetic
configurations become possible. It is difficult to decide upon such a situation only
from experiment. On the other hand, this state is also promising for the imaging of
magnetic domains by SP-STS (see section 4.5) due to the high spin-polarization of
the LDOS at its energy (see Fig. 8.4).

8.3 The c(2 x 2) CrFe Surface Alloy

The experimental situation of Cr on Fe(001) as described in Ref. [94] shows the
tendency of Cr atoms to change places with Fe atoms of the substrate. These lifted
Fe atoms form islands on the surface while the Cr atoms are incorporated into the
surface layer and some diffuse into deeper layers of the Fe-substrate. The Cr atoms
in the surface layer do not cluster but exist as single impurities at low coverage
and form a disordered surface alloy at higher coverage. Locally, this surface alloy
possesses a ¢(2x2) symmetry which has therefore been chosen as the 2D-unit cell of
the calculation. Cr impurities are also incorporated into the newly formed Fe-islands
but no islands consisting mainly of Cr have been observed. These conclusions upon
the growth of Cr on Fe(001) have been drawn on the basis of STS-experiments. Fig.
8.5 displays the ST-spectra of this experiment in comparison with our calculation of
the LDOS above the CrFe surface alloy. The scanning tunneling spectroscopy on this
system revealed the above facts in the following manner. If the STM-tip is positioned
above the original surface or the formed islands far away from any impurity, which
are clearly visible in the topography mode, the measured spectrum is identical to
that of the clean Fe(001)-surface (see Fig. 8.5), i.e. it shows the known d,2 surface
resonance peak (see section on Fe(001)). On the other hand, near to any impurity, in
islands as well as in the substrate, the spectrum displays two small features at about
—0.3 Vand +0.25 V (see Fig. 8.5). Thereby it was concluded that the islands consist
of Fe atoms lifted to the surface by exchange processes with adsorbed Cr atoms while
all impurities are of the same chemical species, namely Cr.

To verify these conclusions, we compare the calculated LDOS on top of the Cr
atom in the surface alloy with the experimental spectrum (see Fig. 8.5). One finds
two peaks in the LDOS near the Fermi energy located at —0.5 eV and +0.15 V.
The energy difference is thus 0.65 eV which is in good agreement with the measured
difference of 0.55 V. The shift of about 0.1 V with respect to the experiment is within
the accuracy of the calculation since the theoretical lattice constant has been used.
Notice also that the occupied state is a rather broad feature while the unoccupied

1 As STS measurements on the Fe(001)-surface are not performed with atomic resolution one does
not need to consider higher star coefficient contributions related to a lateral variation of the LDOS.
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state is quite sharp. This is in accordance with the experimental observation (see Fig.
8.5). In conclusion, one can be confident that these states are the origin of the STS
peaks. Still, one must keep in mind that the result is based on an ordered c(2 x 2)
surface alloy and not a true impurity calculation. There might thus be changes which
need to be investigated in the future.

Since the unoccupied state is close in energy to the original d,» surface resonance
of Fe(001) it was speculated in Ref. [94] that it is closely related to it. Our calculations
reveal that this state is indeed a strongly localized d,» surface state although with
origin at the Cr, not the Fe atom. It lies at the X point of the 2D-BZ and therefore
even atomic resolution should be possible in STM at a small positive bias voltage
using this state. The charge density of this state (Fig. 8.6) further illustrates these
statements.

The occupied state, appearing in the ST-spectrum, on the other hand, results
from a state with strong hybridisation between the Cr and Fe surface atoms. This
can be concluded from the DOS (Fig. 8.5) and also from the charge density maps
(Fig. 8.6). In contrast to the localized unoccupied d.2-state it displays a considerable
dispersion in the I'X and I'M direction of the 2D-BZ. As a result it appears broader
in the LDOS of the atoms and in the vacuum also (see Fig. 8.5).

We have studied the effect of buckling on the calculated LDOS by relaxing the
Cr atom to the interlayer distance of the relaxed antiferromagnetic Cr monolayer
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Figure 8.6: Charge density plots of the two surface localized states in the c(2 x 2) CrFe
surface alloy on Fe(001) responsible for the peaks in the calculated LDOS (see Fig. 8.5). (a)
shows the occupied state which is evenly localized in the alloy layer and (b) the unoccupied
state which is strongly localized and of d,2-type at the Cr site. (c) displays the surface unit
cell of the ¢(2 X 2) for orientation.

and found no significant change neither in the position nor the charge density of the
discussed states. The small difference in moment of the Cr atom (0.2 up, see Table
8.1) has no influence on these states.

8.4 STS of Cr and Mn Monolayers on Fe(001)

In this section we present calculations on the lateral constant part? of the LDOS in
the vacuum ny(z), which are equivalent to ST-spectra within the Tersoff-Hamann
model (see Eq. (4.31)), for the different magnetic configurations of the Cr and Mn
monolayers on Fe(001). On one hand, the aim is to point out difficulties and possi-
bilities in distinction between the magnetic configurations on the basis of STS. On
the other hand, we check whether peaks in the LDOS remain characteristic for a
certain chemical species when different structural and magnetic configurations may
occur that cannot be deduced from other findings.

Fig. 8.7 displays the calculated spectra, i.e. the first star coefficient ny(z), and the
DOS of the two atoms of the ¢(2 x 2) unit cell of the calculation for a Cr-monolayer
on Fe(001). For the p(1x 1) ferromagnetic and p(1 x 1) layered antiferromagnetic the
two atoms are equivalent and the c(2 x 2) unit cell® becomes superficial but for the
¢(2 x 2) antiferrimagnetic configuration the two atoms are inequivalent. The DOS of
the Cr atoms has been displayed for a wide energy range (Er—6 eV to Ep+4eV) in
order to get an impression of the whole bandstructure. The LLDOS in the vacuum has

ZStrictly speaking the restriction to the lateral constant part applies only if the STS measurements
are taken without atomic resolution which is the case for such small 2D unit cells. In the following
we will for brevity always use LDOS meaning only its lateral constant part.

3In order to compare the total energies one must calculate all magnetic configurations within the
same 2D unit cell.
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only been plotted in an interval of £1 eV around Ep since this is the energy range

accessible with STS.
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Figure 8.7: Density of states of the two surface Cr atoms of the ¢(2 x 2) surface unit cell
used in the calculation and the lateral constant part of the LDOS in the vacuum given by
the first star coefficient n(z) at z = 7.8 A for the different magnetic configurations of a Cr
monolayer on Fe(001). Plots show the majority (Spin +) and minority (Spin —) contribu-
tions. (a) displays the p(1 x 1) ferromagnetic, (b) the p(1 x 1) layered antiferromagnetic,
and (c) the ¢(2 x 2) antiferrimagnetic configuration. The corresponding magnetic configu-
rations are sketched at the far right. Note, that the two surface Cr atoms are equivalent
for (a) and (b) but different in (c). The energy range of the LDOS in the vacuum has been
restricted to F'r & 1 eV since this is the experimentally important energy range in STS.

We observe a highly structured spectrum for the ferromagnetic configuration
(Fig. 8.7a) with a dominating minority state peak at about 4+0.2 eV. This state is
situated at the same energy as the known d_2-surface resonance of the clean Fe(001)-
surface (see section 8.2) and also results from minority states with d,2-character at
the T-point of the 2D-Brillouin zone. Since the other strong features lie quite high
in energy and may in practise not be available it is impossible to distinguish the
ferromagnetic Cr monolayer from the pure Fe(001)-surface on the basis of STS (non-
spinpolarized as well as spin-polarized). The layered antiferromagnetic configuration
(Fig. 8.7b) which is the ground state configuration for Cr (see Fig. 8.2) displays
once more a feature at an energy of 4+0.2 eV but resulting from the majority and
not the minority states. The peak lies in the pseudo gap between the Fe-majority
states which are fully occupied (compare Fig. 8.3) and the Cr-majority states which
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are almost fully unoccupied (Fig. 8.7b). Tt results from a state located at the T
point of the 2D-BZ which possesses d,2-character. As this state lies at the same en-
ergy as the Fe(001)-surface resonance the indistinguishability between the monolayer
and the pure Fe(001)-surface still holds for this magnetic configuration on the basis
of non-spinpolarized STS. However, spin-polarized STS should lead to a difference
because the feature of the Cr-monolayer originates from majority states while the
d,2-surface resonance of the Fe(001)-surface is a minority spin state. By mapping the
d1l/dV-signal of a spin-polarized STS measurement (see section 4.5) a clear contrast
between areas of the Cr-monolayer and the Fe(001)-surface should thus be observed.
An important remark has to be made concerning the experiment of Davies et al. [94]
discussed in the previous section. The islands which formed on the surface after Cr
deposition were identified to consist of Fe atoms on the basis of the ST-spectrum
displaying a sharp peak at +0.2 V. However, this feature appears also in our calcu-
lation for the layered antiferromagnetic Cr monolayer as discussed above. Thus it
should be impossible to tell the chemical difference by STS. Fortunately, their in-
terpretation of intermixing has been verified by a different technique, Auger-electron
spectroscopy [110], and need not be regarded with doubt. For future studies it should
be kept in mind though that such interpretations based on STS can be misleading if
materials of very similar electronic structure are present and the structural differences
are small.

Finally, there are two majority state peaks for the c¢(2x2) (anti)ferrimagnetic con-
figuration (Fig. 8.7c) at —0.15 eV (d,2) and +0.7 eV resulting from the ferromagnetic
and antiferromagnetic coupling Cr atom, respectively, as can be seen by comparing
to the DOS. These two significant peaks should provide a possibility to distinguish
this magnetic state from the layered antiferromagnetic and ferromagnetic situation
as well as from the pure Fe(001)-surface. Two further remarks are worth being made.
First, there are two minority state features appearing at —0.5 eV and +0.2 eV caused
by states localized at the antiferromagnetic Cr atom, which have no impact on the
total spectrum since the mentioned occupied majority state is of a much larger value.
However, it is these states which dominated the CrFe-surface alloy as has been dis-
cussed in the previous section. Since they appear also for the monolayer we conclude
that their occurrence is only due to the antiferromagnetic coupling of one Cr atom
to the Fe substrate. Second, one can find a spin split partner of the majority state
at +0.7 eV connected to the ferromagnetically coupled Cr atom with only slightly
higher energy. Therefore it does not produce an extra peak in the total spectrum.
This is altered for the Mn-monolayer as we will learn below.

