
Treatment of
Electronic Correlation in Magnetic Materials

within the Fluctuation-Exchange Method

von

Andreas Gierlich

Diplomarbeit in Physik

vorgelegt der

Fakultät für Mathematik, Informatik und Naturwissenschaften
der Rheinisch-Westfälischen Technischen Hochschule Aachen

im
März 2007

angefertigt am

Institut für Festkörperforschung (IFF)
Forschungszentrum Jülich
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1 Introduction

The Motivation Magnetic materials like the late 3d transition metals iron, cobalt
and nickel are the key ingredients in the design of a vast number of modern appli-
cations today. Magnetic separators and magnetic holders have become irreplaceable
tools in numerous industrial production processes, magnetic sensors are widely used
in many fields of research, in medicine magnetic materials are used e.g. for magnetic
coupling in blood pumps, loudspeakers and small electric motors are part of our ev-
ery day life. Permanent magnets used in modern applications are usually compounds
such as AlNiCo or NyFeB with complex crystal and electronic structure. Hence, it
seems a little bit odd, that we still lack a complete understanding and a thorough
quantitative description of even the simplest magnetic elements namely the 3d metals
Fe, Co and Ni.

The discovery of the giant magneto resistance (GMT) by Grünberg [BGSZ89] and
simultaneously by Fert [BBF+88] in 1988 renewed the interest to study magnetic
materials and to investigate the mechanisms causing magnetic properties on a nano-
scale as well. These studies were fueled over the last two decades by new observations
like the first measurement of the tunneling magneto resistance (TMR) in 1995 by
Moodera, Kinder et al [MKWM95] almost 20 years after its theoretical prediction by
Julliere [Jul75]. However, the magnetic materials and the mechanisms causing mag-
netic properties are often described only qualitatively in model calculations relying
strongly on empirical parameters for the description of realistic materials. To apply
the nano-scale magnetism sufficiently in new areas like spintronics it is vital to also
improve on the quantitative description of these materials. It is thus most desirable
to develop ab initio methods describing such materials. An ab initio approach will
not only yield a parameter-free description of the magnetic materials Fe, Co and Ni
to be studied here. The predictive power of an ab initio method in the analysis of
new materials exceeds by far the possibilities accessible by model calculations with
empirical input. A deeper understanding of the underlying physics of these magnetic
properties in general and of the mechanisms determining the electronic structure of
these materials in particular can be obtained best from an ab initio approach.

In the last 40 years density-functional theory (DFT) has become the by far most
successful ab initio approach to describe the electronic structure of solids. Proper-
ties of weakly correlated solids are described quantitatively well by DFT in its two
most common forms the local-density (LDA) and the generalized gradient (GGA)
approximation. Fe, Co and Ni, however, are example materials featuring interme-
diately correlated electrons due to their partially filled d bands. These bands are



2 Introduction

rather localized and narrow such that the electrons in these bands show signs of
more atomic-like behavior as opposed to an itinerant character. Since LDA and
GGA incorporate electronic correlation only rudimentarily, they fail to describe ade-
quately the electronic structure of more correlated materials. For example, in Fe, Co
and Ni the spin splitting is overestimated or the 6 eV satellite in nickel can not be
obtained from calculations in LDA or GGA. Therefore, theoretical methods beyond
DFT need to be deployed to properly describe the electronic structure of more cor-
related materials. In model calculations, the dynamical mean-field theory (DMFT)
has already proved very successful in describing correlated electron systems. This
gave rise to the idea to merge DFMT and DFT to combine the advantages from
both methods: The predictive power of the ab initio approaches in DFT and the
descriptive power of DMFT capturing true correlation effects.

The idea to combine LDA and DMFT in one LDA+DMFT method is less than a
decade old and the method is in a stage of active development. It has already been
applied successfully to various problems including electronic-structure calculations
for γ-manganese [BDC+04] and δ-Pu [PKL+06]. Most available implementations
apply some drastic simplifications to the LDA+DFMT formalism, e.g. many codes
are based on the atomic-sphere approximation in the LDA part like the approach by
Lichtenstein et al [LK98]. Very recently, Grechnev et al reported on successfully com-
bining DMFT with a full-potential LMTO-based LDA [GDMK+06]. Nevertheless,
the LDA+DMFT method is at present the most universal technique for calculating
the electronic structure of correlated solids.

The Method Dynamical mean-field theory (DMFT) is one of the most successful
schemes developed over the past 18 years to treat electronic correlation. It evolved
in the context of lattice models like the Hubbard model. An illustration of such a
lattice model in two dimensions is given on the left site of figure 1.1. The electrons
are assumed to be situated in the orbitals of the crystal atoms at each lattice site.
They can move from an orbital on one site to an orbital at another site. For two elec-
trons meeting on the same site the Coulomb repulsion between this pair of electrons,
depicted by a red wiggle in figure 1.1, yields an additional contribution to the total
energy of the electronic system. In DMFT the lattice model is mapped onto an effec-
tive impurity problem consisting of a single correlated site in a self-consistent bath of
non-interacting electrons. This mapping becomes exact in the limit of infinite lattice
coordination. It is shown schematically in figure 1.1 how the two-dimensional lattice
is mapped onto a single atom connected to a self-consistent bath. In the effective
impurity model the movement of the electrons inside the bath is decoupled from the
interaction between electrons taking place only at the impurity site. Consequently,
spatial quantum fluctuations are frozen in the effective model. However, all local
quantum fluctuations are completely retained since the single site can still exchange
electrons with the surrounding self-consistent bath. Thus, all local correlation effects
are fully accounted for within the framework of DMFT.

Although originally designed for model systems, DMFT can be merged with DFT
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to study realistic materials in the ab initio context of LDA or GGA and include elec-
tron correlation into this context through DMFT. In this work a GGA is combined
with DMFT and a new GGA+DMFT scheme is introduced. This is achieved by de-
riving a Hubbard-type lattice model from a tight-binding ansatz for the Kohn-Sham
wave functions obtained from DFT calculation using the GGA. The model consists
of two parts: a single-electron term describes the movement of the electrons between
atomic orbitals and different lattice sites. This term can be completely determined
from calculations in GGA. The second term of the Hubbard-type lattice model de-
scribes the interaction due to the Coulomb repulsion between two electrons meeting
at the same lattice site. The resulting lattice model containing both the DFT de-
scription of a material and explicit interaction effects between the electrons can then
be solved using DMFT. Within DMFT the model is first mapped onto an impurity
model thus achieving the decoupling of the single-electron part and the interacting
part of the model. The crucial point remaining is to solve the impurity problem self-
consistently in other words a scheme to treat the local interaction processes has to be
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Figure 1.1: Mapping of a two-dimensional lattice model onto a
single-site impurity in a self-consistent bath.
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found. The DMFT “solver” used in this thesis is the so-called fluctuation-exchange
(FLEX) approach.

To find a description of the local interaction processes within FLEX, the many-
electron problem must be restated first in terms of Green functions. The Green
functions can be used in turn to derive a description of the interacting lattice electrons
in terms of Feynman diagrams within many-body perturbation theory. The FLEX
method is used to simplify this description of the lattice electrons and to derive
expressions that can be solved within DMFT.

The FLEX method is an approximation scheme to select certain subclasses from
all the diagrams describing the interacting lattice electrons. The diagrams in each
subclass describe a certain many-body interaction process, namely the multiple scat-
tering between two electrons, between an electron and a hole or between two holes.
In addition to that, another subclass describing the screening of the Coulomb repul-
sion in a solid due to pair interaction is also taken into account. The diagrams of
each subclass can be summed up to infinite order using geometric series yielding an
analytic expression for each subclass of diagrams. If the FLEX method is deployed
within the framework of DMFT, these analytic expressions are further simplified
due to the mapping of the lattice electrons onto an impurity in a self-consistent
bath, since interaction processes are restricted to the impurity site in the effective
model. The mapping procedure therefore imposes a single-site approximation (SSA)
on the diagrams describing the electronic interaction in the lattice system. The
analytic expressions obtained from the summation over the diagrams of the lattice
electrons can be solved in the SSA. The results are deployed in turn to derive a
description of the self-consistent bath which is used then to derive a new solution
for the lattice model. This scheme is iterated, until convergence is reached. Thus,
the GGA+DMFT approach finally yields a description of realistic intermediately
correlated electron systems.

The DMFT solver used in this work is based on a formulation of the FLEX ap-
proximation scheme as introduced by Babanov et al [BNSF71, BNSF73a, BNSF73b],
which was extended for the present work to describe electronic systems with collinear
spin structure. Other solvers derived from the FLEX approach as introduced by
Bickers and Scalapino [BS89] have been developed by Lichtenstein et al presented in
[KL99], [LK98] and by Lichtenstein, Katsnelson et al [LKK01]. In principle, DMFT
solvers based e.g. on quantum Monte Carlo or exact diagonalization which should
yield numerically exact solutions of the Hubbard-type lattice could also be used here.
However, the exact diagonalization technique is limited by the exponential growth
of the computations with the system size and the quantum Monte Carlo method is
restricted to rather high temperatures by the minus-sign problem. Moreover, the
diagrammatic approach using FLEX yields the advantage that the selected diagrams
depict distinct physical processes. Describing the lattice electron systems in terms of
these diagrams gives direct access to analyze the influence of the various interaction
processes and to study their influence on the electronic correlation. This connection
to the underlying physics of the interaction processes can be neither obtained from
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quantum Monte Carlo nor from exact diagonalization techniques.

Alternative approaches to the GGA+DMFT method to derive an ab initio de-
scription of correlated electron systems have been proposed e.g. by Aryasetiawan
[Ary92] describing the electronic structure of Ni with a combination of LDA and
GW . Further progress has been made in this area recently, for example Biermann
et al reported on the successful combination of GW with DMFT [BAG03] further
discussed e.g. by Aryasetiawan [AIG+04]. However, the GW method also being a
technique within diagrammatic perturbation theory fails to reproduce the 6eV Ni
satellite because it only considers a subset of the diagrams covered by FLEX. It
was shown by Springer, Aryasetiawan and Karlsson [SAK98] that inclusion of the
T -matrix into this GW approach yields the satellite structure in the spectrum of Ni,
but the T -matrix could not be included on an ab initio level. A recent presentation
of first-principles GW calculations including the T -Matrix by Zhukov et al [ZCE04]
document further progress in this area. As opposed to that, the T -matrix is contained
in the FLEX method right from the start.

The Structure Finally I would like to give a brief overview on the structure of
the thesis. Chapters 2 through 6 give an overview of the theoretical frameworks
contained in GGA+DMFT and introduce the formalism of this method. Chapter 2
gives a brief introduction to DFT presenting the Kohn-Sham equations for collinear
electronic systems, the GGA and the LSDA, the local spin-density approximation.
Chapter 3 introduces the full-potential linearized augmented plane-wave (FLAPW)
basis set used to solve the Kohn-Sham equations as well as the tight-binding (TB)
FLAPW basis. Using the TB-FLAPW basis a Hubbard-type lattice model is de-
rived. In chapter 4 Green-function approaches in electronic-structure calculations
are discussed and a Green function for the lattice model within DFT is derived.
Chapter 5 presents a Green-function approach for the Hubbard-type lattice model
derived in chapter (3). Furthermore, the Feynman diagrams to describe the interact-
ing electron problem are introduced and the FLEX approximation to select certain
subclasses of diagrams is finally presented. The last chapter 6 of this theoretical
introduction motivates the further treatment of the FLEX diagrams within DMFT
and presents the iteration scheme to derive a self-consistent solution for interacting
lattice electron systems within the GGA+DMFT approach. In the remaining chap-
ters 7 through 10 I present my results of calculations carried out within the newly
derived GGA+DMFT approach. In chapter 7 the calculations within DFT to ob-
tain input data for the GGA+DMFT scheme are discussed focussing specifically on
the choice of sensible input parameters for the DFT code FLEUR. Furthermore, the
approximations necessary to derive the TB-FLAPW basis functions are discussed
quantitatively. In chapter 8 benchmark calculations for Fe, Co and Ni within the
GGA+DMFT are presented and compared with experimental data as well as DFT
calculations. In the last two chapters some further applications of the GGA+DMFT
method are presented. The application within the theory of Auger spectra is dis-
cussed and the Auger spectra of Fe, Co and Ni are calculated. An extension of
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the GGA+DMFT scheme for the treatment of commensurate antiferromagnitism is
presented in chapter 10. With the new scheme a case study for chrome with a com-
mensurate antiferromagnetic structure was carried out and the results are presented
in this chapter as well. I would like to summarize my results in the last chapter 11
and give a perspective of possible directions to be pursued in future work. It can be
concluded that the GGA+DMFT method exhibits a high potential to gain further
insight and a better understanding of the exciting field of many-body theory.



2 Density-Functional Theory

In condensed-matter physics one has to face the challenge to describe materials con-
sisting of a vast number of particles (roughly 1023 m−3 in a solid). However, it is not
only the sheer number of particles but rather the interplay between these particles,
which makes it so difficult to find a description both accurate and feasible for these
materials. Density-functional theory (DFT) provides means to achieve both feasi-
bility and yet good agreement with experimental results in the theoretical study of
many properties of such materials.