The influence of buckling turns out to be of more importance for the ¢(2x2)
(anti)ferrimagnetic configuration of the Cr monolayer than it was for the CrFe sur-
face alloy. Relaxing the antiferromagnetically coupled Cr atom inward by another
2 % (see Table 8.1) results in a damping of all peaks mentioned above relative to the
occupied d,2 surface state. This is due to the fact that all these damped states orig-
inate from the (antiferromagnetic) inward relaxed Cr atom increasing their vacuum
barrier relative to that of the d,» state. The dominating role of the d,> state is hence
strengthened. Further, it shifts in energy to a value of —0.05 eV and is now located at
the same energy as the d,2 surface resonance of the pure Cr(001)-surface [66]. One is
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Figure 8.8: Density of states of the two surface Mn atoms of the ¢(2 x 2) surface unit cell
used in the calculation and the lateral constant part of the LDOS in the vacuum given by
the first star coefficient ny(z) at z = 7.3 A for the different magnetic configurations of a Mn
monolayer on Fe(001). Plots show the majority (Spin +) and minority (Spin —) contribu-
tions. (a) displays the p(1 x 1) ferromagnetic, (b) the p(1 x 1) layered antiferromagnetic,
and (c) the ¢(2 x 2) antiferrimagnetic configuration. The corresponding magnetic configu-
rations are sketched at the far right. Note, that the two surface Cr atoms are equivalent
for (a) and (b) but different in (c). The energy range of the LDOS in the vacuum has been
restricted to F'r £ 1 eV since this is the experimentally important energy range in STS.

not able to tell the difference between both morphologies anymore on the basis of STS.
To measure the buckling of the monolayer is also difficult since it amounts to only
0.05 A lying below the commonly achieved resolution in STM. Electronic effects may
yet strongly enhance the measured buckling (see e.g. [77]), and thereby solve the prob-
lem of distinction between the Cr(001)-surface and the ¢(2x2) (anti)ferrimagnetic Cr
monolayer on Fe(001). This is one topic of the following section.

Let us now analyze the results for the Mn monolayers on Fe(001) presented in
Fig. 8.8 in terms of the calculated LDOS and the DOS in the muffin-tin spheres of
the two Mn atoms of the monolayer. In the LDOS of the ferromagnetic configuration
(Fig. 8.8a) we observe only a single feature located at an energy of 40.8 eV and caused
by minority states. This peak is still in the minority state pseudo gap of the Fe(001)-
surface and of d,2 type as in the case of Cr but located at a higher energy because
of the increased magnetic moment of Mn (compare table 8.1 and also the muffin-tin
DOS in Fig. 8.7 and Fig. 8.8). Thus, a confusion with the surface resonance peak of
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Fe(001) can be excluded. In the layered antiferromagnetic configuration (Fig. 8.8b)
we find a high qualitative resemblance of the Mn and Cr LDOS the only difference
being a shift of the d,: majority state peak to an energy of +0.5 eV. This similarity
is caused by the fact that the enhanced moment of Mn is connected with a shift of
the minority state bands to lower energies while the majority states are only slightly
influenced (see Fig. 8.8b). In the ¢(2x2) (anti)ferrimagnetic configuration, on the
other hand, the difference to Cr is quite apparent. First of all the occupied majority
state feature of the ferromagnetic atom has disappeared while the peak at +0.7 eV
is still present. As for the layered antiferromagnetic configuration the majority band
is influenced only little by the gain in magnetic moment. The spin split partner of
the majority state at +0.7 eV is located at +1.1 eV and results in a further peak of
the total LDOS. It is also important to notice that the minority states which were
present for Cr near the Fermi level have disappeared. In the calculated spectra of all
magnetic configurations the appearing features are energetically far from the position
of the Fe(001)-surface resonance (+0.2 eV). A distinction on the basis of STS is thus
easily possible.

Since the two magnetic configurations closest in energy for Mn are the ferro-
magnetic and the c(2 x 2) antiferrimagnetic configuration (see Fig. 8.2) it would be
desirable to distinguish between them on the basis of the spectra. This is impossible
as can be concluded from the calculation because both display a sharp peak at an en-
ergy of about 40.75 eV. Thus a different technique must be applied. Spin-polarized
STS might be applicable since the peak is located in the minority spin states for
the ferromagnetic and in the majority spin states for the c(2 x 2) antiferrimagnetic
configuration. Using the known minority surface resonance of the Fe(001)-surface
as a reference may then provide a distinction. In the next section we will discuss
a different much simpler method which is measuring non-spinpolarized STM images
with atomic resolution. Additionally, it will be shown that the magnetism of a Mn
monolayer on Fe(001) is even more complicated than discussed up to now, and other
competing configurations need to be taken into account.

8.5 Imaging Cr and Mn Monolayers on Fe(001)

In this section the calculated STM images will be discussed qualitatively, i.e. by the
expected pattern of the images, and quantitatively, i.e. in terms of the corrugation
amplitudes. In relation to the following chapter we will also point out the information
gain when spin-polarized STM is applied to these systems. Concerning the expected
patterns we recall the method of the star function expansion for a square lattice
presented in section 4.6.1. In Fig. 4.6 the appearance of the lowest star functions
were given for the example of a square lattice with a two atom basis. This is exactly
what is needed for the system of 3d-monolayers on Fe(001) since for the c(2 x 2)
antiferrimagnetic configuration the two atoms of the monolayer are electronically
inequivalent due to the ferromagnetism of the Fe(001)-substrate. Thus a ¢(2 x 2)
pattern, i.e. Fig. 4.6b, is possible. In the ferromagnetic and layered antiferromagnetic
case, on the other hand, this is ruled out by symmetry since the two atoms are
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equivalent and the use of a c(2 x 2) unit cell is superficial®.
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In Fig. 8.9 the calculated corrugation amplitudes as a function of the applied
bias-voltage are presented for the Cr monolayer on Fe(001). In the ferromagnetic
and layered antiferromagnetic case the corrugation pattern resembles the chemical
p(l x 1) unit cell as required by symmetry. A negative sign of the corrugation
amplitude is accordingly defined as anti-corrugation, an effect which has already been
extensively investigated in chapter 5. In the case of the ¢(2 x 2) (anti)ferrimagnetic
configuration the STM image shows the magnetic ¢(2 x 2) unit cell, i.e. one of the
Cr-atoms is imaged as a protrusion while the other appears as a depression (see also
Fig. 4.6b). The different signs in the corrugation amplitude then denote imaging
either the ferromagnetic or the antiferromagnetic coupling Cr atom with respect to
the Fe(001)-surface (see the insets in Fig. 8.9). The pattern of the image can deviate
from the ¢(2 x 2) pattern due to the specific electronic structure of the Cr monolayer.
This is actually the case at some bias voltages which are characterized by extremely
small corrugation amplitudes. It is at these voltages that the pattern changes from
the ¢(2 x 2) type, characteristic of the magnetic unit cell, to the p(1 x 1) pattern
corresponding to the chemical unit cell. This effect of a qualitative change in the

*In order to compare the total energies one must calculate all magnetic configurations within the
same 2D unit cell.
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STM image has also been pointed out in chapter 5 where it occurred during the
corrugation reversal (see Fig. 5.2). From the discussion of section 4.6.5 we recall that
the contribution of the majority and minority spin states to the total corrugation
amplitude depends on their first star coefficient n{(z), i.e. the lateral constant part
of the LDOS in the vacuum (n{(z) has already been displayed in Fig. 8.7 and Fig. 8.8).
If nl(z) > n}(z) the total corrugation amplitude is almost identical to that of the
majority spin and vice versa. If 'I"LI(Z) = n%(z) then the total corrugation amplitude
is the average of both spin directions.

The absolute values of the calculated corrugation amplitudes are rather small for
the p(1 x 1) unit cell while it is of a value comparable to experimental resolution for
the ¢(2 x 2) unit cell. This behavior results from the bigger 2D lattice constant for
the latter unit cell. The tip-dependent enhancement factors suggested by Chen [11]
possess an inverse dependence on the 2D lattice constant (see section 4.4.2). For a
d.2-tip state and our system (ab® = 2.77 A doxb eV) the factors would be 6.2 and
3.0 for the p(1 x 1) and ¢(2 x 2) unit cell, respectively. The presented corrugation
amplitudes in all figures do not include these factors.

For the ferromagnetic configuration a small total corrugation amplitude is ob-
served. The contribution of the majority spin displays a pronounced maximum
around 40.5 V of positive corrugation, i.e. imaging of atom sites, which is explain-
able by an extended surface state band in the M direction of the c(2 x 2) 2D-
BZ. Of more importance is the peculiar minimum in the minority states near 0 V
which contributes to anti-corrugated STM images. This state is equivalent to the
one held responsible for the experimentally observed anti-corrugation on the Fe(001)
and Cr(001) surface [115,116]. Its charge density shows the same characteristics, i.e.
(directed) d,.,.-orbitals, and it also produces the same features in the 2D-BZ. In
the layered antiferromagnetic configuration the roles of majority and minority states
are exchanged as compared to the ferromagnetic case. This is reasonable since the
majority bands are now mainly unoccupied and the minority bands are about half
occupied (see Fig. 8.7). Again a change from anti-corrugation to corrugation with
applied voltage can be observed.

Finally, the ¢(2 x 2) (anti)ferrimagnetic configuration is of special interest because
the two Cr atoms of the ¢(2 x 2) surface unit cell are inequivalent due to the different
magnetic coupling to the substrate. The situation is therefore related to that of
chemically different atoms. The calculation displays a maximum corrugation at a
voltage of +0.3 V where the antiferromagnetic atom is imaged as a protrusion while
the ferromagnetic atom appears as a depression. The STM image shows a c(2 x 2)
pattern, i.e. a square arrangement of protrusions with a lattice constant of v/2a.
The feature responsible for the maximum in the corrugation amplitude originates
from minority spin states. However, the total corrugation amplitude is significantly
weakened by the majority spin contribution. This hints at a large first star coefficient
of the majority spin states which is verified by taking a look at Fig. 8.7. The minority
spin state causing the maximum in the corrugation amplitude is of d,2 character at
the antiferromagnetic Cr atom and highly localized there. It is the same state which
is experimentally measured by STS on the CrFe/Fe(001) surface alloy [94]. It should
enable one to distinguish between the ¢(2 x 2) (anti)ferrimagnetic configuration and
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the two other magnetic configurations, since it produces a pattern with the symmetry
of the magnetic ¢(2 x 2) rather than that of the chemical p(1x1) unit cell. There is no
clear possibility to distinguish the ferromagnetic from the layered antiferromagnetic
configuration by the images. However, one could argue that they display an opposite
pattern at the Fermi energy (anti-corrugation in the ferromagnetic and corrugation in
the layered antiferromagnetic case) which might be detectable by adsorbates of known
site. This effect is quite significant for the minority states and might be exploitable
by applying SP-STM.

Already from this first discussion on the influence of the spin-polarized electronic
structure on the STM-images and their corrugation amplitudes it is evident that
selecting one or the other spin direction can greatly enhance the measured con-
trast, since the two spin contributions tend to cancel each other. The experimentally
achieved resolution of magnetic superstructures on magnetite with Fe-tips [24] may
very well be explained by this effect. Another example will be presented in chapter 9.
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Switching to the Mn monolayers on Fe(001) now (see Fig. 8.10), we recall that
the magnetic moments have increased considerably compared to Cr (see table 8.1)
which is the main reason for all changes in the corrugation amplitude plots discussed
in the following. For the ferromagnetic configuration the maximum in the majority
corrugation amplitude has shifted to —1.0 V and has become less pronounced. The
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minority contribution on the other hand has split into two anti-corrugation peaks
resulting from states of similar character as for Cr. In the layered antiferromagnetic
configuration a significant change is observed resulting from a rather big difference
in magnetic moment compared to the case of Cr. This corrugation dependence is
a nice example of the special cases discussed in section 4.6.5. The occupied part of
the corrugation is dominated by minority electrons and accordingly we find a high
minority LDOS in this energy range (see Fig. 8.8b). At positive bias-voltages, i.e. for
unoccupied sample states, the total corrugation amplitude follows the majority spin
contribution which is related to a high majority LDOS (see Fig. 8.8b). For the ¢(2x2)
(anti)ferrimagnetic configuration of the Mn monolayer we observe a similar behavior
as for Cr. Again the minority state corrugation amplitude displays a maximum near
0 V which also appears in the total amplitude. However, it is considerably damped
due to the majority states. Still a value of about 0.2 A remains which is clearly
above the common resolution limit of STM of 0.1 A. Thus it is possible to answer
the important question whether the Mn monolayer couples (anti)ferrimagnetically to
the Fe(001) surface as has been predicted on the basis of ab initio calculations [104]
directly by STM even though the buckling is expected to be only on the order of
0.06 A [117]. By using a spin-polarized STM one may greatly enhance the measured
corrugation amplitude if the magnetically coated tip favors the minority spin states
which depends on the orientation of the relative magnetization axes as well as on the
sign of the spin-polarization of the tip (see section 4.5).
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Figure 8.11: Calculated STM images and cross-sections of the integrated local density
of states (ILDOS) for the Mn-monolayer on Fe(001) in the ¢(2 x 2) antiferrimagnetic
configuration for a bias-voltage of —0.2 V. (a) shows the cross-section of the ILDOS for
the majority (left) and minority (right) electrons. The corresponding STM images of the
(b) majority, (c) minority, and (e) the spin-summed ILDOS. (d) displays the surface unit
cell with the ferromagnetic (light) and antiferromagnetic (dark) coupling Mn atom of the
monolayer. (b) and (c) show the ferro- and antiferromagnetic coupling Mn atoms with
respect to the Fe(001)-substrate as protrusions, respectively. However, also in the spin-
summed ILDOS corresponding to a non-spinpolarized STM image the antiferromagnetic
Mn atoms appear as protrusions, i.e. the magnetic ¢(2 x 2) unit cell is observed.



8.5 Imaging Cr and Mn Monolayers on Fe(001) 127

In Fig. 8.11 the states contributing to the calculated STM image for the c¢(2 x 2)
(anti)ferrimagnetic configuration at a bias-voltage of —0.2 V are displayed in real-
space as well as the corresponding STM-images. We observe a d.2-type orbital at
the antiferromagnetic coupling Mn atom leading to the protrusions in the (non-
spinpolarized) STM image. Comparing this plot with the one of the CrFe surface
alloy on Fe(001), Fig. 8.6, a close resemblance can be seen.

Biasvoltage of -0.2 V
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Figure 8.12: Calculated STM images and cross-sections of the integrated local density
of states (ILDOS) for the Mn-monolayer on Fe(001) in the p(2 X 2) ferromagnetic con-
figuration for a bias-voltage of —0.2 V. (a) shows the cross-section of the ILDOS for the
majority (left) and minority (right) electrons. The corresponding STM images of the (b)
majority, (¢) minority, and (e) the spin-summed ILDOS. (d) displays the surface unit cell
consisting of two ferromagnetic (light and dark dots) and one antiferromagnetic coupling
(white dot) Mn atom of the monolayer. The ¢(2 x 2) unit cell is also included by the
shaded box for comparison with Fig. 8.11. (b) and (c) show one of the ferro- and the an-
tiferromagnetic coupling Mn atoms with respect to the Fe(001)-substrate as protrusions,
respectively. However, in the spin-summed ILDOS corresponding to a non-spinpolarized
STM image a pattern of a ¢(2 X 2) unit cell is observed. The contrast between the two
protrusions is quite faint as can also be concluded from the corrugation amplitudes (see
Fig. 8.13).

Although there is actually an infinite number of possible antiferromagnetic con-
figurations we have only considered the three magnetic configurations of Fig. 8.1 up
to now. This is reasonable if we can assume the nearest neighbor exchange interac-
tion to be strongest and neglect the interaction with further neighbors. In order to
establish this assumption one can use the next larger 2D unit cell, which is p(2 x 2),
and calculate the energetic differences between all possible configurations on such a
lattice. Recently, this has been done with our FLAPW-code [118] and contradictory
to the expectation that further magnetic configurations are considerably higher in
energy than the ¢(2 x 2) antiferrimagnetic configuration, which was assumed to be
the ground-state, there is a ferrimagnetic p(2 x 2) configuration that is favorable by
the tiny energy difference® of 6.4 meV per Mn atom. In this configuration two Mn

5The common energy differences between competing magnetic configurations are in the range
of 50 to 100 meV per atom (see for example table 8.1) while energy differences of several meV are
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atoms couple ferromagnetically and one couples antiferromagnetically with respect
to the Fe(001)-substrate. At low temperatures this configuration is expected but
considering the very small energy difference with respect to the ¢(2 x 2) antiferri-
magnetic configuration even a coexistence in separated domains seems possible. It is
thus extremely interesting to distinguish unambiguously between the two.
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Therefore, STM-images have also been calculated for the ferrimagnetic p(2 x
2) configuration as a function of the bias voltage, and an example is presented in
Fig. 8.12 in a similar form as in Fig. 8.11. While the contribution of majority states
(Fig. 8.12b) to the image shows one type of the ferromagnetically coupled Mn atoms
as protrusions, the minority states (Fig. 8.12c) result in protrusions on top of the
antiferromagnetically coupled Mn atoms. Thus the images of the two spin directions
considered separately display the magnetic p(2 x 2) unit cell. However, two local
maxima appear in the spin-summed, i.e. non-spinpolarized, STM image (Fig. 8.12¢).
If the slight height difference between the local maxima is experimentally unresolvable
a ¢(2x2) pattern must be deduced from the image. In order to decide upon the height
difference between these two maxima we have plotted the calculated corrugation
amplitude as a function of the applied bias-voltage in Fig. 8.13. The amplitude
denotes the height difference between the maximum and the minimum in the unit
cell. While the contributions from only the majority or only the minority states lead
to values of 0.2 to 0.6 A with the images inverted as exemplified in Fig. 8.12b and
Fig. 8.12¢, the total corrugation amplitude is quite small and below 0.1 A. From the
corresponding images it is impossible to deduce a difference to the ¢(2 x 2) pattern
since the height difference between the two maxima is even lower than the total
corrugation amplitude. Thus with a non-spinpolarized STM one may not discriminate
the two competing magnetic configurations, i.e. the ¢(2x2) antiferrimagnetic from the
p(2 x 2) ferrimagnetic one. Because of the extremely high corrugation amplitudes
occurring for the two spin directions it is rather obvious that spin-polarized STM
favoring one of the two spin directions is a promising method to experimentally

typical for the magnetic anisotropy energy.
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identify the magnetic ground-state configuration. The feasibility of such an approach
is demonstrated in the next chapter for a different system.
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Chapter 9

Resolving Magnetic Structures on

the Atomic Scale by SP-STM

The magnetism of nanostructures such as ultrathin films made out of magnetic tran-
sition metals of a thickness down to one monolayer deposited on a non-magnetic,
ferromagnetic, or antiferromagnetic substrate has recently attracted enormous atten-
tion. Novel magnetic properties have been observed in these systems which are of
interest for both, fundamental research as well as for applications in the magnetic
storage technology [119] and the arising field of magneto-electronics [120]. An ex-
ample for a potential application is to exploit the exchange-bias effect [121] to tune
the characteristics of giant-magneto resistance devices, like read-heads in hard disk
drives. In order to do so one must understand the origin of this complicated effect
which occurs when ferromagnetic films are in contact with antiferromagnetic ones.
The magnetism in such structures can be very complex, and phenomena such as an-
tiferromagnetism, ferrimagnetism, commensurate and incommensurate spin-density
waves, and non-collinear spin structures can occur. Currently strong efforts are being
undertaken to study these systems [122-124].

In this chapter we introduce an approach to image complicated magnetic struc-
tures of surfaces directly on the atomic scale by spin-polarized STM (SP-STM). By
generalizing the Tersoff-Hamann model to the case of SP-STM and applying the ex-
pansion of the STM image into star functions developed in sections 4.6.1 and 4.6.2
we prove that in general the SP-STM image of any magnetic superstructure within
an arrangement of chemically equivalent atoms leads to an SP-STM image displaying
a pattern corresponding to the magnetic configuration. This is in contradiction to
the intuitive expectation that the non-spinpolarized STM image reflecting the chem-
ical structure is only slightly modulated in the SP-STM experiment. This approach
extends the use of STM from the exploration of the topological, chemical, and ferro-
magnetic structure of surfaces to the inherently much more difficult investigation of
antiferromagnetic surfaces with ultimate, atomic resolution. It may even be possible
to reveal more complicated non-collinear spin structures in the future (see Fig. 10.1).