In this chapter I give a short introduction to DFT first stating the famous theo-
rems of Hohenberg and Kohn, which represent the theoretical ground DFT was built
upon. I will then derive the Kohn-Sham equation for spin-polarized systems. This
equation is the mean-field DFT description of the many-body problem presented
above, allowing for an approximate characterization of such systems with huge num-
bers of particles in terms of just one single electron. This will be the starting point
for studying the magnetic materials in later chapters.

2.1 The Many-Body Problem

A non-relativistic description of a solid containing Ne electrons and NA nuclei is given
by the Schrödinger equation

Ĥtot Ψ =
[

− ~
2

2m

Ne
∑

i=1

∇2
i − ~

2

2

NA
∑

A=1

1

MA

∇2
A +

e2

4πε0

Ne
∑

i<j

1

|ri − rj|

+
e2

4πε0

NA
∑

A<B

ZAZB

|RA − RB|
− e2

4πε0

Ne
∑

i=1

NA
∑

A=1

ZA

|RA − ri|
]

Ψ

= Etot Ψ(r1, ..., rNe
;R1, ...,RNA

)

(2.1)

with eigenfunctions Ψ and a total energy Etot. The Schrödinger equation (2.1) cap-
tures both the kinetic energy of the electrons and nuclei within the first two terms
and interactions between electrons with other electrons, nuclei with nuclei and finally
between electrons and nuclei within the last three terms. The {ZA} and {MA} are
the atomic numbers and the masses of the nuclei, the {RA} give the nuclei’s posi-
tions, m denotes the mass of the electron while e is the elementary charge and the
{ri} denote the positions of the electrons.
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Throughout this thesis the SI units are used, thus ~ denotes the Planck constant
and ε0 is the dielectric constant of the vacuum. Furthermore, it should be mentioned
that the description of non-relativistic effects was not included in the derivation of
the equations in this introductory part to maintain a clear and transparent notation.
In the calculations these effects were always accounted for. This is necessary since
the FLAPW method I used here is an all-electron method and for the description of
core electrons relativistic effects yield a contribution which is non-negligible.

Although equation (2.1) gives in principle an exact non-relativistic description of
the particles and their interactions, it is of little use in practice. The many-particle
eigenfunctions Ψ depend on the positions of all Ne × NA particles and in addition
must be antisymmetrized to fulfill the Pauli principle. Due to the rapid increase of
information contained in the eigenfunctions Ψ with respect to the number of particles,
the amount of data get too large to be processed on a reasonable time scale for solid
materials with a realistic number of particles.

In need to simplify equation (2.1) yet retain the important physics we shall first
apply the Born-Oppenheimer approximation. Since the mass of the electron differs
from the mass of a nucleus roughly by three to four orders of magnitude electrons
respond almost instantaneously to changes in the positions of the atoms. Hence, the
electrons approximately are in a stationary field of the nuclei at all times. Therefore,
the nuclei may be considered to be classical particles and their positions {RA} can
be taken as parameters that appear only in the potential of the electronic part of
the Schrödinger equation. As a consequence of this approximation the ionic and
electronic motion can be separated, electrons and nuclei can be considered as two
independent systems and their behavior can be studied independently. Thus, for the
rest of this thesis, the many-electron Schrödinger equation given by

Ĥ Ψe =
[

− ~
2

2m

Ne
∑

i=1

∇2
i +

e2

4πε0

Ne
∑

i<j

1

|ri − rj|
+

Ne
∑

i=1

vext(ri)
]

Ψe (2.2)

= EΨe(r1, ..., rNe
)

is the system to be discussed, where Ψe is the electronic wave functions and E is the
total energy of the electronic system. The vext is the potential experienced by an
electron in the field of all nuclei at positions {RA} with atomic numbers {ZA}

vext(r) = − e2

4πε0

NA
∑

A=1

ZA

|RA − r| . (2.3)

Note that due to the Born-Oppenheimer approximation the {RA} are no longer
variables but enter as parameters in vext(r). This reduced description however still
is too complex to be solved analytically or numerically for systems of relevant size.

In the 1920s Thomas and Fermi first came up with an alternative yet heuristic de-
scription of many-electron systems in terms of the electron density distribution n(r).
Formally, the electron density distribution (henceforth also referred to as electron



2.2 The Theorems of Hohenberg and Kohn 9

density or simply density) can be derived from the many-electron wave functions Ψe

by

n(r) = Ne

∫

Ψe(r, r2, ..., rNe
) × Ψ∗

e(r, r2, ..., rNe
) d3r2...d

3rNe
. (2.4)

It is assumed here that the many-electron wave functions are normalized to unity.
Since electrons are indistinguishable it would make no difference whichever Ne − 1
electron coordinates one chooses to integrate out.

The description of the many-electron problem in terms of the electron density yields
the big advantage that one has to deal with Ne − 1 less degrees of freedom compared
to approaches dealing with the full many-electron wave function. But it took almost
another 40 years until in 1964 Hohenberg and Kohn found a theoretical proof for
their famous theorems [HK64] stating that the ground-state particle density n0(r)
is actually sufficient to uniquely determine the ground state properties of a many-
electron system. That was the birth of density-functional theory.

2.2 The Theorems of Hohenberg and Kohn

According to the first theorem of Hohenberg and Kohn [HK64] the external potential
vext(ri) in (2.2) is completely determined by the ground-state electron density n0(r)
(up to a trivial constant C):

Theorem 1. (existence theorem)
Let n0(r) be the single-particle density of a non-degenerate ground state
of an interacting electron system in an external potential vext(r) and let
n′

0(r) correspond in the same manner to v′ext(r). Then n0(r) = n′
0(r)

implies vext(r) = v′ext(r) + C, where C is a constant.

Hence, if the ground-state density is known, the external potential vext(ri) is implicitly
determined. On the other hand the first and second term in the many-electron Hamil-
tonian depend only on the electrons’ movements and interactions. Consequently, the
knowledge of the ground-state density n0(r) fixes the complete many-electron Hamil-
tonian, Ĥ = Ĥ[n0(r)].

If the ground-state electron density n0(r) can be found without the help of the
many-electron wave function Ψe in principle it is no longer necessary to find the
many-electron wave function, because all ground-state characteristics of the system
and in particular the total energy of the ground state can be calculated as funtionals
of the ground-state density. According to the second theorem of Hohenberg and
Kohn this functional of the total energy can be used to determine the ground-state
density without the knowledge of Ψe.

Theorem 2. (variational principle)
The total energy functional E[n] of the Ne-electron system is minimized by
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the ground-state electron density, if the trial densities n(r) are restricted
by the conditions n(r) ≥ 0 and

∫

n(r)d3r = Ne.

Thus, the determination of the ground-state electron density and the total energy
becomes extremely simple compared to the problem of solving the 3Ne-dimensional
Schrödinger equation: the variation of the total-energy functional E[n] with respect
to the electron density yields the ground-state electron density and consequently all
other ground-state properties regardless of the number of particles involved. The only
constraint is that the total number Ne of particles has to be kept constant. Hence, the
search for a solution to the original problem (2.2) is greatly simplified. In practice,
however, an explicit form for the functional of the total energy has yet to be found.
Before deriving such an explicit form for the total-energy functional the electron’s
spin as additional degree of freedom of the electrons shall be included now. This
spin-polarized formulation of the formalism will be used then throughout the whole
thesis. It should be mentioned that inclusion of the spin is already an extension to
the original formulation of the density-functional theory as introduced by Hohenberg
and Kohn and Kohn and Sham [KS65]. This extension was first proposed by von
Barth and Hedin [vBH72].

The spin of the electron has to be included to study the magnetization density
of materials. In principle the magnetization density is a functional of the ground-
state electron density like the total energy but like the functional of the total energy
it is generally unknown. It could be quite difficult if not impossible to find this
functional for the magnetization. All systems to be examined in this thesis have
collinear structure that means the spin is oriented along one particular direction. The
Hamiltonian of such systems is diagonal in the spin components of the wave function
and can be solved independently for each spin component. Hence, the total electron
density n(r) also becomes diagonal in spin space and can be split in a contribution
of a spin-up density n↑(r) and a spin-down density n↓(r). The functional of the total
energy consequently becomes a functional of the spin-up and spin-down densities

n(r) = n↑(r) + n↓(r), E = E[n↑, n↓] . (2.5)

Furthermore, the magnetization density m(r) can be calculated by simply evaluating
the difference of the two spin densities

m(r) = n↑(r) − n↓(r) . (2.6)

Thus, including the spin in the description of the system as an additional degree
of freedom allows to examine the system’s magnetization without knowledge of the
respective functional. Therefore, the spin-polarized formulation of the DFT equations
shall be used.
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2.3 The Kohn-Sham Equation

In this section an explicit expression for the functional of the total energy in the form
E[n↑, n↓] is derived. If |Ψe〉 is an eigenstate of the many-electron Hamiltonian Ĥ in
equation (2.2), the total-energy functional can be written as

E[n↑, n↓] = T [n↑, n↓] + Vee[n↑, n↓] +

∫

d3r n(r) vext(r) . (2.7)

The first term on the right-hand site is the functional of the kinetic energy T , defined
as

T [n↑, n↓] = − ~
2

2m

〈

Ψe

∣

∣

Ne
∑

i

∇2
i

∣

∣Ψe

〉

. (2.8)

The second term contains the electron-electron interaction and can be written as

Vee[n↑, n↓] = VH[n↑, n↓] + Wee[n↑, n↓] . (2.9)

The first functional VH[n↑, n↓] describes the classical Coulomb repulsion, which is
identical with the term for direct electron-electron interaction in Hartree approxima-
tion

VH[n↑, n↓] =
1

2

e2

4πε0

∫

n(r)n(r′)

|r − r′| d3r d3r′ . (2.10)

The functional Wee[n↑, n↓] captures all remaining contributions to the electron inter-
action, which are of quantum mechanical origin.

Writing down expression (2.7) for the energy functional might have brought some
clarity, but the functionals T [n↑, n↓] and Wee[n↑, n↓] are only defined implicitly by
means of the existence theorem. Explicit expressions for these functionals have yet
to be found to calculate E[n↑, n↓] using (2.7).

Kohn and Sham suggested the existence of a non-interacting reference system
[KS65] with the Hamiltonian

Ĥs
σ =

Ne
∑

i=1

[

− ~
2

2m
∇2

i + vs
σ(ri)

]

(2.11)

in which there are no electron-electron repulsion terms, and for which the ground-
state density is exactly identical to that of the real system. For this system there
will be an exact determinantal ground-state wave function

Ψs
σ =

1√
Ne!

det[ψs
1σψ

s
2σ...ψ

s
Neσ] (2.12)

where the ψs
iσ are the Ne lowest eigenfunctions of the one-electron Hamiltonian ĥs

σ

ĥs
σ ψ

s
iσ =

[

− ~
2

2m
∇2

i + vs
σ(ri)

]

ψs
iσ = εiσ ψ

s
iσ . (2.13)
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The corresponding single-particle density is then given by

nσ(r) =
Ne
∑

i=1

|ψs
iσ(r)|2 (2.14)

and the kinetic energy functional is

T s[n↑, n↓] = − ~
2

2m

∑

σ∈{↑,↓}

∑

i

〈

ψs
iσ

∣

∣∇2
i

∣

∣ψs
iσ

〉

. (2.15)

The kinetic energy functional T s[n↑, n↓] could be calculated straightforwardly once
the eigenfunctions ψs

iσ are known. Although it is in principle not difficult to solve for
the eigenfunctions of a one-electron problem such as (2.13), so far we do not know the
explicit form of the potential vs

σ(ri). Furthermore, upon comparing the expression
(2.15) for T s[n↑, n↓] with (2.8) defining the actual kinetic energy functional T [n↑, n↓]
to be calculated, one can see that they are not identical.

Kohn and Sham solved the latter problem in such a way that they used a separation
other than (2.7) with T [n↑, n↓] replaced by T s[n↑, n↓]. Then, they introduced the so-
called exchange-correlation energy functional Exc[n↑, n↓] by

Exc[n↑, n↓] = T [n↑, n↓] − T s[n↑, n↓] + Wee[n↑, n↓] . (2.16)

The functional Exc[n↑, n↓] thus accounts for the difference in the functionals for the
kinetic energy and also includes the still unknown functional Wee. This can be seen
directly, if the total energy functional (2.7) is expressed in terms of T s[n↑, n↓] and
Exc[n↑, n↓]

E[n↑, n↓] = T s[n↑, n↓] + VH[n↑, n↓] +

∫

d3r n(r) vext(r) + Exc[n↑, n↓] . (2.17)

This form of the total-energy functional is now used to construct the potential of the
reference system by applying the variational principle

δE[n↑, n↓]

δnσ(r)
=

δ

δnσ(r)

[

µNe − µ

∫

n(r)d3r

]

⇔ vext(r) +
δT s[n↑, n↓]

δnσ(r)
+

e2

4πε0

∫

n(r′)

|r− r′|d
3r′ +

δExc[n↑, n↓]

δnσ(r)
= −µ .