The method of imaging magnetic structures on the atomic scale directly by SP-
STM is applied to the problem of two-dimensional antiferromagnetism in monolayer-
thick transition metal films on non-magnetic substrates. The existence of two-
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dimensional antiferromagnetism in such ultrathin films has been predicted already in
1988 by S. Bliigel et al. [21] but unambiguous experimental proof is still missing. The
proof of the two-dimensional antiferromagnetism would provide an understanding of
the magnetic interaction in these films and confirm and extend the predictive power
of the density functional theory towards two-dimensional systems. By using SP-STM
with atomic resolution the predicted antiferromagnetic ground-state configuration
can be observed in real-space providing a direct proof of the magnetic structure.
Thereby the missing proof for the existence of two-dimensional antiferromagnetism
is given in this chapter.

9.1 Imaging 2D Antiferromagnetism of Ultrathin
Films

Two-dimensional antiferromagnetism is poorly understood. The investigations suffer
from the problem that no adequate experimental technique combining high-spatial
resolution in real-space with a sufficient degree of surface and magnetic sensitivity
has been routinely available. The ultimate limit of a two-dimensional antiferromag-
net is a magnetic monolayer of chemically equivalent atoms, where adjacent atoms at
nearest-neighbor sites have magnetic moments with opposite directions, deposited on
a non-magnetic substrate. More than 10 years ago, Blugel et al. predicted the exis-
tence of such antiferromagnets, i.e. V, Cr, and Mn on (100) oriented Pd substrates [21]
and later also on noble-metal substrates [125] on the basis of first-principles calcula-
tions. From these calculations one can conclude that the hybridisation between the
monolayer and the noble-metal substrate is negligible and the monolayer film behaves
as if it were a perfect two-dimensional system. There have been several attempts to
verify the existence of two-dimensional antiferromagnetism and some evidence has
been given [126,127], but unambiguous proof is still missing. The experimental dif-
ficulties are numerous. First of all, one needs to control the growth of the film to
be sure of the required perfect pseudomorphic structure. Surface alloying has to be
safely excluded. Further, the Néel temperature at which magnetic ordering occurs is
unknown and is probably very low. Finally, an experiment providing an unambigu-
ous evidence of the antiferromagnetic configuration is needed which is far from being
trivial since the total magnetization vanishes and the order is on the atomic scale.
Especially, surface alloying has been a serious problem in many experiments. It
is caused by the fact that transition-metals quite generally possess larger surface free
energies than noble-metals, and thus it is favorable for an adsorbed transition-metal
atom to change places with a substrate atom. One of the best studied examples is the
¢(2x2) MnCu surface alloy [20]. To prevent the occurrence of alloying one may choose
a more stable substrate like W(110) which has become a very popular substrate for
the growth of thin magnetic films, e.g. Fe on W(110) [128]. The drawback is a strong
hybridization of the monolayer with such a 5d-substrate influencing the magnetic
properties. The 3d-bands of the transition-metal broaden which reduces the possible
exchange-splitting and thereby also the magnetic moment. Nevertheless, the two-
dimensional antiferromagnetism within the monolayer film should not be destroyed
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since it does not depend on a high density of states at the Fermi energy as in the case
of ferromagnetism but rather on a low density of states in the center of the d-band
which becomes sometimes even larger due to the hybridization with the substrate.
We have therefore chosen this system to demonstrate the potential of spin-polarized
STM (SP-STM) [23,24] to give a direct proof of two-dimensional antiferromagnetism
within an ultrathin film.

9.2 Computational Details

The calculations have been performed in the ¢(2 x 2) two-dimensional unit cell with
two atoms per layer and using films consisting of 11 layers, i.e. 9 layers of the W(110)-
substrate and a monolayer of a 3d-transition metal on both sides. The interlayer
distance between the Cr, Mn, Fe, or Co monolayer and the W(110)-surface has been
relaxed by total energy minimization®. For tungsten we worked with the theoretical
lattice constant of ag = 5.928 a.u. which is 1% smaller than the experimental lattice
constant. The exchange-correlation potential has been applied in the local density
approximation of von Barth and Hedin [29] using the parametrization by Moruzzi,
Janak, and Williams [72]. The basis set used for the valence states consisted of
about 80 augmented plane waves per atom in the unit cell. Non-spherical terms in
the potential, charge density, and wave functions are expanded within the muffin-tin
spheres with radius R%T = 2.456 a.u. and R%T = 2.1 a.u. up to l,4. < 8. The self-
consistent electronic structure was determined with 35 k-points in the irreducible
part of the two-dimensional Brillouin zone (I12BZ). The integrated local density of
states (ILDOS) resolved over the 2D-BZ has been analyzed using 176 k;-points in
the 12BZ. All star coefficients and by this also the STM images and corrugation
amplitudes were calculated on this k-point set.

9.3 Magnetism of 3d-Monolayers on W (110)

Before we demonstrate the feasibility to image the magnetic ground-state of a 3d-
ML/W(110) with SP-STM, the magnetism in such a system shall be discussed. Al-
though we are dealing with a transition-metal substrate, W(110), instead of a noble-
metal substrate, like Ag(001) or Cu(001) often used in the past [125], most of the
results are very similar. However, some effects are reduced due to the strong hy-
bridization between the substrate and the monolayer. Fig. 9.1 shows the different
considered magnetic configurations for a monolayer film placed perfectly pseudomor-
phic on the W(110)-substrate. In Fig. 9.1(a) the non-magnetic film is depicted along
with the chemical p(1 x 1) unit cell while Fig. 9.1(b) displays the ferromagnetic
configuration with a parallel alignment of all Mn moments. The simplest possi-
ble antiferromagnetic configuration is given in Fig. 9.1(c¢) which displays antiparallel
magnetic moments of nearest-neighbor atoms. This configuration is analogous to the
¢(2 x 2) antiferromagnetic structure on a square substrate lattice, like Ag(001), and
we denote it as a checkerboard structure accordingly.

TAll results for these systems refer to the relaxed interlayer distances.
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Figure 9.1: Magnetic configurations taken into account for the determination of the mag-
netic ground-state configuration of a 3d-transition metal monolayer on W(110). (a) shows
the non-magnetic film, (b) the ferromagnetic configuration, and (c) the ¢(2 x 2) antifer-
romagnetic structure, a checkerboard arrangement of up and down spins. The chemical
p(1 x 1) unit cell has been marked in (a) by the full line.

Figure 9.2: The magnetic moments of

the calculated ground-state configuration for

(110) oriented unsupported 3d-monolayers

on the LDA lattice constant of W (UML)

: —and for the 3d-monolayer on the W(110)-

AF, . uMmL(11o) | surface (ML/W(110)). The magnetic

AFs~" ~ — ML/W(110)]  ground-state is denoted by: ferromagnetic

' "o F 1 (F),c(2x2) antiferromagnetic (AF), or non-

1 magnetic (N). There is a large reduction of

magnetic moments between the perfect two-

dimensional system of the UML and the ML

i on W(110) due to the strong hybridization

NE with the substrate. For Cr, Mn, Fe, and Co

] the relaxed interlayer distances have been

used for the ML/W(110), i.e. 3.79 a.u. ,

3.91 a.u. , 3.66 a.u. , and 3.58 a.u. , respec-
V. Cr Mn Fe Co Ni tively.

3d—-Element

W

[OV]
A

—_
L e

magnetic moment in ug
v
T

o
zZ

Fig. 9.2 displays the magnetic moments and the ground-state configuration for the
3d-monolayers on the W(110)-substrate as well as without substrate as unsupported
monolayers. The latter calculation provides information on the significance of the
substrate hybridisation on the electronic and magnetic properties. We investigated
for all transition metals both, the ferromagnetic and the ¢(2 x 2) antiferromagnetic
spin structure. For most systems we found both magnetic states to be stable. A
total energy analysis reveals that for the unsupported monolayers the early 3d’s,
i.e. V, Cr, and Mn, are antiferromagnetic and the late 3d’s, i.e. Fe, Co, and Ni,
are ferromagnetic. For a noble-metal substrate the trend is analogous [125] to the
unsupported monolayers indicating a neglectable hybridisation. In the case of a
W(110) substrate, on the other hand, where a strong hybridization with the 2D-film
occurs, V and Ni become non-magnetic while for Cr the ferromagnetic solution does
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not exist anymore. Still, the trend of the magnetic ground-state throughout the
3d-row remains unchanged while the magnetic moments are reduced considerably.
Thus the substrate strongly alters the monolayer properties, and the system is not
a perfect two-dimensional system in this sense. The antiferromagnetic order of Cr
and Mn, however, is still two-dimensional and the magnetic moments are significant.
Fortunately, the growth of Mn on W(110) has been studied experimentally in the
past and perfect pseudomorphic growth without intermixing has been observed for
a coverage of ® < 3 ML [131]. Thus a direct comparison with the calculations is
possible.

(@ E=+100 meV/Mn  (b) E=0 meV/Mn (c) E=+70 meV/Mn
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Figure 9.3: Comparison of different magnetic configurations of the Mn monolayer on
W (110): (a) the p(1x1) ferromagnetic structure, (b) the ¢(2x2) antiferromagnetic structure
and (c) the p(2 x 1) antiferromagnetic structure. The calculated magnetic moments are
2.40 up, +2.96 up and +2.79 ug, respectively. The total energies are given with respect to
configuration (b).