(2.18)

For the variation, the Lagrange parameter µ was introduced to take into account
the constraint from the second theorem of Hohenberg and Kohn that the number of
particles in the system is to be conserved. Now, we compare expression (2.18) with
the following equation for the system of non-interacting electrons moving in some
effective potential named veff

σ (r)

δE[n↑, n↓]

δnσ(r)
= veff

σ (r) +
δT s[n↑, n↓]

δnσ(r)
. (2.19)
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The two mathematical problems are obviously identical provided that

veff
σ (r) = vext(r) +

e2

4πε0

∫

n(r′)

|r− r′|d
3r′ +

δExc[n↑, n↓]

δnσ(r)
. (2.20)

Thus, the electron density satisfying (2.18) can be obtained by solving a one-electron
Schrödinger-type equation corresponding to non-interacting electrons moving in the
potential veff

σ (r).

ĥeff
σ ϕiσ =

[

− ~
2

2m
∇i + veff

σ (ri)

]

ϕiσ = εiσ ϕiσ . (2.21)

such that

nσ(r) =
occ
∑

i

|ϕiσ(r)|2 (2.22)

where the sum runs over the lowest occupied electron states of the given spin direc-
tion. Formula (2.21) is the famous Kohn-Sham equation, the functions ϕiσ and the
parameters εiσ are called the Kohn-Sham eigenfunctions and Kohn-Sham eigenvalues
respectively.

The many-electron problem (2.2) was thus boiled down to the solution of the Kohn-
Sham equation. It has to be kept in mind though that equation (2.21) itself does not
give a description of the physical system. It was derived from the variational princi-
ple for the reference system consisting of non-interacting particles which is a purely
artificial construction. Despite the resemblance to a Schrödinger equation the func-
tions ϕiσ thus are artificial quantities and have nothing to do with the wavefunction
of the physical system. This holds true as well for the Kohn-Sham eigenvalues εiσ.
They were introduced as Lagrange parameters to solve the eigenvalue problem and
have no physical meaning a priori. Nevertheless, in practice the εiσ are often taken
as excitation energies because comparison with experimental data showed that they
are in good agreement with the energies found in experiments for many materials.
But there is no theoretical link that the εiσ are the excitation energies, they are in-
terpreted as such. The eigenfunctions ϕiσ are interpreted as physical wave functions
as well without any theoretical justification. The only quantity directly related to
the physical system (2.2) is the ground-state spin-density nσ(r), which is constructed
according to (2.22). This is due to the fact that the effective potential veff

σ was cho-
sen precisely in such a way that the reference system yields the same ground-state
spin-densities as the physical system.

Since the effective potential itself depends on the density, equations (2.21) and
(2.22) have to be solved self consistently, which can be achieved by iteration. Usually
starting densities for spin up and spin down are constructed using atomic-like orbitals,
the effective potential is constructed and then (2.21) is solved with this potential.
The resulting wave functions are then used to construct new densities and the whole
procedure is repeated until the new densities equal the previous ones. The only
remaining question now is how to construct the exchange-correlation functional.
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2.4 Local-Spin-Density Approximation and

Generalized Gradient Approximation

The effective potential veff
σ was defined as

veff
σ (r) = vext(r) +

e2

4πε0

∫

n(r′)

|r − r′|d
3r′ +

δExc[n↑, n↓]

δnσ(r)
. (see 2.20)

The so-called exchange-correlation potential is defined from this expression as

vxc
σ (r) =

δExc[n↑, n↓]

δnσ(r)
(2.23)

All terms in the definition of veff
σ are known except for the exchange-correlation po-

tential. It originates from the difference in the kinetic energy of the physical and the
reference system and additionally accounts for all electron correlation effects beyond
the Hartree term. The possible correlation effects are numerous, often depending on
the specifics of the physical system. There is no procedure yet to account for all of
them explicitly. However, approximations for Exc[n↑, n↓] and vxc

σ have been derived
that are both simple and accurate enough such that finally a feasible description for
the many-electron system is obtained. Below the two most common approximation
used to determine Exc[n↑, n↓] are presented.

Within the local-spin-density approximation (LSDA) the exact functional Exc[n↑, n↓]
for the exchange-correlation energy is replaced by

ELSDA
xc [n↑, n↓] =

∫

n(r) εLSDA
xc (n↑(r), n↓(r)) d

3r. (2.24)

The idea leading to this approximation is to express Exc[n↑, n↓] by the exchange-
correlation energy of a homogeneous electron gas for which (2.24) becomes exact and
can be determined numerically. The energy functional Exc[n↑, n↓] of electronic sys-
tems with small deviations in the electron density are thus described by (2.24) in good
approximation by calculating εLSDA

xc (n↑(r), n↓(r)) as a function (not a functional!) of
the spin-densities of the system in question. The idea was originally proposed for
non-spin-polarized systems by Kohn and Sham [KS65] and was generalized to de-
scribe systems with collinear structure by von Barth and Hedin [vBH72] and Pant
and Rajagopal [PR72].

For systems with larger inhomogeneity, the integrand in (2.24) can also be replaced
by a function of the spin-densities and its gradient

Exc[n↑, n↓] ≈
∫

f
(

n↑(r), n↓(r),∇n↑(r),∇n↓(r)
)

d3r . (2.25)

Whereas the function εLSDA
xc in LSDA is derived upon a physical picture, the function

f is not uniquely defined. Many different forms have been suggested for f based on
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i.e. numerical fitting of experimental data or derived using general properties known
for Exc[n↑, n↓]. A widely accepted approach is the so-called generalized gradient
approximation (GGA) suggested by Langreth et al. [LP80] and further developed
i.e. by Perdew [Per85].

In this thesis, calculations were done using both LSDA and GGA. For the LSDA
part an expression for εLSDA

xc derived by Perdew and Zunger [PZ81] was used, which is
a parametrization of a numerical simulation for εLSDA

xc for the homogeneous electron
gas by Ceperley and Alder [CA80] using the Quantum Monte Carlo method. Within
GGA I compared two parametrizations of f , the first being derived form the same
Monte Carlo simulations in 1992 by Perdew and Wang [PW92] and the second one
being an improvement upon this parametrization published in 1996 by Perdew, Burke
and Ernzerhof [PBE96].

2.5 Calculation of the Equilibrium Lattice Constant

In the previous sections a procedure was derived to approximately calculate the total-
energy functional E[n↑, n↓], that is used in turn to calculate the ground-state spin
densities. The functional E[n↑, n↓] was introduced in (2.5) as the functional of the
total energy of the electron system, which was derived from the combined descrip-
tion of the electronic and lattice system (2.1) by applying the Born-Oppenheimer
approximation.

From this combined description (2.1) for the electronic and the lattice system, we
would like to retrieve the term of the Coulomb interaction between the nuclei, which
was given by

En[{R}] =
e2

4πε0

Na
∑

A<B

ZAZB

|RA − RB|
. (2.26)

Combining this term with the energy functional E[n↑, n↓] a new energy functional
Ẽ[n↑, n↓, {R}] can be defined by

Ẽ[n↑, n↓, {R}] = E[n↑, n↓] + En[{R}] . (2.27)

While the positions of the nuclei {RA} constituting the materials’ lattice only en-
ter as parameters in the former functional E[n↑, n↓], they enter the new functional
Ẽ[n↑, n↓, {R}] as variables because of the term (2.26). If the variational principle is
now applied to the new functional with respect to the nuclei’s positions, the func-
tional’s value will be minimal for an atomic distance, that equals the equilibrium
lattice constant of the material.
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3 The FLAPW Method

The FLAPW method is a widely used ab initio technique to analyze various aspects
of the electronic structure of materials on the footing of density-functional theory.
The abbreviation FLAPW stands for full-potential linearized augmented plane wave
which corresponds to a list of the key points of this method: in the setup of the
eigenvalue problem the potential of the lattice atoms is taken into account without
any approximations regarding its shape or asymptotic behavior. The basis set used
then to represent the Kohn-Sham eigenfunctions consists of linearized augmented
plane waves.

The FLAPW method can be applied to a huge variety of different classes of mate-
rials in many different ways (e.g. in order to calculate band structures, total energies
etc.). In this thesis the FLAPW method is used solely to solve the Kohn-Sham
equation presented in section 2.3 and to derive a new tight-binding-like basis set.
Therefore it is not intended to present a thorough derivation of the full FLAPW
method in this section, but merely to introduce those parts necessary to success-
fully apply the FLAPW method in the present context. Some key aspects of the
predecessors of FLAPW, the APW and the LAPW methods, are discussed briefly
focusing mainly on the introduction of the LAPW-basis set. A short description of
the extension needed to derive the FLAPW method from the LAPW method is given
afterwards. In the remainder of this section some details of the LAPW basis set are
examined and the tight-binding like basis set within the framework of FLAPW is
derived.

The contribution of many different authors finally led to what is presented here as
FLAPW method and some of them shall be explicitly mentioned during the derivation
in the following sections. In addition to that I would like to refer the interested reader
to a detailed introductory article on FLAPW by Blügel and Bihlmayer in [BB06] and
a book by David Singh [Sin94] where a detailed discussion of the LAPW method can
be found.

3.1 Solving the Kohn-Sham Equation with the APW

Method

There are numerous ways to solve eigenvalue problems like the Kohn-Sham equation.
One widely used method is to expand the eigenfunctions ψσ

k,ν(r) with Bloch vector
k, band index ν and spin σ using some known set of basis functions ϕσ

G
(k, r) that
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satisfy the Bloch boundary conditions.

ψσ
k,ν(r) =

∑

G

cGσ
k,ν ϕ

σ
G

(k, r) . (3.1)

Here G are all reciprocal lattice vectors up to the largest value Kmax and cGσ
k,ν are

variational coefficients. For the sake of simplicity, the index σ is dropped from now
on.

Naively thinking, one would assume that it is best to use plane waves as basis
functions, because theses functions are orthogonal, diagonal in momentum space
and can be implemented easily due to their simplicity. However, the wave functions
vary rapidly in the vicinity of the nuclei because of the singularity of the crystal
potential at the ionic positions. Thus, the cut-off Kmax would need to be huge to
accurately represent the wave functions and convergence would be very slow. One
way to remove this deficiency is to use pseudo potentials that do not diverge at the
nuclei’s positions. This is usually done in practice, if plane waves are used as basis set.
However, an accurate description of electrons that are more localized in the vicinity
of the nuclei e.g. electrons in d and f orbitals still requires many plane waves, which
makes the usage of pseudo potentials computationally demanding. Therefore we
resign to another approach based on an idea from Slater [Sla37]. The corresponding
technique is called the augmented plane wave method (APW).

Within the APW approach the plane waves are augmented in the region around
the nuclei by another set of functions. In order to do so, space is divided into
two regions: the so-called muffin-tin spheres situated around each nucleus and the
remaining space between those spheres, which is called the interstitial region. The
muffin tins are chosen such that they nearly touch to cover as much space as possible
but to allow still for structural relaxations. The potential V (r) = veff

σ (r) in the
Hamiltonian of the Kohn-Sham equation (2.21) is then thought to be spherically
symmetric inside the muffin tins and set to be constant in the interstitial region

V (r) ≈
{

V 0
IS = const interstitial region

V 0
MT(rµ) muffin − tin µ

. (3.2)

In the interstitial region the Schrödinger equation is solved by plane waves since the
potential is kept constant there. These plane waves are then augmented inside the
muffin tins by first applying the Rayleigh decomposition of the plane waves inside
each muffin tin

eiKr = 4π
∑

L

il jl(rK)Y ∗
L (K̂)YL(r̂) , (3.3)

where r = |r|, K = |K| and K abbreviates (G + k) and then by replacing
the Bessel functions jl(Kr) by the radial functions ul, which are solutions to the
radial Schrödinger-like equations obtained for the radial potential V 0

MT(rµ) inside
each muffin tin

{

− ~
2

2m

∂2

∂rµ2
+

~
2

2m

l(l + 1)

rµ2
+ V 0

MT(rµ) − E

}

rµ ul(r
µ, E) = 0 . (3.4)
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The position rµ inside the sphere µ is given with respect to the center of each sphere,
which is located at position τ

µ in the unit cell. The l is interpreted as the quantum
number of the regular solution ul to the energy parameter E and L = (l, m) is
introduced as a combined index for the quantum numbers l and m. Hence, the APW
basis set is given by

ϕG(k, r) =







exp[i(k + G) · r] interstitial region
∑

L

ÃµG

L (k) ul(r
µ, E) YL(r̂µ) muffin-tin µ

. (3.5)

The coefficients ÃµG

L (k) are determined from the requirement that the wave functions
have to be continuous at the boundary of the muffin-tin spheres.

The Hamiltonian in the Kohn-Sham equation (2.21) can now be set up in terms
of this basis. This would lead to a standard secular problem if the energy E is kept
fixed and only used as a parameter during the construction of the basis. However,
the resulting APW basis set does not offer enough variational freedom if E is kept
fixed. An accurate description can only be obtained if the energies are set to the
corresponding band energies εk,ν . In this case however, the radial solutions ul are
functions of the band energies, the Hamiltonian matrix would as well depend on the
εk,ν and can thus no longer be determined by a simple diagonalization. The solution
of the secular equation becomes a non-linear problem which is computationally much
more demanding than a secular problem. In addition to that, the APW method has
some further drawbacks such as the asymptote problem can appear, that is, the
radial function ul is decoupled from the plane wave if ul becomes zero at the sphere’s
boundary. These problems led to the suggestion of a linearization for the radial
function thus giving rise to the LAPWs, the linearized augmented plane waves.

3.2 The LAPW Basis Functions

In the middle of the seventies linearized methods were invented by Andersen [And75],
Koelling and Arbman [KA75] to treat the energy dependence of the augmented plane
waves. Based on an idea of Marcus [Mar67] the energy-dependent radial basis func-
tions of the APW basis are expanded using a Taylor series up to the first order

ul(r
µ, E) = ul(r

µ, El) + (E − El)u̇l(r
µ, El) + O((E − El)

2) . (3.6)

The function u̇l denotes the energy derivative u̇l(r
µ, E) = ∂ul(r

µ, E)/∂E of ul and
O((E − El)

2) contains all terms that are at least quadratic in the energy difference.
The functions ul of the APW basis are then replaced by ul(El) and its energy deriva-
tive u̇l(El) but both evaluated at fixed energies El. Due to this linearization in the



20 The FLAPW Method

energies the LAPW basis set is derived as

ϕG(k, r) =







exp[i(k + G) · r] interstitial region
∑

L

(

aµG

L (k) ul(r
µ) + bµG

L (k) u̇l(r
µ)
)

YL(r̂µ) muffin-tin µ

(3.7)
The coefficients aµG

L (k) and bµG

L (k) are chosen such that the plane waves in the
interstitial region are matched to the radial solution ul as well as its derivative u̇l at
the sphere’s boundary. Since these coefficients play an important role, they are to
be discussed in further detail in section 3.4. Some properties of the LAPW basis are
discussed below.

Due to the approximation of the full energy-dependent radial functions by ul(El)
and u̇l(El), the wave functions are affected by an error which is quadratic in the devi-
ation of the energy parameter El from the energy E. However, the error enters in the
eigenvalues itself only to fourth order. Consequently, spectra of the eigenvalues ob-
tained from LDA calculations using the LAPW basis set are in quite good agreement
with those results obtained from calculations using APWs especially since the energy
parameters El are usually chosen to minimize the linearization error, i.e. in the center
of gravity of the l -like bands. But most importantly the energy linearization removes
the energy dependence of the Hamiltonian thus simplifying the eigenvalue problem
to a standard problem of linear algebra. Thus, one of the major drawbacks of the
APW method is removed. Furthermore, the LAPW method can be extended to
non-spherical muffin-tin potentials with little difficulty, leading to the full-potential
linearized augmented plane wave method (FLAPW). This will be discussed in the
next section. Finally, it is worth mentioning that due to the linear combination of
the ul and u̇l in the muffin-tin regions also the asymptote problem from the APW
method is removed, since in general the radial derivative and u̇l will be non-zero at
the sphere’s boundary even if the ul happen to be zero there.

The energy derivative u̇l can be obtained evaluating the energy derivative of the
radial Schrödinger equation (3.4) at the fixed energy El. If Hµ

sp denotes the spherical
Hamiltonian in equation (3.4) for muffin tin µ, the energy derivative of the equation
evaluated at the energy El is given by

Hµ
sp u̇

µ
l = El u̇

µ
l + uµ

l . (3.8)

The radial functions are usually normalized to 1 inside the muffin-tin spheres,
∫ RMTµ

0

r2(uµ
l )

2 dr = 1 . (3.9)

It can be shown using (3.8) and (3.9) that the energy derivatives u̇l are orthogonal
to the radial functions, i.e.

∫ RMTµ

0

r2 uµ
l u̇

µ
l dr = 0 . (3.10)

These relations will be useful when the LAPW basis set is applied later on.
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3.3 The Concept of FLAPW

Within the full-potential LAPW-method (FLAPW) all shape-approximations to the
potential are dropped and the potential is described in a realistic manner. This
became possible with the development of a technique that allows to determine the
Coulomb potential for a general periodic charge density without shape-approximations.

In the APW method the following approximation for the potential V (r) was used

V (r) ≈
{

V 0
IS = const interstitial region

V 0
MT(rµ) muffin-tin µ

. (see 3.2)

In the FLAPW method the constant interstitial potential V 0
IS is relaxed due to in-

clusion of a warped interstitial
∑

G
V G

IS e
iGr and inside the muffin-tin spheres the

potential V 0
MT(rµ) is generalized by including non-spherical terms. The potential is

then given by

V (r) =







∑

G

V G

IS e
iGr interstitial region

∑

L

V L
MT(rµ)YL(r̂µ) muffin-tin µ

. (3.11)

The electron density n(r) can be written similarly to equation (3.11) just by replacing
all potentials V by densities n.

3.4 The Muffin-Tin a and b Coefficients

The a and b coefficients of the LAPW basis set 3.7 shall be derived in this section.
They are constructed not only to meet the requirement of matching at the sphere
boundaries. In addition the symmetry of the problem shall be exploited during the
derivation. This leads to a quite elegant result saving memory and computer time
however making the derivation a little more complicated.

The symmetry is exploited by mapping atoms, which are symmetry equivalent,
onto each other by a space-group operation {Λ|t}, where Λ is a rotational matrix
and t is a translation in space. The group of atoms that can be mapped onto each
other by such an operation is called an atom type and can be represented by just
one atom and the respective symmetry operations. For example, let {Λµ|tµ} be the
operation mapping the atom surrounded by the muffin tin µ onto its representative
α. The atom in µ is assigned a local coordinate frame Sµ with its origin situated
at the atoms position given by τµ inside the unit cell. The local frame is chosen
such that the unit vectors of this frame are mapped onto those of the global frame
denoted by Sg using a symmetry operation Λg (ΛgSµ = Sg). For simplicity, we
assume that the local frame Sα of the representative atom α is only translated with
respect to the global frame Sg. Hence, the translation tµ together with the rotation
Λµ maps Sµ onto Sα and by assumption it is Λµ = Λg. If the potential (and other
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quantities) inside the muffin tins are written in terms of the local coordinate systems,
we find that VMTα(rα) = VMTµ(rµ), where rα and rµ are expanded in terms of the
local frames Sα and Sµ respectively. Consequently the radial functions ul(r

α) are
the same for all atoms of the same type and must only be calculated once for the
representative of each atom type.

This mapping procedure must now be incorporated in the derivation of the a and
b coefficients. They ought to be chosen such that the solutions for the interstitial
regions and the muffin tins match smoothly at the sphere’s boundary. Again, the
Rayleigh expansion 3.3 is used to decompose the plane waves into radial Bessel func-
tions and spherical harmonics. If we look at the plane wave from the local frame of
the atom µ, the position τµ of the atom as well as K are rotated by the symmetry
operation Λµ. Furthermore, the vector r must be shifted since the origin of the new
coordinate system Sµ is situated at τµ inside the respective unit cell. The plane wave
in the local frame inside the unit cell therefore has the form

ei(ΛµK)(r+Λµτµ) (3.12)

and the Rayleigh expansion of the plane wave in the local frame is given by

eiKτµ

4π
∑

L

il jl(rK)Y ∗
L (ΛµK̂)YL(r̂) . (3.13)

If the matching conditions are imposed now, the following two equations are obtained:
First, the requirement of continuity of the wave functions at the sphere boundary
leads to the equation

∑

L

aµG

L (k) ul(RMT α) YL(r̂) + bµG

L (k) u̇l(RMT α) YL(r̂)

= eiKτµ

4π
∑

L

il jl(rK)Y ∗
L (ΛµK̂)YL(r̂) ,

(3.14)

where RMT α is the muffin-tin radius of the atom type α. Secondly, the derivative of
the wave function with respect to r must also be continuous. With ∂u/∂r = u′, one
obtains

∑

L

aµG

L (k) u′l(RMT α) YL(r̂) + bµG

L (k) u̇′l(RMT α) YL(r̂µ)

= eiKτµ

4π
∑

L

il j ′l(rK)Y ∗
L (ΛµK̂)YL(r̂)

(3.15)

for each µ, K and G. Both conditions must be met simultaneously, which can only be
accomplished if the coefficients of each spherical harmonic YL(r̂) are equal. Solving
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the resulting equations for aµG

L (k) and bµG

L (k) yields:

aµG

L (k) = eiKτµ

4π
1

W
il Y ∗

L (ΛµK̂)

[u̇l(RMT α)Kj ′l(RMT αK) − u̇′l(RMT α)jl(RMT αK)]

bµG

L (k) = eiKτµ

4π
1

W
il Y ∗

L (ΛµK̂)

[u′l(RMT α)jl(RMT αK) − ul(RMT α)Kj ′l(RMT αK)] .

(3.16)

The Wronskian W is given by

W = [u̇l(RMT α)u′l(RMT α) − ul(RMT α)u̇′l(RMT α)] . (3.17)

3.5 Construction of the Electron Density inside the

Muffin Tins

In spin-polarized density-functional calculations of an infinite periodic solid, the elec-
tron density is given by an integral over the first Brillouin zone

n(r) =
1

VBZ

∫

BZ

∑

ν,εν<EF

∑

σ∈{↑,↓}

|ψσ
k,ν(r)|2d3k , (3.18)

where ψσ
k,ν(r) are once more the eigenfunctions of the Kohn-Sham equation, VBZ is

the volume of the first Brillouin zone, ν is the band index and EF is the Fermi energy.

In the further course we like to explicitly determine the contributions of the distinct
electronic eigenstates l = s, p, d to the electron density. Therefore, we are only
interested in calculating the electron densities within the muffin-tin spheres, because
the contributions from the interstitial region can not be attributed to a specific atom
and in particular not to a specific l-quantum number. The expansion of the Kohn-
Sham eigenfunctions (3.1) within the LAPW basis set in a sphere µ is given by

ψµ
k,ν(r) =

∑

G

cG
k,ν

∑

L

aµG

L (k) ul(r
µ) YL(r̂µ) + bµG

L (k) u̇l(r
µ) YL(r̂µ) (3.19)

The spin index is again dropped for convenience. The coefficients aµG

L (k) and bµG

L (k)
are replaced by band-dependent A- and B -coefficient, obtained by summing over the
plane waves

ψµ
k,ν(r) =

∑

L

Aµ
L,ν(k) ul(r

µ) YL(r̂µ) + Bµ
L,ν(k) u̇l(r

µ) YL(r̂µ) , (3.20)

with
Aµ

L,ν(k) =
∑

G

cG
k,νa

µG

L (k), Bµ
L,ν(k) =

∑

G

cG
k,νb

µG

L (k) . (3.21)
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If we substitute expression (3.20) into equation (3.18), the resulting expression for
the electron density in the muffin-tin sphere µ reads

nµ(rµ) =
1

VBZ

∫

BZ

∑

ν,εν<EF

σ∈{↑,↓}

[

∑

L′

(

Aµσ
L′,ν(k)uσ

l′(r
µ) + Bµσ

L′,ν(k)u̇σ
l′(r

µ)
)∗
Y ∗

L′(r̂µ)

∑

L

(

Aµσ
L,ν(k)uσ

l (r
µ) + Bµσ

L,ν(k)u̇σ
l (r

µ)
)

YL(r̂µ)
]

.

(3.22)

From this general formula an ”l -like“ electron density further called orbital-resolved
density can be derived. Since the wave functions inside the muffin-tin spheres are
expanded using spherical harmonics, they can be split up into contributions with a
certain l character

ψµ
k,ν(r) =

∑

l

ψµ
k,ν,l(r) . (3.23)

If this is to be inserted into expression (3.22), it will contain cross terms with a
mixture of different l ’s, since the two sums run over l and l’. If, however, the density
is integrated over the muffin tin, the cross-terms vanish due to the orthogonality
of the spherical harmonics. The total electron density inside a sphere can thus be
written as

nµ
ν =

∑

l

nµ
ν,l , nµ

ν,l =
1

VBZ

∫

BZ

∫

MTµ

|ψµ
k,ν,l(r)|2 d3rd3k , (3.24)

where n is called orbital-resolved electron density. Similarly, a k-dependent orbital
resolved density can be defined by.

nµ
ν,l(k) =

∫

MTµ

|ψµ
k,ν,l(r)|2d3r . (3.25)

Substitution of equation (3.20) into this expression yields

nµ
ν,l(k) =

∑

L

∑

σ=↑,↓

|Aµσ
L,ν(k)|2 + |Bµσ

L,ν(k)|2Ṅσ
l , (3.26)

where

Ṅl =

∫ RMTµ

0

(u̇l(r))
2r2dr . (3.27)

Note that expression (3.26) was derived using the orthogonality of the spherical
harmonics, the normalization of ul (3.9) and the orthogonality of ul and u̇l (3.10).