Mn possesses an untypically large bulk unit cell of 29 atoms at room temperature
hinting at its complicated magnetic properties. Thus different competing antiferro-
magnetic structures might occur in this complex case, and additional configuration
has been taken into account. The three possible magnetic configurations consid-
ered here are schematically represented in Fig. 9.3: (a) ferromagnetic, (b) ¢(2 x 2)-
antiferromagnetic with antiferromagnetic coupling of all nearest neighbor atoms, and
additionally (¢) p(2 x 1)-antiferromagnetic where two nearest neighbors couple ferro-
magnetically while the other two couple antiferromagnetically. For all configurations
the equilibrium interlayer distance between Mn and W was determined by total en-
ergy minimization (Fig. 9.4). By comparing the total energies of the three magnetic
structures we conclude that the c¢(2 x 2)-AFM configuration (b) is the magnetic
ground-state structure, i.e. at low temperatures a checkerboard arrangement of mag-
netic moments occurs. The energy of the ¢(2 x 2)-AFM configuration is 100 meV
and 70 meV per Mn atom lower than the ferromagnetic (a) or p(2 x 1)-AFM (c)
state, respectively. By including the spin-orbit interaction into the calculations one
can even compute the easy axis of the magnetization. From these calculations [129]
we conclude that the magnetic moments of the c(2 x 2)-antiferromagnetic structure
have an in-plane orientation along the [110] direction (long side of the surface unit-
cell). The energy difference between the in-plane and out-of-plane orientation of the
magnetic moment, known as the magnetocrystalline anisotropy energy, amounts to
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about 1.3 meV per atom [129].
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9.4 Principle of SP-STM on the Atomic Scale

In this section we will apply the principle of SP-STM which has already been intro-
duced in section 4.5 to the special case of a magnetic superstructure on the atomic
scale. The effect exploited in order to image the magnetic ground-state configuration
of a Mn-monolayer on W(110) is of general validity, and it may lead to the under-
standing of many more magnetic structures on this lowest possible scale in the future.
The first applications of the SP-STM have been demonstrated by Wiesendanger et
al. [23,24]. The working principle is sketched in Fig. 9.5. The electronic structure of
Mn is therein expressed in terms of spin-dependent local density of states (DOS) nq(y).
Since a Mn atom is magnetic, the DOS of majority, n4, and minority, n, electrons
(insets in Fig. 9.5) around the Fermi energy, Er, which is relevant for the tunneling
of electrons, is different, and the spin-polarization P = (ny — n})/(n4 + ny) is non-
zero. However, the sum of both, n, = n4 + ny, is identical above any Mn atom, so a
non-spin-polarized STM measurement will only be sensitive to the chemical unit cell.
If the STM tip can be made sensitive to the spins of the tunneling electrons, for ex-
ample by coating the STM-tip with Fe or Gd, the tunneling current I depends on the
angle 6 of the relative orientation between the magnetization axes of tip and sample
as well as on the electronic structure and on the spin-polarization Ps and Pr of the
sample (Mn) and the tip states, respectively (see Eq. (4.43)). The tunneling current
can be decomposed into two contributions, /(0) = I, + Ip cos 8 (see Eq. (4.44)), the
conventional tunneling current of non-spin-polarized electrons [,,, and the additional
contribution /p due to the tunneling of spin-polarized electrons, Ip ~ Ps Pr (in the
limit of small applied bias voltage V). Obviously, the highest effect is expected for
tip and sample magnetization being either parallel or antiparallel while the effect
vanishes for a perpendicular geometry.

According to conventional wisdom spin-polarization is a small effect, and one
might expect normal STM images to be slightly modulated due to magnetism. In-
stead, it is quite different. The STM-image of a periodic surface, i.e. the change AT
of the tunneling current [ as a function of the lateral position r of the tip, can be
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written in terms of a two-dimensional Fourier expansion:

Al(ry,z,0,V) = Z](;n 2,0, V)exp (1Gjr) . (9.1)
n#0

Gﬁ denotes the reciprocal lattice vectors, and [Glrll(z, 0,V) is the tip-sample distance

(z), angle (@), and bias-voltage (V') dependent expansion coefficient. As we have
described in detail in section 4.6.1 the plane waves of symmetry related reciprocal
lattice vectors Gﬁ can be summarized to a two-dimensional star function ¢*”(r).
Thus we can rewrite Eq. (9.1) to

Al(ry,z,0,V) =Y 1,(z,0,V)$2"(r)), (9.2)

s>1

with a representative vector Giji. Due to the tunneling of electrons through the vac-
uum barrier these coefficients decrease exponentially with increasing length Gﬁ (see
the kj-selection rule of section 4.6.2), and to a good approximation the topographic
STM image or, to be more precise, the constant current STM image, is determined

by the lowest star function which is laterally non-constant, i.e. ¢2P(r,)* (see sec-
tion 4.6.1):

Al(ry, z,0,V) ~ L(6,V)$2P (r,) exp [—22\/2m/h2|Ep—|— eVI+ (G /22| (9.3)

Since we are only interested in the dependence of the exponential decrease on the rep-
resentative reciprocal lattice vector Gﬁ in this context the exponential term has been
approximated by the highest contribution resultmg from the corresponding high sym-
metry point of the 2D Brillouin zone, i.e. k; = /2 If we image Mn on W(110)

In our definition, introduced in section 4.6.1, ¢ (r,) = 1.
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with a non-magnetic tip, [ = I, all atoms are equivalent, and the chemical unit cell is
diamond shaped (Fig. 9.6(a)). The four smallest reciprocal lattice vectors of this cell,
all related by symmetry operations, are displayed in Fig. 9.6(b). The corresponding
2D star function resulting from the superposition of the four corresponding plane
waves represents the expected STM topography (Fig. 9.6(c)).

An antiferromagnetic superstructure lowers the translational symmetry, and the
additional tunneling current due to spin-polarized electrons, Ip, is sensitive to the unit
cell of the superstructure (Fig. 9.6(d)). Therefore, smaller reciprocal lattice vectors
become accessible (Fig. 9.6(e)). Since these possess exponentially larger coefficients
they dominate the STM-image, Al ~ Alp, even in the case of small effective spin-
polarization Ps Pr cos 8, for example if the angle 8 is close to 90°. Thus the corrugation
amplitude Az (the maximum difference in tip height while it scans the surface) is
directly proportional to the spin-polarization, Az(zg) ~ Ps Pr cos §, where z is the
average tip-sample distance. A stripe pattern (Fig. 9.6(f)) without any chemical
background is expected to be seen in the experiment due to the smallest reciprocal
superlattice vector. Correspondingly, we expect a diagonal stripe pattern for the

p(2 x 1)-AFM state (Fig. 9.3(c)).

These arguments are quite general and in principle applicable to any magnetic
superstructure. The electronic structure, contained in I;51(8,V) of Eq. (9.3), of a
specific surface can still compete with this effect, and first-principles calculations
need to be performed in order to interpret the experiments unambiguously. STM
images were calculated on the basis of the Tersoff-Hamann model [6] as described
in chapter 4. The spin-polarized measurements utilizing a ferromagnetic tip were
simulated by assuming different values for the spin-polarization Pr of the tip states.
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Figure 9.6: Lattice (a), (d), shortest re-
ciprocal lattice vectors (b), (e), and the 2D
starfunction, i.e. the expected STM im-
ages (c) and (f), associated to the short-
est reciprocal lattice vectors of the chem-
ical and the magnetic unit cell of a Mn
monolayer on W(110). Note that (e) con-
tains the shortest vectors of the chemical
unit cell (dashed) and the two inequiva-
lent pairs of additional vectors due to the
magnetic superstructure.
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9.5 Experimental Details

The SP-STM experiments® were performed in a cryogenic ultra-high vacuum (UHV)
system equipped with a 2.5 T magnet [130] and separate chambers for substrate
preparation, sample transfer, metal vapor deposition (MVD) and surface analysis.
The sample preparation procedure is described in detail in Refs. [130,131]. We used
etched W-tips which were flashed in-vacuo to remove oxide layers. In the MVD-
chamber the tips were magnetically coated with Fe or Gd while held at 300 K, sub-
sequently annealed at T" ~ 550 K for 4 min, and then transfered into the cryogenic
STM. During the measurement tip and sample were at a temperature 7' = 16 K.

9.6 SP-STM Images of Mn/W (110)

Figure 9.7: Topography of 0.75 ML Mn
grown on a stepped W(110) substrate. A

'§1-5 line-section (bottom panel) was drawn at the
§1.0 bottom edge of the image. The structure
§°-5 of the sample is schematically represented

W(110)-substrate by different grey levels. The image size is

0 50 100 150 200 200 nm x 200 nm.
lateral displacement [nm]

£0.0
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The growth of Mn on W(110) has previously been studied [131]. It was found that
a monolayer (ML) Mn grows atomically flat and pseudomorphically on W(110), i.e.
Mn has the same in-plane lattice constant as the underlying W substrate. No hints
of alloying could be observed. Fig. 9.7 shows the topography of 0.75 ML Mn/W(110)
grown at a substrate temperature Ty, &~ 400 K. Atomically flat Mn islands as well
as parts of the uncovered tungsten substrate are visible.

Using a clean tungsten tip atomic resolution was achieved on the Mn-islands as
shown in Fig. 9.8(a). The diamond-shaped unit cell of the pseudomorphic (1 x 1)
Mn-monolayer is clearly visible. The line-section drawn along the dense-packed [111]-
direction exhibits a periodicity of 0.27 4+ 0.01 nm which almost perfectly fits the
expected nearest-neighbor distance of 0.274 nm. The measured corrugation amplitude
amounts to 15 pm. In the inset a calculated STM-image for a conventional tip without
spin-polarization, i.e. Pr = 0, is given for comparison. Obviously, the qualitative
agreement between theory and experiment is excellent. However, the theoretically

3The experiments have been performed by M. Bode, A. Kubetzka, and O. Pietzsch, and it is my
pleasure to thank them for their fabulous work.
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determined corrugation amplitude is by far too small. This deficiency of the Tersoff-
Hamann model in predicting the correct corrugation in atomically resolved STM-
images of close-packed metal surfaces is well understood?.

expeljiinent

Figure 9.8: Comparison of experi-
mental and theoretical STM-images of
a Mn monolayer on W(110) with (a) a
non-magnetic W- and (b) a magnetic
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In a second set of experiments different ferromagnetic tips were used. Since we
know from the first-principles computations that the easy magnetization axis of the
Mn monolayer on W(110) is in-plane, the experiment required a magnetic tip with a
magnetization axis in the plane of the surface in order to maximize the effects. This
condition is fulfilled by Fe-coated probe tips [132]. Fig. 9.8(b) shows an STM-image
taken with such a tip. Periodic parallel stripes along the [001]-direction of the surface
can be recognized. The periodicity along the [110]-direction amounts to 4.5 + 0.1 A
which corresponds well to the size of the magnetic ¢(2 x 2) unit-cell. The inset in
Fig. 9.8(b) shows the calculated STM-image for the magnetic ground state, i.e. the

*The disagreement is related to the unknown atomic structure of the tip. A better quantitative
agreement can be obtained by including more localized tip orbitals such as d,2 whose corrugation
amplitudes are much closer to experiment (see chapter 5).
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¢(2x2)-AFM configuration as discussed in Fig. 9.3(b). We find theory and experiment
to give a consistent picture. Even the predicted weak constrictions of the stripes along
the [001]-direction related to the pair of second smallest reciprocal lattice vectors
of Fig. 9.6(e) are visible in the measurement. Again, experimental and theoretical
data can be compared more quantitatively by drawing line-sections along the dense-
packed [111]-direction as indicated in Fig. 9.8(b). The result is plotted in Fig. 9.8(c).
It reveals that the periodicity when measured with a Fe-coated probe is twice the
nearest neighbor distance, i.e. 0.548 nm. The experimental corrugation amounts to 3
to 4 pm which is slightly below the corrugation expected from theory, AZ(5A) =7pm
at V =~ 0 V. In Fig. 9.9 the calculated corrugation amplitude is displayed as a function
of the applied bias-voltage. The contributions from the majority and minority spin
states are exactly the same except for the sign of the corrugation amplitude. In the
present case the sign denotes that either the ferromagnetic or the antiferromagnetic
Mn atom rows with respect to the tip magnetization are imaged as protrusions. Thus
with a non-spinpolarized STM-tip the net corrugation amplitude of the stripe pattern
vanishes, and the diamond shaped pattern of the chemical unit cell is observed.
However, if the tip possesses a non-vanishing spin-polarization Pr the corrugation
amplitude can be readily computed from the two spin contributions. This has been
done for the case of Pr = —0.4 in Fig. 9.9. This value has been determined in
earlier experiments [132]. There is a maximum in the corrugation amplitude at a
voltage of about —0.5 V which is related to the edge of a surface state band of the
Mn monolayer. In the next section it will be shown that it is also the cause of
the possibility to image the magnetic structure at low bias-voltages, i.e. at the Fermi
energy. In agreement with the expectation from the plot of the corrugation amplitude
no qualitative bias-voltage dependence of the SP-STM image has been observed in
the experiments which were performed at voltages between —100 meV and 0 meV.

In the calculation we assumed the magnetization axes of the sample and the probe
tip to be collinear, i.e. cos @ = +1. However, in the present experimental setup even
for the case of # = 0, i.e. the tip magnetization lying perfectly in the surface plane,
¢ cannot be controlled and the alignment can be non-collinear, which might explain
the discrepancy between theory and experiment. The strong dependence of the effect
on the magnetization direction of the tip can be exploited to gain further information
on the magnetization direction of the sample by using a tip which exhibits an easy
magnetization axis which is almost perpendicular® to the one of the sample surface.
This condition is fulfilled for a W-tip coated by 7 £ 1 ML Gd as we could show
recently [27]. In Fig. 9.8(c) we have included a typical line-section as measured with a
Gd-coated probe tip (grey line). Indeed, the corrugation amplitude was always much
smaller than for Fe-coated tips and never exceeded 1 pm supporting the theoretical
results that the easy axis of the Mn atoms is in-plane. Note, that the image still
displays the stripe pattern characteristic of the magnetic superstructure as proposed

5The in-plane or out-of-plane magnetization direction of tips coated by thin films is governed by
the interface and surface anisotropy of the film material, i.e. Fe or Gd, in contact with the most
densely packed W-surface, i.e. W(110), which is formed at the tip apex after the thermal flash. To
our experience, slight deviations from the ideal magnetization directions were frequently observed,
probably caused by the curved shape of the tip.
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Figure 9.9: Calculated corrugation amplitude as a function of the applied bias-voltage for
the ¢(2 x 2) antiferromagnetic configuration of the Mn-monolayer on W(110). The dotted
and dashed-dotted curves denote the two spin contributions while the full line represents
the total corrugation amplitude measured with a magnetic tip of spin-polarization Pr =
—0.4. A positive (negative) corrugation amplitudes is related to imaging the ferromagnetic
(antiferromagnetic) Mn atom rows with respect to the tip magnetization as protrusions.
The insets show the unit cell of the c(2 x 2) antiferromagnetic configuration (upper left)
and the calculated STM-images for Pr > 0 (upper right) and Pr < 0 (lower right).

by the discussion of Eq. (9.2) and (9.3) even for a small effective spin-polarization
due to nearly orthogonal magnetization directions.

9.7 Correlation with the Electronic Structure

In section 9.4 we have discussed the reason for the possibility to image the magnetic
superstructure on the basis of the exponential decay of the coefficients [Glrlz(z,ﬁ, V)
in the vacuum. As the decay of the coefficients to a certain pattern, i.e. star function
$*P(r}), of the STM image depends exponentially on the length of the corresponding
reciprocal lattice vector Gj the smallest vector will dominate the image. However,
it must be kept in mind that the electronic structure of a specific sample enters
into the coefficients. Therefore, it needs to be verified by first-principles calculations
that there are actually contributions from electronic states to the pattern with the
smallest reciprocal lattice vector. Otherwise the pattern corresponding to the next
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larger reciprocal lattice vector will dominate the STM image. Thus in this section we
will analyze in detail the bands responsible for the SP-STM image presented in the
previous section. From our analysis it can be concluded that the effect should also be
observable for a Cr-monolayer on W(110) and even with a slightly higher corrugation
amplitude.

In Fig. 9.10 the electronic structure of the two magnetically inequivalent Mn atoms
of the monolayer is compared in terms of their density of states and the bandstruc-
ture with the corresponding STM-images in terms of the two lowest star coefficients
with non-constant patterns, i.e. the second (third) star coefficient corresponding to
stripes along the short (long) side of the rectangular unit cell. The values of the star
coefficients differ for the two spin directions only by their sign since the spin-summed
electronic structure of both Mn atoms is identical. In the following we therefore fo-
cus on the majority contribution assuming that the magnetic STM-tip used favors
this spin channel®. The (majority) second star coefficient ny(e) displays a distinc-

6The discussion can certainly also be applied to the minority states without a change of the result
since both are identical due to the antiferromagnetic ground-state.
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Figure 9.11: The majority second star coefficient as a function of the wave vector k; on
a 512 point mesh in the irreducible part of the two-dimensional Brillouin zone. Energy
intervals of 0.1 eV have been chosen and the energies are given relative to the Fermi energy.
Red (yellow) marks positive (negative) coefficient values. The band edge of the surface
state in [ M-direction is clearly visible at £ = Er — 0.4 eV by its large contribution. From
these plots one can conclude unambigiously that the surface state band is responsible for
the SP-STM images.
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tive maximum at an energy of about K — 0.4 eV. Correspondingly, the corrugation
amplitude (Fig. 9.9) shows a maximum close to this bias-voltage. The peak position
can be correlated with the edge of a surface state band, marked by open circles,
along the I'M-direction of the 2D-BZ. Note, that this direction remains unchanged
when we backfold the bandstructure from the p(1 x 1) to the ¢(2 x 2) unit cell (see
Fig. 9.10). Thus we see a close resemblance of this band with the one discussed in
chapter 5 responsible for the bias-voltage dependent corrugation reversal on W(110)
(compare Fig. 5.6). In the bandstructure of the Mn-monolayer on W(110) we addi-
tionally find its exchange-split partner with a band edge of about Fr — 1.2 eV and
a very similar dispersion along the displayed high symmetry line. The value of the
(majority) second star coefficient (ng(e)) peak is positive and therefore the ferromag-
netic Mn atom rows appear as protrusions in the SP-STM-image of the (majority)
surface state band. The band possesses quite a large dispersion, and still dominates
the SP-STM-image at the Fermi energy. Thus it is also responsible for the experimen-
tally achieved magnetic resolution shown in the previous section. From Fig. 9.10 it
cannot actually be concluded that the surface state band gives the predominant con-
tribution although the correlation is already quite suggestive. Therefore, we present
in Fig. 9.11 the contributions to the (majority) second star coefficient from different
parts of two-dimensional Brillouin zone at various energies. From this plot we can
clearly see the maximum value at an energy of K = Er — 0.4 eV which is located
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right at the band edge of the surface state about midway between the I'M-direction.
Also the dispersion of this band can be traced splitting into two branches, one which
closes in around T and the other around M, until it vanishes at an energy of about
FE=Fr+02eV.

The third star coefficient ns(€) with values of a magnitude smaller than the second
star coefficient displays a maximum in the unoccupied states at an energy of Er +
0.5 eV. Therefore the constrictions of the stripes along the [001]-direction should
become more pronounced at positive bias-voltages near to the peak position. The
correlation with strongly Mn located states is again marked by a line in Fig. 9.10.
This very small effect has not been verified experimentally although the intensity of
the constrictions varied considerably for SP-STM images taken at different tunneling
conditions. At experimentally unreasonable large energies” above the Fermi energy
the second star coefficient changes its sign since the exchange-split bands of the
antiferromagnetic Mn atom then become dominant.

A single state of the surface state band is shown in Fig. 9.12. Obviously, there
is a high localization in the Mn-monolayer and additionally in the first layer of the
W(110)-substrate. This localization at the two top layers of the whole film is closely
related to the surface states present at the pure W(110)-surface (compare the charge
density plots in Fig. 5.10). The orbital character at the Mn atoms which are imaged
as protrusions is d.2 while it is d,, for the other kind of Mn atoms. The corresponding
SP-STM-image is also presented in Fig. 9.12 which makes the correlation with the
cross-sections quite easy.

In conclusion, the specific electronic structure of the Mn-monolayer film on the
W(110)-substrate leads to the possibility of imaging either the rows of ferro- or an-
tiferromagnetic atoms as protrusions depending on the magnetization axis of the
spin-polarized STM-tip. Notice the similarity of the surface state band with that
of the W(110)-substrate only (see chapter 5) hinting at their close relation and the
importance of the hybridization at the interface. As the ground-state configuration
of a Cr-monolayer on W(110) is also ¢(2 x 2) antiferromagnetic the presence of a
similar surface state band is expected. The calculation is actually in accordance with
this expectation and since Cr possesses one electron less than Mn the surface state
band edge shifts closer to the Fermi energy. Correspondingly also the maximum in
the corrugation amplitude plot shifts towards zero bias-voltage (compare Fig. 9.9).
Thus an even larger corrugation amplitude should be measurable but no experiments
have been undertaken to verify this prediction. Still, there is a great potential in
nanomagnetism for the application of the presented method of imaging the magnetic
ground-state of ultra-thin magnetic films directly by SP-STM. Calculations carried
out for related systems support this conviction (see for example the section on the
STM images of the Cr and Mn monolayers on Fe(001) in the previous chapter). Even
more complicated magnetic configurations like non-collinear spin-structures might be
identified with the proposed approach in the future (see Fig. 10.1).