Numerical calculations for the materials studied in this thesis have shown that
the contribution of the second term in (3.26) originating from the functions u̇l in
the LAPW basis is quite small. If this term was omitted and the orbital resolved
k-dependent density was calculated by

nµ
ν,k,l =

l
∑

m=−l

∑

σ∈{↑,↓}

|Aµσ
L,ν(k)|2 (3.28)
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the deviation from the densities obtained with equation (3.26) were quite small,
which can be seen form the results presented in chapter 7. Based on these findings
a tight-binding-like basis set within the FLAPW framework shall be derived in the
last section of this chapter.

3.6 Tight-binding Approximation within the FLAPW

Framework

We are interested in the description of the electronic structure of 3d metals especially
in describing the behavior of the electrons in the d -bands of theses materials. The d
states are more localized in the vicinity of the nuclei of the atoms, hence, the electrons
in these bands show a rather atomic-like character then itinerant behavior. The
LAPW basis functions seem to be rather insufficient to catch the localized character
of these electrons, since the basis functions being augmented plane waves clearly
have non-local character. However, it is this localized character of the electrons that
leads to electronic correlation effects to be described in chapter 5. In particular, the
description of electronic correlation within many-body perturbation theory will be
formulated in terms of interacting electrons situated in orbitals that are localized at
the distinct sites of the crystal lattice. Thus, in need of a basis reflecting this localized
character of the electrons the LAPW basis set will be modified in a tight-binding-like
fashion leading to a new basis set. Furthermore, a tight-binding description of the
many-electron system is introduced.

Tight-binding-like basis set. It is supposed in the tight-binding (TB) treatment
of solids that the electronic interactions of the atoms in the solid are relatively small
and that the electrons are largely localized in the vicinity of atoms. It is then a very
good approximation to write the electronic wave functions as linear combinations of
localized orbitals centered on each site. As a TB-like basis set we choose the functions

χµσ
L (rµ) = uσ

l (r
µ) YL(r̂µ) , (3.29)

where the radial functions ul are the solution to the radial Schrödinger equation (3.4)
evaluated at the fixed energies El. These functions are normalized to unity inside
the muffin tins

∫ RMTµ

0

(

χµσ
L (rµ)

)∗(
χµ′σ′

L′ (rµ′

)
)

d3r = δµµ′δLL′δσσ′ (3.30)

which is a direct consequence of the normalization of the functions ul (3.9) and the
normalization of the spherical harmonics YL(r̂µ).

If the expansion of the Kohn-Sham eigenfunctions ψµσ
k,ν inside muffin tin µ in terms

of the LAPW basis is now compared to the expansion in terms of the new TB-like
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basis

ψµσ
k,ν(r

µ) =
∑

L

Aµσ
L,ν(k) uσ

l (rµ) YL(r̂µ) + Bµσ
L,ν(k) u̇σ

l (r
µ) YL(r̂µ)

≈
∑

L

Aµσ
L,ν(k)χµσ

L (rµ) .
(3.31)

it becomes evident that the localized basis functions χµσ
L are obtained from the LAPW

basis by simply neglecting the u̇l term. Due to the neglect of the u̇l term the represen-
tation of the Kohn-Sham eigenfunctions in terms of the TB basis functions deviates
from the representation employing the full LAPW basis. However, these deviations
should be small close to the energies El that are used to evaluate the radial compo-
nent ul and its energy derivative u̇l in the linearization of the APWs (3.6). Since we
are interested in calculating the electronic densities of states close to these energies
El, the expansion of the Kohn-Sham eigenfunctions in terms of the functions χµσ

L

should therefore yield a good approximation to the representation by the full LAPW
basis inside the muffin tin region. The difference between the two representations has
been analyzed and the results presented in chapter 7 show that the deviations close
to El are indeed small. Therefore, the functions χµσ

L yield a sufficient representation
of the Kohn-Sham eigenfunctions inside one muffin tin µ.

It is furthermore assumed that the muffin-tin spheres occupy the majority of space
due to the close-packed crystal structures of the 3d metals. Therefore, the major
part of the electron density is situated within the muffin-tin spheres. Based on this
assumption the interstitial space is neglected completely in the TB representation.
Nevertheless, the TB basis functions χµσ

L should still yield a sufficient description of
the d electron states since these should be almost completely contained in the region
of space covered by muffin tins due to their localized character. Results of further
calculations also presented in chapter 7 show that the charges situated in the d states
are indeed mainly contained inside the muffin tins.

The Kohn-Sham functions describing the whole region in space covered by muffin
tins can now be expressed as a sum over all muffin tins µ at positions Rµ of the TB
representation of ψµσ

k,ν inside one muffin tin µ

ψσ
k,ν(r) =

∑

Rµµ

∑

L

ÃRµ,µσ
L,ν (k)χµσ

L (rµ) , r ∈ muffin − tin region . (3.32)

The coefficients ÃRµ,µσ
L,ν are derived from the coefficient in the LAPW representation

of ψµσ
k,ν (first line in (3.31)) by

ÃRµ,µσ
L,ν (k) =

1√
N
eiRµk Aµσ

L,ν(k) , (3.33)

where N is the number of atoms in the crystal. The factor 1/
√
N must be intro-

duced here for normalization purposes, because the Kohn-Sham wave functions are



3.6 Tight-binding Approximation within the FLAPW Framework 27

normalized to unity with respect to the number of atoms in the crystal, whereas the
function χµσ

L are normalized to unity inside the muffin tin µ.

Finally, we want to define eigenstates and creation and annihilation operators for
the TB basis set. For the sake of clarity, this is only done for crystal structures that
can be represented by unit cells containing only one atom. In this case, the lattice
vectors can be chosen such that they point to the middle of each unit cell, where the
center of the muffin tin is positioned. Hence, the index µ can be dropped and the
Kohn-Sham wave functions are represented by

ψσ
k,ν(r) =

∑

R

∑

L

ÃR,σ
L,ν (k)χσ

L(rR) , r ∈ muffin − tin region, (3.34)

where rR is the position inside the muffin tin situated at lattice site R. If we now
introduce the eigenstate |RLσ〉 of an electron sitting in the orbital L with spin σ in
the muffin tin at position R by

χσ
RL(rR) = 〈rR |RLσ〉 , (3.35)

we can define creation and annihilation operators

c†
RLσ, c

RLσ , (3.36)

that create or annihilate an electron in the state given by |RLσ〉. Because of (3.30)
the canonical commutation rules hold for these operators

[c
RLσ, cR′L′σ′ ] = [c†

RLσ, c
†
R′L′σ′ ] = 0 (3.37)

[c
RLσ, c

†
R′L′σ′ ] = δRR′δLL′δσσ′ . (3.38)

TB Hamiltonian. We want to find an approximate representation of the Hamilto-
nian,

Ĥ =
[

− ~
2

2m

Ne
∑

i=1

∇2
i +

e2

4πε0

Ne
∑

i<j

1

|ri − rj|
+

Ne
∑

i=1

vext(ri)
]

(see 2.2)

of the many-electron Schrödinger equation employing the TB basis and the creation
and annihilation operators introduced above. The derivation is carried out only for
structures with one atom per unit cell. The extension to the case of multiple atoms
per unit cell can be done straightforwardly.

Below the Kohn-Sham equation is restated

ĥeff
σ ψσ

k,ν(r) =

[

− ~
2

2m
∇ + veff

σ (r)

]

ψσ
k,ν(r) = εσ

k,ν ψ
σ
k,ν(r), (see 2.21)
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where εσ
k,ν is the Kohn-Sham eigenvalue to the eigenfunction ψσ

k,ν(r) and

veff
σ (r) = vext(r) + vH(r) + vxc

σ (r)

vH(r) =
e2

4πε0

∫

n(r′)

|r− r′|d
3r′ , vxc

σ (r) =
δExc[n↑, n↓]

δnσ(r)

(3.39)

The Hamiltonian of the Kohn-Sham equation ĥeff
σ will be denoted by ĥKS

σ from now
on. The electronic Hamiltonian Ĥ of (2.2) can then be rewritten as

Ĥ =
Ne
∑

i=1

∑

σ=↑,↓

[

ĥKS
σ (ri) − vH(ri) − vxc

σ (ri)
]

+ Uee , (3.40)

with

Uee =
e2

4πε0

Ne
∑

i<j

1

|ri − rj|
. (3.41)

Based on this form of the Hamiltonian a new TB representation of the many-electron
system can by introduced. Using the states

∣

∣RLσ
〉

and the operators c
R′L′σ and c†

R′L′σ

a new TB-Hamiltonian ĤTB can be defined by

ĤTB =
∑

RL,R′L′; σ′

HDFT σ
RL, R′L′ c

†
RLσcR′L′σ −

∑

RL,R′L′; σ′

Dσ
RL, R′L′ c

†
RLσcR′L′σ

+
1

2

∑

R1R2R3R4

L1L2L3L4, σσ′

U
R1L1σ,R2L2σ′,R3L3σ,R4L4σ′ c

†
R1L1σc

†
R2L2σ′cR4L4σ′cR3L3σ

(3.42)

with
HDFT σ

RL,R′L′ =
〈

RLσ
∣

∣ ĥKS
σ

∣

∣R′L′σ
〉

, (3.43)

Dσ
RL,R′L′ =

〈

RLσ
∣

∣ vH + vxc
σ

∣

∣R′L′σ
〉

, (3.44)

and

UR1L1σ,R2L2σ′,R3L3σ,R4L4σ′ =
〈

R1L1σ, R2L2σ
′
∣

∣ Uee

∣

∣R3L3σ, R4L4σ
′
〉

. (3.45)

Equations (3.43) - (3.45) are projections of the terms of the full many-electron Hamil-
tonian (3.40) onto the TB basis states, hence, the TB Hamiltonian ĤTB describes
only those electrons situated inside the muffin-tins in states

∣

∣RLσ
〉

. In particular
the charges situated in the interstitial region are not contained in the TB descrip-
tion given by ĤTB due to the construction of the TB basis states. The many-body
correction to the DFT approach presented in chapter 5 starts from equation (3.42).
Hence, this description for the electron system shall be examined a little closer in the
remainder of this section.

The annihilation and creation operators in the first term of (3.42) describe the
annihilation of an electron at one site R′ in the orbital L′ with spin σ′ which is
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created then at another site R in a state with L and σ. Hence, the term gives the
kinetic energy of the electrons, since it describes the motion of them from one site
to another. However, the matrix elements HDFT σ

RL,R′L′ are calculated using the Kohn-

Sham Hamiltonian ĥKS
σ which also contains the effective potential veff

σ . Thus, the first
term also yields the potential energy of an electron due to its static interaction with
the charge background caused by the effective medium. Therefore, the second term,
the so-called double-counting term, had to be introduced to subtract these electronic
interaction, because they are not only captured by the first term due to the effective
potential but they are also contained in the third term. The third term as presented
in its most general form here accounts for all electron-electron interaction processes.

Closing this chapter, it is proved that the first term of (3.42) can be completely de-
termined within the framework of DFT. In the same spirit, as the vector states |RLσ〉
were introduced, I define |kνσ〉 denoting the Kohn-Sham eigenfunctions ψσ

k,ν(r) in
state space by

ψσ
k,ν(r) = 〈r |kνσ〉, r ∈ R . (3.46)

If we furthermore introduce the abbreviation

1

VBZ

∫

BZ

d3k −→
∑

k

, (3.47)

the unity operator can be written as

∑

kνσ

|kνσ〉〈kνσ| = 1 , (3.48)

by exploiting the completeness relation of the basis set {|kνσ〉}. The expansion
coefficients defined in (3.33) are given by

ÃR,σ
L,ν (k) = 〈RLσ|kνσ〉 (3.49)

yielding the projection of the Kohn-Sham eigenstate |kνσ〉 onto the TB state |RLσ〉.
Using these identities expression (3.43) can be evaluated:

HDFT σ
RL,R′L′ = 〈RLσ| ĥKS

σ |R′L′σ〉
= 〈RLσ|

(

∑

kνσ′′

|kνσ′′〉〈kνσ′′|
)

ĥKS
σ

(

∑

k′ν′σ′

|k′ν ′σ′〉〈k′ν ′σ′|
)

|R′L′σ〉

=
∑

kν

εσ
k,ν 〈RLσ |kνσ〉 〈kνσ |R′L′σ〉

=
∑

kν

εσ
k,ν

(

ÃR,σ
L,ν (k)

) (

ÃR′,σ
L′,ν (k)

)∗

. (3.50)
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4 Green Functions

Green functions are a now widely used alternative description of many-particle sys-
tems. All physical quantities which are obtained using a Hamiltonian-based descrip-
tion for such systems can also be obtained from a Green-function approach. More-
over, the Green-function approach allows to calculate physical quantities without
the knowledge of the eigenvalues or eigenstates of the corresponding Hamiltonian de-
scription. This is of particular interest for those systems where true particle-particle
interactions play an important role i.e. for the materials analyzed in this thesis, when
effects due to electron correlations are taken into account explicitly. Those effects can
not be described in a one-particle picture as used in DFT and in a Hamiltonian ap-
proach one would have to resign to the solution of the full many-electron Schrödinger
equation (2.2). Since it was already argued in the previous chapters that the de-
termination of the true many-electron wave functions can be extremely difficult, the
Green-function approach seems to be an alternative worth thinking about for the
description of many-particle systems.