“Experimentally bias-voltages of +0.5 V are commonly being used for atomic resolution images
in order to achieve measurable corrugation amplitudes at tunneling currents which are handable by
the electronics and do not destroy the tip.
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Figure 9.12: A single minority spin state of the surface band of the Mn-monolayer on
W (110) responsible for the SP-STM image. The wave vector is k; = 0.6 ['S and the energy
eigenvalue €k = FEr — 0.25 eV. In the upper (lower) panel cross-sections through the
positions of the antiferromagnetic (ferromagnetic) Mn atom are displayed. In the lower
left corner the corresponding SP-STM image for Pr = 0.4 is shown along with the surface
structure.



Chapter 10

Summary

In this work a systematic study of the interpretation of scanning tunneling microscopy
(STM) experiments on transition-metal surfaces and thin films on the atomic scale has
been given for the first time. The combination of modern first-principles calculations
applying the full-potential linearized augmented plane wave (FLAPW) method with
the model of STM introduced by Tersoff and Hamann [6] and extended by Chen [11]
has led to a number of surprising results. In contradiction to conventional wisdom
the interpretation of STM images of transition-metal surfaces is far from trivial and
cannot be performed on the basis of simple hard sphere models. The calculations
have provided explanations for the unexpected outcome of several experiments and
contain predictions for future experiments.

For the analysis of the calculated STM images an efficient method to compute
corrugation amplitudes and to correlate features of the band structure with their
contribution to the images has been developed. This method relies on the possibility
to decompose the images into symmetrized plane waves, the two-dimensional star
functions ¢?P(r;). The contribution of every eigenstate of a surface to a certain star
function s is given by an energy ¢ and wave vector k; dependent so-called star coef-
ficient n (e, k;). As a result of the energy, wave vector, and star function dependent
exponential decay of these star coefficients a selection rule for the most important
contributions to a given star function can be derived. Thus only special parts of the
two-dimensional Brillouin zone play a significant role for the different types of images.
The direct comparison of the simple model with real first-principles calculations has
demonstrated the validity of this argumentation.

A first application of this technique has been presented in chapter 5 dealing with
the effect of a bias-voltage dependent corrugation reversal in atomic-resolution STM
images of bce-(110) transition-metal surfaces. One occurrence of anti-corrugation,
i.e. the imaging of hollow sites as protrusions in an STM image, has already been
observed and explained for experiments on Fe(001) and Cr(001) at small bias-
voltages [115,116]. Here, the change from a normal image, i.e. where protrusions cor-
relate with atom sites, to anti-corrugation with a variation of the applied bias-voltage
has been predicted. The effect has been explained as a result of the competition be-
tween a surface state and a surface resonance band of the bee-(110) transition-metal
surfaces. It is of great importance to be aware of anti-corrugation and also of changes
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with the applied bias-voltage if one tries to deduce the adsorption site of deposited
atoms from the STM images.

Another interesting aspect of the characterization of a surface by STM is chemical
sensitivity, i.e. the ability to discriminate different chemical species from each other.
Chemical sensitivity has been an important topic for a long time but still no general
method is available to distinguish chemical species on the basis of an STM image.
An example of the successful combination of first-principles calculations with STM
experiments on a multi-component system, CoSiz(100), has been discussed in chap-
ter 6. Counterintuitively, the STM image displays the Si surface atoms as protrusion
for bias-voltages below +0.5 V and the Co atoms as protrusions above this voltage.
On the basis of the excellent agreement between the calculation and the experiment
a new model for the termination of the CoSiy(100)-surface has been given with an
inhomogeneous occupation of lattice sites.

While the feasibility of imaging even uncharged defects buried in semiconductor
surfaces has been reported [96] conventional wisdom excludes this effect for metal
surfaces due to the small screening length of electrons in metals. Thus only the
symmetry of the surface layer should be observable with STM. This is in accordance
with earlier STM experiments [93] deducing the occurrence of subsurface alloying in-
directly while imaging only the structure of the surface layer. However, in chapter 7
another subsurface alloy has been studied, Ir in Cu(001), and for the first time the
direct imaging of a buried transition-metal structure by STM has been demonstrated.
The effect is related to the fact that STM probes an integration over the local density
of states rather than the charge density. The dependence of such an effect on the
specific electronic structure of the chemical components was deduced from the calcu-
lations. The results are in accordance with the earlier experiments but also reveal a
wide class of transition-metals which should behave similar to Ir. Additionally, the
possibility of imaging even deeper buried alloys has been explored. It turned out that
the formation of quantum well states in these structures leads to oscillations in the
corrugation amplitude. At small bias-voltages the value of the corrugation amplitude
is higher than the resolution limit of STM. Thus the observation of deeply buried
transition-metal structures seems possible. Experimentally such an effect has actu-
ally been demonstrated by imaging the famous (7 x 7)-Si(111) reconstruction beneath
100 A of Pb [102]. However, the two-dimensional periodicity of this reconstruction
is by far larger than that of the buried alloys taken under scrutiny here and it is a
semiconductor-metal hybrid system rather than a pure metal system. To investigate
if the direct imaging of deeply buried transition-metal structures in metal substrates
is still feasible at the periodicities proposed here will be an experimental challenge
in the future. The theoretically investigated system, Ir in Cu(001), appears to be an
appropriate candidate also from the experimental point of view.

Today, there is a growing number of open questions in fundamental research
as well as in technological applications of the magnetic-storage industry concerning
the lateral magnetic order of surfaces and thin films on the nanometer scale. For
example, complicated spin structures like spin-density waves, two-dimensional anti-
ferromagnetism and non-collinear spin structures occur in thin film structures where
ferromagnetic films are placed ontop of antiferromagnetic ones thus applying the
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exchange-bias effect. Such layered structures are relevant for example in read heads
of hard disks. It is thus desirable to possess a tool that combines a resolution on the
nanometer down to the atomic scale with magnetic sensitivity. The spin-polarized

STM (SP-STM) is the appropriate method to achieve this goal [23-28].

As the SP-STM is still far from being routinely applied, we have started the the-
oretical investigation of the potential of STM in the field of atomic-scale magnetism
in chapter 8 by studying the influence of the magnetic configuration of thin films on
(non-spinpolarized) STM images and spectra. Cr and Mn on Fe(001) have been cho-
sen as systems representative of the complex correlation of magnetic and structural
properties. The calculated ST-spectra of the clean Fe(001)-surface and the ¢(2 x 2)
CrFe surface alloy are in good agreement with experiments [66,94]. In the case of Cr
monolayers on Fe(001) it should be possible to discriminate between the two mag-
netic configurations, which are nearly degenerate, on the basis of non-spinpolarized
scanning tunneling spectroscopy (STS). For the Mn monolayers on Fe(001) the char-
acteristic features are very close in energy and a distinction seems impossible. On the
other hand, as the ¢(2 x 2) antiferrimagnetic configuration displays a ¢(2 x 2) pattern
also in a (calculated) non-spinpolarized STM image one should be able to distinguish
it from either the p(1 x 1) ferromagnetic or the p(1 x 1) layered antiferromagnetic con-
figuration. In the case of Mn an even more complicated magnetic configuration with a
p(2 x 2) unit cell has been proposed as the ground-state. However, non-spinpolarized
STM images of this magnetic state will hardly help to distinguish it from the ¢(2 x 2)
antiferrimagnetic configuration which is only by 7 meV per Mn atom unfavorable.
The indistinguishability is due to the partial cancelation of majority and minority
spin contributions leading to a ¢(2 x 2) pattern for the calculated STM images which
is identical to the image of the competing ¢(2 x 2) antiferrimagnetic configuration.

Finally, in chapter 9 the potential of SP-STM to unravel the magnetic config-
uration of ultra-thin films on the atomic-scale has been explored in general, and
the applicability of the approach has been demonstrated by experiments for a Mn-
monolayer on W(110). By generalizing the Tersoff-Hamann model [6] to SP-STM and
using the earlier introduced wave vector and star function dependent decay of star
coefficients we have proved that SP-STM images with atomic resolution of a surface
with chemically equivalent atoms display the two-dimensional magnetic superstruc-
ture rather than the chemical unit cell. The result is not just a small perturbation
of the non-spinpolarized STM image but a complete domination of the image by the
spin-polarized contribution. This aspect has been overlooked by theory up to now.
The approach was applied to a Mn-monolayer on W(110). This system is a repre-
sentative example of a two-dimensional antiferromagnet since nearest-neighbor Mn
atoms couple antiferromagnetically in the ground-state as is deduced from the calcu-
lations. The occurrence of such a 2D antiferromagnetic configuration has first been
predicted by Bliigel et al. in 1988 [21] but unambiguous proof was missing so far. The
Mn atoms of the monolayer are chemically equivalent and thus in a non-spinpolarized
STM experiment an image was observed showing the diamond-shaped chemical unit
cell. In the SP-STM images which were acquired using Fe and Gd-coated W-tips
on the other hand a stripe pattern was found reflecting rows of ferromagnetic atoms
that couple antiferromagnetic to neighboring rows. The experiment is in excellent
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Figure 10.1: Example of the (future) potential of SP-STM to resolve complex non-collinear
magnetic structures. A three-dimensional non-collinear magnetic ground-state occurs for
a Mn-monolayer on a hexagonal lattice [133], shown in (b). (a) displays the expected
STM image with a non-magnetic STM tip where the hexagonal chemical unit cell is seen.
Calculated SP-STM images with a variation of the relative angle between the magnetization
axis of tip and sample are shown in (c) to (e). As a result of the varying relative angle
different patterns are observed. Since other magnetic configurations which are close in
energy possess different magnetic unit cells a discrimination on the basis of the SP-STM
images seems possible. (Calculated SP-STM images by courtesy of D. Wortmann.)

agreement with the prediction of the calculations. It is the first proof of 2D antifer-
romagnetism in monolayer magnetic films on non-magnetic substrates.

With this achievement the predictive power of both density functional theory and
our approach to model STM has been confirmed. Demonstrating the feasibility to
image the magnetic superstructure directly with SP-STM has opened the door to a
comparison of state-of-the-art theoretical and experimental tools in the investigation
of surface magnetism on the ultimate, the atomic-scale. As an example of the future
potential of the introduced approach Fig.10.1 shows the calculated SP-STM images
for a complex three-dimensional non-collinear spin structure of a Mn-monolayer on
a hexagonal lattice [133]. In this case even different SP-STM images are expected
depending on the relative angle between the magnetization axes of tip and sample.

In the future a number of questions concerning STM experiments on transition-
metal surfaces remain to be answered. Although there have been some first-principles
calculations concerning the electronic structure of non-magnetic transition-metal
STM tips supported on a surface [53] to my knowledge there are no first-principles
calculations for magnetically coated tips. To understand the influence of the ma-
terial and the geometry on the electronic and magnetic properties will be of great
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importance. The key quantity to be determined is the spin-polarization of the tun-
neling electrons from such a tip. Also the orbital character of these spin-polarized
electrons should be analyzed since there is still a dispute about the origin of the
spin-polarization of the electrons. For example in the Tersoff-Hamann model s-wave
functions are assumed for the tip states and s-electrons are most commonly held re-
sponsible for the major contribution to the tunneling current. However, the s-bands
are only slightly spin-polarized in transition metals which leads to a contradiction to
the rather large magnetic effects observed in the SP-STM experiments. Up to now
only ferromagnetic materials like Fe and Gd have been used to coat STM tips. To
explore whether antiferromagnets like Mn or Cr may have the same or even favorable
properties concerning the use as SP-STM probes is another topic for future theoret-
ical studies. The implementation of the full Bardeen approach treating the tip and
the sample on an equal footing is closely related to the studies of tip properties. By
calculating the tunneling current from the matrix elements of all possible transitions
from tip to sample states the influence of particular tip states can be evaluated. How-
ever, a better quantitative description of the tunneling current on this basis requires
additional knowledge of the geometric structure of the tip which needs to be provided
by the experiments. Otherwise, the insight even with such an elaborate approach is
quite limited due to the enormous number of possible tip configurations and their
impact on the resulting tunneling current.

In conclusion, it has been shown that the influence of the electronic structure
of transition-metal samples on STM experiments is much stronger than has been
suspected by conventional wisdom. A number of surprising observations in STM
experiments have been explained on the basis of the first-principles calculations per-
formed within this work. Further, some predictions of the calculations remain to be
verified experimentally in the future. All of our studies lead to the conclusion that
a hard sphere model is by no means appropriate to understand STM experiments
with atomic resolution on transition-metal surfaces. The developed approach to ana-
lyze and predict STM experiments combines the Tersoff-Hamann model of STM with
the first-principles FLEUR code and provides fast insight into the correlation of elec-
tronic structure features and characteristic STM images. Although improvements
like including the STM tip to the calculations are desirable in the future a great
number of problems may still be tackled with the present method. By generaliz-
ing the Tersof-Hamann model to SP-STM we have proved the feasibility to image
magnetic superstructures on the atomic scale. This extends the use of STM from
the exploration of the topological, chemical, and ferromagnetic structure of surfaces
to the inherently much more difficult investigation of antiferromagnetic surfaces and
surfaces with non-collinear spin structures with ultimate, atomic resolution.
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Appendix A

Extension of the Tersoff-Hamann

Model to SP-STM

In this section we present the extension of the Tersoff-Hamann model to spin-polarized
STM (SP-STM) for the case of a ferromagnetic tip with a magnetization axis pointing
along an arbitrary direction and a sample with an arbitrary, i.e. possibly non-collinear,
spin-structure. The derivation given in the following leads to the general equation
(Eq. (4.48)) for the spin-polarized tunneling current that has been mentioned in
section 4.5 without proof.

As has been emphasized in section 4.5 the quantization axes of tip and sample do
not in general coincide, i.e. are non-collinear. Thus we must transform the spin states
to a global frame where the assumption of spin conservation can then be applied in
a trivial manner, i.e. spin-up (down) states of the global frame can only tunnel into
spin-up (down) states of the global frame. Without loss of generality we choose the
local frame of the sample as the global frame of reference. Thus we will transform
the states |v) of the tip which are diagonal in the spin-space with respect to the local
quantization axis and are expressed as in section 4.5 by:

W) = o) (g) and w5 = e (1) (A1)

The transformation from the local frame of the tip to the global frame is performed
by applying a rotation in spin-space. Assuming that the quantization axis of the tip
is defined by the polar angles (6, ¢) with respect to the global frame, the rotation
matrix is given by:

10.0)= (Gamimofey cotreoeiofs) ) (82
States WT.(r) and W] (r) of the tip are then given by:
W) = 00,0005 = o5y (e o) (A3)
and
VL) = 00,81, 06) = o) (o) (A)
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in the global frame. In the case of an arbitrary spin-structure the states |u) of
the sample \Ili(r) possess non-vanishing spin-up and spin-down components in the
vacuum:

v = (i) =

The charge density n,(r) and the vector magnetization density m,(r) of each state
|} can be calculated by:

nu(r) = W) WE(r) = [0 + [ (A.6)

and
m,(r) = ¥i(r)e ¥ (r) (A.7)
(Guirtbs + iy s iy — viny) s [ = 1) (A8)
where the three components of & are defined through the three Pauli spin matrices:
g = (0'170'2,0'3). (Ag)

In order to calculate the tunneling current within the Bardeen approach we use
Eq. (4.11) for the transition between a state \Ili of the sample and a state \Ilz(g)(r)
of the tip. Recall that the potential Uz of the tip enters into Eq. (4.11) which must
not be confused with the rotation matrix in spin-space U(#,¢). Let us assume a
spin-up state of the tip first. The corresponding (spin-polarized) matrix element

M, +(Rr,0.$) can be calculated from:

M, +(Rp,0,0) = <q;Z“T<9>|UT|q;§> (A.10)
T
- /Q\IIUT(Q)TUT\IlﬁdV (A.11)
T

= / (/2 cos (0/2), ™"/ ? sin (9/2))@/}3T*UT <¢§T> dv (A.12)
Qr

wl
- / dVyLeUr [ cos (0/2)5: + e 7P sin (0/2)45]  (A.13)
Qr

= €%/2cos (9/2)/ dV@/Jl,TT*UTl/JfT—I-

Qr
e=i/2 sin (6/2) / AV LUy, (A.14)
Qr
= ¢ cos (0/2) Mg (Ry) + €2 sin (0/2) M (Rer). (AL15)

The (spin-polarized) matrix element M, , (R, 8, ¢) for a spin-down state of the tip
can be calculated analogously. In the last line we have reduced the(spin-polarized)
matrix element to a weighted sum of two matrix elements calculated from scalar
wave functions which would totally determine the tunneling problem for the case
of a collinear alignment of the magnetization axes of tip and sample. The weights
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express the rotation in spin-space while the matrix elements M4 4+ and M, 4+ can
be computed analogously to the non-spinpolarized case. We can thus apply all the
approximations introduced in chapter 4 in order to compute them. In the Tersoff-
Hamann model which we use here the matrix elements are given by the value of the
sample state at the position R, of the tip. We can summarize the result to:

TCyh? . .
M,.4(..) = _%[elqbﬂ CoS (0/2)¢§T(RT) + e gin (9/2)@/}5¢(RT)] (A.16)
2rC h? : . y
M () = —/ﬂi:n[e_“b/2 cos (9/2)¢§¢(RT) — " %4in (9/2)¢ET(RT)]. (A.17)

We assume that the spin-up and spin-down s-wave states can be characterized by the
same decay constant k = k4 = k| and the same coeflicient ' = C} = ;. Further, we
assume that the density of states (DOS) of the spin-up n;(c) and spin-down n%(e) tip
states is constant. For a magnetic tip the DOS of spin-up and spin-down states are
non-equal. Inserting the matrix elements into the equation for the tunneling current,

Eq. (4.14), leads to:

I(Ry,0,¢) = 22—6 degvr(e) Y 6(e, —€) x
P Mt () 2 Moy () (A.13)

The last term in brackets can be evaluated by inserting the matrix elements (A.16)

and (A.17):

[...] = [cos2 ()|¢5T|2 + sin? ()|@/}5¢|2 + cos (..) sin (..)(e_msgbfﬁbi + ew;bfﬁ/)ff)] +
[sin2 ()|1/)5T|2 + cos? ()|77/)§¢|2 — cos(..)sin (..)(e_w'g/)fﬁbi + ei(‘sL/)fT??/)fI)],

ny
1
nr

where we have suppressed the explicit dependence of the wave functions on the po-
sition of the tip R, for brevity. Using the relation:

nTni + my cos 8 miz = 2[(:os2 (9/2)(n;|@/}§T|2 + n%wfﬂ?) +
sin? (0/2)(nh ]3| + i) (A.19)

[...] can be simplified to:

[...] = % nTnﬁ + my cos miz + mygsin 6 (ei“S;/JfTL/)fI + €_i¢¢§¥¢§¢)} (A.20)
= [ + mrcos0mS -+ mrsind (cos (6505 + V05 +

i sin g (6505 — w3 (A.21)

= % nTnﬁ + mr(cos@mi  +sinf (cos pm , + sin ¢m§y))} (A.22)

- % nrnf(Ry) + mym$(Ry)] (A.23)
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where we have made use of the definition of the charge and the vector magnetization
density of a single sample state. Note, that the magnetization vector of the tip
is defined in the global frame by the polar angles (8, ¢). Inserting this result into
Eq. (A.18) leads to the general result of the tunneling current for an arbitrary spin-
structure of the sample using a ferromagnetic tip:
31273
I(Re0.6) = T

K

/ degvr(e) [nrns(Rer, ) + mrms(Ry, )], (A.24)

m2
where we have introduced the local density of states ng(Ry,¢):

25 — U (RS (R,), (A.25)

and the local spin density of states mg(Ry, ¢€):

25 — ) USN(R,) o U5 (R,). (A.26)
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