In this chapter, a Green function is derived within the framework of the FLAPW
method using the TB approach described in the previous chapter and some useful re-
lations between the Green function and some observables measured in many-electron
systems are presented. We start with the general definition of the Green function as
used in many-particle physics.

4.1 Definition and Properties of Green Functions

Field operators acting on a system containing N electrons can be introduced as

ψ̂†(λ) , ψ̂(λ) with λ = (r, σ) . (4.1)

These field operators describe the creation/annihilation of an electron at position r
with spin σ. Alternatively, the annihilation of one electron is interpreted as creation
of a hole. The Hamiltonian of the N -electron system shall be denoted by Ĥ and
the ground state at time t′ is given by |ΨN

0 (t′)〉. A Green function Ge(λt, λ′t′) for
this system is now defined such that i~Ge(λt, λ′t′) is the probability amplitude for
an electron, which is added to |ΨN

0 (t′)〉 in the state λ′ at the time t′ to be measured
in the state λ at time t. The final state of the system at time t is then given by
ψ̂(λ)Û(t, t′)ψ̂†(λ′) |ΨN

0 (t′)〉. Thus, the final state is constructed from the initial state
by successively applying to it the electron creation operator ψ̂†(λ′), the evolution
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operator Û(t, t′) = exp[−iĤ(t− t′)/~], which takes the system from the initial time
t′ to a later time t > t′, and the electron annihilation operator ψ̂(λ). Since the
probability amplitude between two states of a system is given by the overlap of these
states, the Green function can now be defined as

Ge(λt, λ′t′) = − i

~

〈

ΨN
0 (t)

∣

∣

∣
ψ̂(λ)Û(t, t′)ψ̂†(λ′)

∣

∣

∣
ΨN

0 (t′)
〉

θ(t− t′)

= − i

~

〈

ΨN
0

∣

∣

∣
ψ̂(λt)ψ̂†(λ′t′)

∣

∣

∣
ΨN

0

〉

θ(t− t′) ,
(4.2)

where θ(t− t′) is the Heaviside step function defined by

θ(t− t′) =

{

1 if t > t′

0 if t < t′ .
. (4.3)

From the first to the second line in (4.2) the field operators were changed from their
representation in the Schrödinger picture to their representation in the Heisenberg
picture, which are related by

|ΨH〉 = Û(0, t)|ΨS(t)〉 and ÔH(t) = Û(0, t)ÔSÛ(t, 0) . (4.4)

As long as it is clear from the context, which representation of the operators is
presently used, the indices H and S will be omitted.

Similarly to the propagation of an additional electron through the many-electron
system, the propagation of a hole from (λ, t) to (λ′, t′) is described by the Green
function

Gh(λ′t′, λt) = − i

~

〈

ΨN
0

∣

∣

∣
ψ̂†(λ′t′)ψ̂(λt)

∣

∣

∣
ΨN

0

〉

θ(t′ − t) , (4.5)

and the two Green functions are often combined to one time-ordered Green function

G(λt, λ′t′) = Ge(λt, λ′t′) − Gh(λ′t′, λt) = − i

~

〈

ΨN
0

∣

∣

∣
T̂
[

ψ̂(λt)ψ̂†(λ′t′)
]∣

∣

∣
ΨN

0

〉

, (4.6)

where the time-ordering operator T̂ was used, which rearranges a series of field oper-
ators in order of ascending time arguments from right to left with a factor (−1) for
each pair permutation. Depending on the time order, equation (4.6) describes either
electron (t > t′) or hole (t < t′) propagation. To stretch the physical meaning of this
Green function G(λt, λ′t′), it is often called the one-particle propagator.

An equation of motion for the one-particle propagator can be derived using the
following relations:

• The equation of motion for a Heisenberg operator Ô in a system with Hamil-
tonian H is given by

i~
d

dt
Ô(t) = [Ô(t),H]− + i~

∂Ô(t)

∂t
, (4.7)

where [...]− is the commutator of the Hamiltonian and the operator.
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• The time derivative of the Heaviside function is the delta function

d

dt
θ(t− t′) = δ(t− t′) = − d

dt′
θ(t− t′) . (4.8)

• To simplify the notation, the ground-state |ΨN
0 〉 is abbreviated by 〉 and 〈ΨN

0 |
by 〈 respectively.

The equation of motion is then given by

i~
∂

∂t
G(λt, λ′t′) = δ(t− t′)

〈

[ψ̂(λt), ψ̂†(λ′t′)]+

〉

− i

~

〈

T̂

[

∂ψ̂(λt)

∂t
ψ̂†(λ′t′)

]〉

= δ(t− t′)δ(r − r′)δσσ′ − i

~

〈

T̂
[

[ψ̂(λt), Ĥ]−; ψ̂†(λ′t′)
]〉

, (4.9)

where the anti-commutator relation [...]+ between the field operators was evaluated in
the second step. The commutator in the second term [ψ̂(λt), Ĥ]− is in general also an
operator such that the whole term is yet another Green function but now of higher
order. One can set up a new equation of motion two obtain this Green function,
which will lead to a similar relation with yet another Green function of even higher
order. This will lead to an infinite chain of differential equations, hence, to determine
the one particle propagator exactly an infinite number of differential equations has
to be solved, which is just as impossible as finding the exact many-electron wave
function. The big advantage of the Green-function approach lies in the splitting
of the determination process into distinct differential equations. By breaking the
infinite chain of equations at some point i.e. by approximating the Green function
on this level of the hierarchy all Green functions of lower order can in principle be
calculated. This procedure will be used in the next chapter.

We want to analyze only stationary systems for which the Hamiltonian Ĥ is not
explicitly time-dependent. Consequently, the Green function depends only on the
time difference τ = t− t′ between the initial and the final state

G(λt, λ′t′) = G(λ, λ′; τ) . (4.10)

Furthermore, with a set of state vectors
{∣

∣ΨN±1
j

〉}

introduced as the complete set of
states of the (N ± 1)-particle system, we can define the projections

ψN−1
j (λ) =

〈

ΨN−1
j

∣

∣ψ̂(λ)
∣

∣ΨN
0

〉

and ψN+1
j (λ) =

〈

ΨN
0

∣

∣ψ̂(λ)
∣

∣ΨN+1
i

〉

(4.11)

with corresponding excitation energies

εN−1
j = EN

0 − EN−1
j and εN+1

j = EN+1
j − EN

0 , (4.12)

for the (N ±1)-particle system. Inserting the closure relation
∑

i

∣

∣ΨN±1
j

〉〈

ΨN±1
j

∣

∣ = 1
between the field operators of the time-ordered Green function G(λ, λ′; τ) as defined
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in (4.6) for a stationary system then leads to

G(λ, λ′; τ) = − i

~

∑

j

ψN+1
j (λ)ψN+1∗

j (λ′)e−iεN+1
j τ/~θ(τ)

+
i

~

∑

j

ψN−1∗
j (λ′)ψN−1

j (λ)e−iεN−1
j τ/~θ(−τ) .

(4.13)

It is convenient to switch to an energy representation of the Green function using
the Fourier transformation,

G(λ, λ′; τ)
F.T.−→ G(λ, λ′; ε) . (4.14)

The Fourier transformed depend only on one energy ε. They are defined as

G(λ, λ′; ε) =

∫ ∞

−∞

dτ eiετ/~ G(λ, λ′; τ)

G(λ, λ′; τ) =

∫ ∞

−∞

dε

2π~
e−iετ/~ G(λ, λ′; ε) .

(4.15)

In turns, the right-hand site of (4.13) can also be Fourier transformed into energy
space using the Fourier transformed of the Heaviside step function

θ(ε) =

∫ ∞

−∞

dτ e(iετ−η|τ |)/~ θ(τ) =
i~

ε + iη
, (4.16)

where η is an infinitesimally small positive number. The Fourier transformation of
(4.13) yields the so-called Lehmann representation of the Green function

G(λ, λ′; ε) =
∑

j

ψN+1
j (λ)ψN+1∗

j (λ′)

ε − εN+1
j + iη

+
∑

j

ψN−1
j (λ)ψN−1∗

j (λ′)

ε − εN−1
j − iη

. (4.17)

The sums run over the ground state and all excited states of the (N−1)- and (N+1)-
particle system. The Green function has poles at all true many-particle excitation
energies εN±1

j , hence, it contains all information about the complete one-particle
excitation spectrum of the (N ± 1)-particle system. In principle, the Green function
can also be used to calculate the total energy of these systems but this is not to be
discussed here. It should just be mentioned to emphasize once more that the Green
function really yields all one-particle information that are in principle also accessible
via a Hamiltonian approach.

4.2 Electron Density and Spectral Function

The electron density. The electron density n of a system containing N electrons
can by calculated directly from the Green function of that system. From here on I
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will use the following more convenient notation for the Lehmann representation of
the time-ordered Green function

G(λ, λ′; ε) =
∑

j

ψN±1
j (λ)ψN±1∗

j (λ′)

ε − εN±1
j ± iη

(4.18)

where the two sums in (4.17) were summarized in one expression. To expand (4.18)
and recover (4.17) the signs in the denominator as well as in the indices of the
projections ψN+1

j and ψN−1
j have to be chosen accordingly.

With the identity
1

x± iη
= P

(

1

x

)

∓ iπδ(x) (4.19)

in the limit η → 0+, where P(1/x) is the principal value of 1/x, we can define the
energy resolved density distribution of the electrons w(ε, λ) by

w(ε, λ) = ∓ 1

π
ImG(λ, λ; ε)

=
∑

j

|ψN±1
j (λ)|2 δ(ε− εN±1

j ) .
(4.20)

Energy integration of w(ε, λ) up to Fermi energy EF yields

n(λ) =

∫ EF

−∞

w(ε, λ) dε

=

∫ EF

−∞

∑

j

|ψN±1
j (λ)|2 δ(ε − εN±1

j ) dε

=
occ
∑

j

|ψN−1
j (λ)|2 ,

(4.21)

where the sum now runs over all states of the (N − 1)-particle system, since the
states represented by {ψN+1

j } all lie above the Fermi level and the states {ψN−1
j }

represent the occupied one-electron orbitals below the Fermi level if the system is in
the ground state. Expression (4.21) for the electron density n is formally identical
with expression (2.22) for the electron density expressed in terms of the Kohn-Sham
eigenfunctions, but the states {ψN−1

j } used here are projections of the real system.
Thus, the expressions are not identical but should yield the same results, since the
auxiliary system in DFT is explicitly constructed to yield the correct electron density
of the real system.

From (4.20), the total density of states D(ε) (DOS) can also be derived by

D(ε) =

∫ ∞

−∞

w(ε, λ) dλ = ∓ 1

π

∫ ∞

−∞

ImG(λ, λ; ε) dλ , (4.22)



36 Green Functions

where the integration over λ represents the integration over the spacial coordinates
and summation over spins here. If the summation over the spins is not carried out,
one can obtain a spin-resolved DOS. The DOS gives all possible electron states for
the system regardless whether they are occupied or not.

The spectral function. The spectral function A(λ, λ′; ε) for a N -electron system
is defined as a sum over delta functions at the excitation energies

A(λ, λ′; ε) =
∑

j

ψN−1
j (λ)ψN−1∗

j (λ′) δ(ε− εN−1
j )

+
∑

j

ψN+1
j (λ)ψN+1∗

j (λ′) δ(ε− εN+1
j )

(4.23)

weighted by the products of the corresponding projections ψN±1
i . Using the Lehmann

representation (4.17) of the time-ordered Green function G(λ, λ′; ε) and the identity
(4.19) in the limit η → 0+, the spectral function can be written as

A(λ, λ′; ε) = −sgn(ε− EF)
1

π
ImG(λ, λ′; ε) . (4.24)

Thus, the spectral function can also be determined, if the Green function is known.

The spectral function gives the spectrum of the excited states that contribute
to the electron or hole propagation. This can be seen from equation (4.23), since
A(λ, λ′; ε) will be non-zero only at the excitation energies εN±1

i due to the delta
function. Within DFT, the spectra obtained from the spectral function really do
have delta-peak structure. However, the situation will become more difficult, when
the spectral function is derived from the Green function obtained in chapter 5 within
many-body perturbation theory. Since the changes in the spectra due to many-
body correction will be much easier to understand after related quantities have been
introduced I postpone further discussion to chapter 8, where the results of calculations
of the spectral function are presented.

4.3 Green Functions within the TB-FLAPW Approach

In this section a Green function is derived within the framework of DFT. Density-
functional theory is a mean-field approach mapping the real system onto the effective
system of non-interacting particles. Hence, the ψN+1

j (λ) and the ψN−1
j (λ) defined in

(4.11) become simply the unoccupied and the occupied single-particle eigenfunctions
of the Kohn-Sham equations, which where denoted by ψσ

k,ν(r). The εN±1
j are the cor-

responding single-particle Kohn-Sham eigenvalues given by εσ
k,ν . In the Lehmann rep-

resentation of the time-ordered Green function (4.17) for a system described within
DFT the sum over j is therefore replaced by the integral over the first Brillouin zone
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(1st BZ), the sum over the band indices ν and the sum over the spin σ where VBZ is
the volume of the first Brillouin zone:

∑

j

DFT−→ 1

VBZ

∫

BZ

d3k
∑

ν

−→
∑

k

∑

ν

. (4.25)

In the second step the abbreviation introduced in (3.47) was applied representing
the Brillouin-zone integral as a sum over k vectors. The sum over spin indices is
not carried out, since I only want to describe systems with collinear spin structure
and the Green function of these systems is diagonal in spin. A Kohn-Sham Green
function for each spin σ can now be defined as

Gσ(r, r′; ε) =
∑

k

∑

ν

ψσ
k,ν(r)ψ

σ∗
k,ν(r

′)

ε− εσ
k,ν ± iη

, r, r′ ∈ R . (4.26)

This Green function is now to be expressed using the TB-FLAPW basis functions
derived in section 3.6. By inserting the expansion (3.32) of the Kohn-Sham eigen-
functions in terms of the TB basis functions defined in (3.29) into (4.26) we obtain
the following Green function

G0 σ(rµ, rµ′

; ε) =
∑

R
µµL

R
µ′

µ′L′

χµσ
L (rµ)





∑

kν

(

ÃR
µ,µσ

L,ν (k)
)(

ÃR
µ′

,µσ
L′,ν (k)

)∗

ε− εσ
k,ν ± iη



χµ′σ
L′

∗
(rµ′

). (4.27)

In contrast to the Green function (4.26) the new TB Green function (4.27) only
describes a particle that is contained in the region of space covered by muffin tins
which is denoted by replacing the arguments r, r′ of the Green function (4.26) on the
left-hand side by rµ, rµ′

in (4.27). This is analogous to the TB Hamiltonian derived
in the previous chapter, that also described only those particles inside the muffin-tin
region. The term in brackets in (4.27) is now defined as DFT lattice Green function
in the TB representation, which can be understood as matrix operator with matrix
elements

G0 µµ′σ

RµL, Rµ′L′(ε) =
1

VBZ

∫

BZ

d3k
∑

kν

(

ÃRµ,µσ
L,ν (k)

)(

ÃRµ′
,µσ

L′,ν (k)
)∗

ε− εσ
k,ν ± iη

. (4.28)

We thus obtain a Green function for each pair of muffin tins {µ, µ′} situated at the
lattice sites {Rµ,Rµ′}. Within the TB-FLAPW description of the many-electron
system, this lattice Green function can be again interpreted as a probability ampli-
tude now giving the probability for the propagation of an electron or a hole with
spin σ from its initial state in the orbital L′ of the atom µ′ at lattice site Rµ′

to the
orbital L of the atom µ at lattice site Rµ. The index 0 in the notation for the DFT
lattice Green function is introduced here to distinguish it from quantities which will
be introduced later. The Green function (4.27) was derived for the general case of µ



38 Green Functions

atoms per unit cell. If the crystal structure of the electronic system is described by
unit cells containing only one atom the index µ can be dropped in the notation of
the above quantities and a lattice Green function is obtained with matrix elements
of the form

G0 σ
RL, R′L′(ε) =

1

VBZ

∫

BZ

d3k
∑

ν

(

ÃR,σ
L,ν (k)

)(

ÃR′,σ
L′,ν (k)

)∗

ε− εσ
k,ν ± iη

. (4.29)

The 3d metals iron, cobalt and nickel to be studied in latter chapters all form a
crystals consisting of unit cells with only one atom (iron in bcc structure, nickel
and cobalt in fcc structure). Furthermore, the fcc and the bcc crystal structure
belong to the cubic group. If we assume that the crystal field yields the largest
contribution to the crystal potential the 5 d states at each atomic site split into three
times degenerated t2g states and two times degenerated eg states. Moreover, the
TB states |RLσ〉 at a distinct site R are orthogonal for different quantum numbers
L = (l, m). However, if there is no overlap between different orbitals denoted by L
the transition amplitude between those states is zero and consequently the on-site
block with R = R′ of the lattice Green function is diagonal in the subspace spand
by the TB states denoted by different L

G0 σ
RL, RL′(ε) = G0 σ

RL, RL(ε)δLL′ . (4.30)

The fact that the submatrix is diagonal will be used later on to simplify the equations
derived within many-body perturbation theory.

It will be convenient to derive also a k-dependent lattice Green function. For an
arbitrary operator Ô(ε) with matrix elements ORL, R′L′(ε) a lattice Fourier transfor-
mation is defined by

OL,L′(k; ε) =
∑

T = R′−R

ei(R′−R)k ORL, R′L′(ε) . (4.31)

ORL, R′L′(ε) =
1

VBZ

∫

VBZ

d3k ei(R′−R)k OL,L′(k; ε) (4.32)

Looking closely at the matrix elements G0 µµ′σ

RµL, Rµ′L′(ε) of the lattice Green function,

and inserting the definition (3.33) of the coefficients ÃR,µσ
L,ν (k)

G0 µµ′σ

RµL, Rµ′L′(ε) =
1

VBZ

∫

VBZ

d3k
∑

ν

1√
N
e−iRµk

(

Aµσ
L,ν(k)

)(

Aµ′σ
L′,ν(k)

)∗

ε− εσ
k,ν ± iη

1√
N
eiRµ′

k

(4.33)
already yields the expression for the Fourier transform of the DFT lattice Green
function

G0 µµ′σ
LL′ (k; ε) =

1

N

∑

ν

(

Aµσ
L,ν(k)

)(

Aµ′σ
L′,ν(k)

)∗

ε− εσ
k,ν ± iη

. (4.34)
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Again, for the case of one atom per unit cell the index µ can be dropped and the
Fourier transform of the DFT lattice Green function is given by

G0 σ
LL′(k; ε) =

1

N

∑

ν

(

Aσ
L,ν(k)

)(

Aσ
L′,ν(k)

)∗

ε− εσ
k,ν ± iη

. (4.35)

4.4 Mathematical Tools

In the last section of this chapter, some mathematical identities for complex functions
are presented. They can be applied to Green functions and have been used extensively
during the implementation and also for the numerical calculations to simplify the
formulation and speed up the calculations.

We have introduced the three Green functions in equations (4.2), (4.5) and (4.6) as
the electron, the hole and the time-ordered Green function, where the later one can
be understood as a combination of the prior two. The time-ordered Green function
G(λ, λ′; ε) is the basic quantity for the formulation of the diagrammatic perturbation
theory presented in the next chapter. However, this Green function has poles in the
lower and upper complex half planes as can be seen from the Lehmann representation
(4.17) of that function. However, many quantities derived from the Green function
can be obtained much easier using the so-called retarded Green function, since it is
an analytic function in the upper half plane of the complex plane. This can be seen
best form a Lehmann representation of the retarded Green function, which can be
defined for an N -electron systems using the projections ψN−1

j and ψN+1
j from (4.11)

as

Gret(λ, λ′; ε) =
∑

j

ψN+1
j (λ)ψN+1∗

j (λ′)

ε − εN+1
j + iη

+
∑

j

ψN−1
j (λ)ψN−1∗

j (λ′)

ε − εN−1
j + iη

. (4.36)

In Lehmann representation, the only difference between the time-ordered and the
retarded Green function is the different sign of the imaginary part of the denominator
in the first sum. All quantities expressed in terms of the time-ordered Green function
can therefore be rewritten using the retarded Green function, since the following
relation holds:

G(λ, λ′; ε) = ReGret(λ, λ′; ε) + i sgn(ε− EF) ImGret(λ, λ′; ε) (4.37)

It can be shown that this relation also holds for other quantities introduced later,
that can be defined as retarded and time-ordered quantities. Thus, many calculations
can be performed using the retarded quantities which often simplifies the calculation
because of the different analytical behavior of the retarded quantities.

Calculations can often be simplified even more when using retarded quantities,
since the whole complex quantity is already determined by the imaginary or the real
part of the quantity. If either one part has been calculated, the other one is found
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by calculating the Hilbert transformed of the known part. For a complex function
f(z) with z = ε+ iη which is analytic in the upper complex half plane and meets the
condition

lim
Im z>0,z→∞

f(z) = 0 (4.38)

the Hilbert transformation is given by

Ref(ε) = P
∫ ∞

−∞

dε′

π

Imf(ε′)

ε′ − ε
, (4.39)

Imf(ε) = −P
∫ ∞

−∞

dε′

π

Ref(ε′)

ε′ − ε
, (4.40)

where P denotes the Cauchy principal value of the integral defined as

P
∫ b

a

dx
f(x)

x− c
= lim

δ→0

[
∫ ξ−δ

a

dx
f(x)

x− ξ
−
∫ b

ξ+δ

dx
f(x)

x− ξ

]

. (4.41)
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I like to return to the many-electron Schrödinger equation (2.2). The Hamiltonian
of (2.2) was approximated within the tight-binding formulation by

ĤTB =
∑

RL,R′L′; σ′

HDFT σ
RL, R′L′ c

†
RLσcR′L′σ −

∑

RL,R′L′; σ′

Dσ
RL, R′L′ c

†
RLσcR′L′σ

+
1

2

∑

R1R2R3R4

L1L2L3L4, σσ′

U
R1L1σ,R2L2σ′,R3L3σ,R4L4σ′ c

†
R1L1σc

†
R2L2σ′cR4L4σ′cR3L3σ

(5.1)

(see chapter 3). In chapter 2, density-functional theory was introduced as well to
obtain an accurate and feasible approximation to the many-electron Schrödinger
equation (2.2). DFT being a mean-field approach describes the many-electron prob-
lem in terms of a single electron moving in a combined potential of the nuclei and a
contribution due to averaging over all other electrons. Thus, in the DFT description
some static interaction between the one electron with the charge background of the
other electrons in the crystal is contained due to the exchange-correlation potential
but true pair interaction is not contained. This is consistent with the findings at
the end of chapter 3, section 3.6 that the first term of the Hamiltonian (5.1) can be
determined within the framework of DFT. The second and especially the third term
describing pair interaction are however not contained in the DFT description.

If electrons are confined to more localized orbitals such as the d -orbitals of the 3d
transition metals or the f -orbitals of the rare-earth elements, the electronic correla-
tion described by the contribution of the third term in the Hamiltonian (5.1) can no
longer be approximated sufficiently in a mean-field type single-particle approach. For
example, the LDA band structure for f -electron systems is in strong disagreement
with the band structure measured in experiments for f -electron systems. In this the-
sis, I like to study 3d transition metals focusing specifically on electronic correlation
occurring in theses systems. Thus, it is necessary to find means to go beyond the
mean-field DFT description of these systems and explicitly take the third term in
(5.1) into accounts.

In general, the DFT description for the 3d transition metals already yields rather
accurate results. This is due to the fact that the d-orbitals are not so strongly local-
ized, hence, the electronic correlation is moderate in these systems compared e.g. to
the correlation effects occurring in f -electron systems. Therefore, in the approach
presented here, the systems will be first characterized by a DFT description and then
true electron-electron interactions are added to the description within the framework
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of diagrammatic many-body perturbation theory. The diagrammatic technique to be
used is called fluctuation-exchange (FLEX) method, which is thought to work well
in the regime of not too strongly correlated electron systems.

In the first part of this chapter, a new model to describe the interacting electron
system as well as a Green function for this model is derived. In the second part,
Feynman diagrams are introduced as new means to describe the effects contained
in this model. Within the FLEX method presented afterwards, a description of the
electron system can then be obtained that incorporates true pair interaction effects.

5.1 The Multiband Hubbard Hamiltonian

In order to derive a model that incorporates pair interaction beyond the DFT de-
scription of a system lets have another look at the TB approximation of Hamiltonian
of the many-electron Schrödinger equation (5.1). The first term is determined in the
framework of DFT. The discussion of the second term, the so-called double-counting
term, is postponed to the end of the section. The third term of (5.1) contains all pair
interaction between electrons. Hence, this term should be at least included partially
into the description of the system. When considering specifically the interaction
among the valance electrons of 3d transition metals, the following assumptions can
be made:

• The s- and p-bands are delocalized over the whole crystal structure and can be
very well described by the one-particle picture of the DFT mean-field descrip-
tion. Furthermore, for the ground state at temperature T = 0 as discussed
here, the s- and p-bands that do contain electrons have a small density of
states around the Fermi level. Hence, their contribution to interaction pro-
cesses around the Fermi level will be small.

• The d bands of the 3d metals are localized in the vicinity of the lattice atoms.
The electrons in these bands “see” each other, since they are confined to these
localized orbitals. The Coulomb repulsion among the d -band electrons should
therefore yield an important contribution to the interaction term. However,
due to the localization of the bands, the intra-atomic contribution usually is an
order of magnitude higher than the contributions of the inter-atomic terms.

Under these assumption the last term in (5.1) can be already greatly simplified by
taking into account only contributions due to the on-site Coulomb repulsion between
d electrons neglecting all other contributions. The terms remaining on each site are
then composed of a sum over the product of creation and annihilation operators with
the on-site matrix elements of the Coulomb repulsion given by

U
R;L1L2L3L4,σσ′ =

〈

L1σ, L2σ
′
∣

∣ Uee

∣

∣L3σ, L4σ
′
〉

. (5.2)
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where the {L} denote only d orbitals now and the site index R was dropped, since the
remaining terms are site-diagonal. Finally, the long-range character of the Coulomb
interaction Uee ∼ 1/|ri − rj| is neglected and the remaining matrix element are
approximated only in terms of two parameters called Hubbard U and Hubbard J

UR;L1L2L3L4,σσ′ ≈ δL1L3
δL2L4

(1 − δL1L2
δσσ′)U + δL1L4

δL2L3
(1 − δL1L2

)δσσ′J . (5.3)

The U and J have to be determined individually for each system. A short discussion
about the peculiarities in the procedure to determine U and J can be found at the
end of this section.

The new model to describe the electronic structure of 3d transition metals is now
given by

ĤHubb =
∑

RL,R′L′; σ

HDFT σ
RL,R′L′ c

†
RLσcR′L′σ

+
1

2
U

∑

RL̃L̃′σσ′

(1 − δ
L̃L̃z′

δσσ′)c
†

RL̃σ
c†
RL̃′σ′cRL̃′σ′cRL̃σ

+
1

2
J
∑

RL̃L̃′σ

(1 − δ
L̃L̃′)c

†

RL̃σ
c†
RL̃′σ

c
RL̃σ

c
RL̃σ

.

(5.4)

where the sum over L and L′ in the first term runs over indices l, m and l′, m′

representing s, p and d states, wheres the some over sL̃ and L̃′ in the second and
third term only runs over indices l, m and l′, m′ representing d states.

This new Hamiltonian is a multiband Hubbard-type model with a structure similar
to that of the famous Hubbard model, which was originally introduced by J. Hub-
bard [Hub63], [Hub64a] and [Hub64b] for a system containing only a single band
with one orbital per site. The Hubbard model is the simplest model to incorporate
itinerant electrons, Coulomb repulsion and lattice effects. It contains rich physics
and has been successfully used to study phenomena of correlated electrons such as
high-Tc superconductivity or Mott transitions in transition metal oxides. Despite
its simplicity, an exact solution has been only derived so far for the ground state
of the one dimensional model [LW68]. Thus, one has to resign to solve the model
numerically or by applying approximate solution techniques such as the many-body
perturbation theory used in this thesis.

The ansatz to approximate the Coulomb repulsion by a single parameter U was
first proposed by Hubbard for the single-band Hubbard model. For a single-band
model the L quantum number is the same for all four states contributing to the
matrix element

UR;L;σσ′ =
〈

Lσ, Lσ′
∣

∣ Uee

∣

∣Lσ, Lσ′
〉

. (5.5)

The on-site Coulomb repulsion of two electrons in the orbital L is thought to yield
the largest contribution, such that all other contributions can be neglected. If Uee

is therefore approximated by a parameter for the on-site matrix element and is set



44 Many-Body Perturbation Theory

to zero for all other matrix elements, the remaining term has the same structure
as the second term of the new model (5.4) containing the parameter U. Note that
a term with a J -like interaction can not occur in the single-band model, since it
describes the interaction between particles having the same spin, which may not
occupy the same orbital due to the Pauli principle. In further discussion, the U and
J will also be referred to as the direct and the exchange interaction. The choice of
this nomenclature will become clearer within the diagrammatic description of the
problem to be introduced in section 5.4 of this chapter. It should only be mentioned
here that this nomenclature is not to be confused with that used in Hartree-Fock
theory. Although the interaction terms within both theories are derived upon the
same interaction mechanisms, they are usually calculated differently, hence they are
not entirely identical.

Changing from the one-band model back to the multiband model (5.4) I would like
to examine the form of the approximation to the on-site Coulomb matrix elements in
(5.3) a little more in detail. By inserting (5.3) into the many-electron Hamiltonian
only the interactions between particles that occupy the same state before and after
the interaction are retained. In other words, of all possible interactions between two
particles only the correlations between particle densities are retained. This approxi-
mation to the Coulomb matrix elements is motivated by the symmetry of the crystal
structure of the materials to be examined. It was already mentioned in chapter 4
that cubic symmetry is assumed for all calculations and as a consequence the elec-
tronic d states split into t2g and eg states which are orthogonal to each other. If
the additional interaction among the electrons occupying the d states is small com-
pared to the potential of the crystal field, the degeneracy of the d states is not lifted.
Moreover it can be assumed, that the interaction does not cause the distinct orbitals
to overlap. However, if no overlap between the states exists no transition between
different states can take place and the only non-zero terms pf the Coulomb matrix
are those describing the interaction between particle densities.

If the multiband Hubbard model 5.4 is used to approximately describe the elec-
tronic structure of realistic systems, the parameters U and J have to be determined
for realistic systems. It turns out that the screening of the Coulomb repulsion has
a very large effect especially on the value of U. If U is to be approximated by the
unscreened value of the Coulomb interaction, one obtains values in the range of tens
of electron volts. Instead, the screened value of U in correlated materials is typically
a few electron volts. There are three main screening mechanisms:

1. the redistribution of s and d electrons on the atom,

2. the redistribution of electrons on neighboring atoms, and

3. the change of atomic wave functions that tends to minimize the energy of
electrons occupying the given atom.

These effects must also be accounted for in the determination of J, although the
exchange interaction is less affected by the screening. A variety of approaches exists
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to take the screening effects into account when calculating U and J and there is
no unique way of determining U and J. A detailed discussion of such methods is
beyond the scope of this work. Therefore, I would like only to refer to the literature
i.e. [SDA94] where descriptions of these techniques as well as a broad range of values
for the parameters for d electrons of 3d metals can be found.

To conclude this section, I like to return once more to the Hamiltonian (5.1). Com-
paring (5.1) to the new Hamiltonian (5.4) reveals that the second term of (5.1) was
simply neglected in the modeling of (5.4). This term, the so-called double counting
term, which was introduced in (5.1) to subtract the static interactions between the
electrons, since they are contained twice in (5.1) once in the first term due to the
DFT description but also in the third term that describes all pair interaction between
the electrons. The contribution to the total energy of this term is by far not negligi-
ble. The treatment of this term within the modeling however is very difficult and it
turns out to be a delicate topic, which has been discussed thoroughly in the literature
i.e. [AZA91] or [LKK01]. To take the contribution of this term into account so-called
double counting corrections can be introduced. For the present case a double count-
ing correction will be suggested in the context of diagrammatic perturbation theory
to be presented later in this chapter to correct the error, that was made by simply
neglecting the double-counting term in the modeling of (5.4).

5.2 Green Functions in Perturbation Theory

The diagrammatic perturbation theory to be applied to the new model (5.4) is for-
mulated in terms of Green functions. Therefore, a Green function for the multiband
Hubbard model will be derived in this section. Afterwards I present an interpreta-
tion of this Green function and related quantities within the so-called quasi-particle
picture.

5.2.1 A Green Function for the Multiband Hubbard Hamiltonian

The general definition of the time-ordered one-particle Green function (4.6) can be
applied to write down an expression for the Green function of the multiband Hub-
bard model. The Green function is formulated in terms of the TB-FLAPW basis
introduced in section 3.6 in chapter 3 with the creation and annihilation operators
c†
RLσ and c

RLσ for the corresponding TB-FLAPW vector states |RLσ〉

Gσ
RL,R′L′(t− t′) = − i

~

〈∣

∣T̂
[

c
RLσ(t) c†

R′L′σ(t
′)
]∣

∣

〉

. (5.6)

Since I express the new Green function with the operators of a lattice-type basis, I
chose the notation Gσ

RL,R′L′ for the new Green function in analogy to the notation
used for the DFT lattice Green function G0 σ

RL, R′L′ derived from the TB-FLAPW
ansatz in section 4.3 of chapter 4. However, these lattice Green functions are by
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no means identical, since Gσ
RL, R′L′ describes an interacting system and G0 σ

RL, R′L′

was totally determined by quantities from the DFT description, thus containing no
interactions beyond the static mean field considered in DFT. Since the new Green
function is used only to calculated collinear systems, it is convenient to calculate it
for each spin separately, since it is diagonal in spin space.

To derive an explicit formula for Gσ
RL,R′L′(t − t′) we start from the equation of

motion for the one-particle propagator

i~
∂

∂t
G(λt, λ′t′) = δ(t− t′)δ(λ− λ′) − i

~

〈

T̂
[

[ψ̂(λt), Ĥ]−; ψ̂†(λ′t′)
]〉

. (see 4)

If the Hamiltonian Ĥ is replaced by the model Hamiltonian ĤHubb and the field
operators ψ̂† and ψ̂ are replaced by the creation and annihilation operators c†

RLσ and

c
RLσ a differential equation for the new lattice Green function is obtained

i~
∂

∂t
Gσ

RL,R′L′(t− t′)

= δ(t− t′)δ
RR′δLL′ − i

~

〈

T̂
[

[c
RLσ(t), ĤHubb]−; c†

R′L′σ(t′)
]〉

.

The evaluation of the commutator in the second line is lengthy but straightforward.
Therefore, I only state the result here:
〈

T̂
[

[c
RLσ(t), ĤHubb]−; c†

R′L′σ(t′)
]

〉

=
∑

R′′L′′

HDFT σ
RL,R′′L′′

〈

∣

∣T̂
[

c
R′′L′′σ(t) c†

R′L′σ(t′)
]∣

∣

〉

+ U
∑

L′′σ′′

(1 − δLL′′δσσ′′)
〈

∣

∣T̂
[

c†
RL′′σ′′(t) cRL′′σ′′(t) cRLσ(t) c†

R′L′σ(t′)
]∣

∣

〉

+ J
∑

L′′

(1 − δLL′′)
〈

∣

∣T̂
[

c†
RL′′σ(t) c

RL′′σ(t) c
RLσ(t) c

†
R′L′σ(t′)

]∣

∣

〉

.

(5.7)

The term in the second line can be substituted by the definition (5.6) of the Green
function. The commutators in the third and forth line are replaced by the newly
defined quantity

Kσσ′′

RL,R′L′; L′′(t− t′) = − 1

~2

〈

∣

∣T̂
[

c†
RL′′σ′′(t) cRL′′σ′′(t) cRLσ(t) c

†
R′L′σ(t′)

]∣

∣

〉

(5.8)

This is all to be inserted in equation (5.7). The Fourier transform of (5.7) is then
given by

ε Gσ
RL,R′L′(ε) = δ

RR′δLL′ +
∑

R′′L′′

HDFT σ
RL,R′′L′′Gσ

R′′L′′,R′L′(ε)

+ i~ U
∑

L′′σ′′

(1 − δLL′′δσσ′′)Kσσ′′

RL,R′L′; L′′(ε)

+ i~ J
∑

L′′

(1 − δLL′′)Kσ
RL,R′L′; L′′(ε) .

(5.9)
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The last two terms can be summarized by introducing a combined interaction v as

vσσ′

LL′ = U(1 − δLL′δσσ′) + Jδσσ′(1 − δLL′) , (5.10)

leading to

ε Gσ
RL,R′L′(ε) = δ

RR′δLL′ +
∑

R′′L′′

HDFT σ
RL,R′′L′′Gσ

R′′L′′,R′L′(ε)

+ i~
∑

L′′σ′′

vσσ′′

LL′′ K
σσ′′

RL,R′L′; L′′(ε) .
(5.11)

For the final step I use the relation

∑

R′′L′′

(

G0 σ
RL, R′′L′′(ε)

) (

εδ
R′′R′δL′′L′ −HDFT σ

R′′L′′,R′L′

)

= δ
RR′δLL′ . (5.12)

(Relation (5.12) can be proved by simply evaluating the left-hand site.) The new
lattice Green function is now given by

Gσ
RL,R′L′(ε) = G0 σ

RL, R′L′(ε)

+ i~
∑

L′′′σ′′′

G0 σ
RL, R′′′L′′′(ε)

(

∑

L′′σ′′ v
σ′′′σ′′

L′′′L′′ K
σ′′′σ′′

R′′′L′′′,R′L′; L′′(ε)
)

.
(5.13)

Thus, the lattice Green function of the interacting system can be expressed in terms
of the DFT lattice Green function of the non-interacting system and the quantity
Kσσ′′

RL,R′L′; L′′ defined in (5.8). This quantity is also a Green function, which should be
clear from its definition. Since it contains two creation and annihilation operators, it
is a two-particle Green function further called two-particle propagator. The new one-
particle propagator thus can be expressed using the two-particle propagator, which
was to be expected according to the general discussion of the equation of motion
in chapter 4. However, instead of solving another equation of motion to obtain the
two-particle propagator, the chain of differential equations for the higher order Green
functions is to be broken using the following relation

∑

L′′σ′′

vσσ′′

LL′′ K
σσ′′

RL,R′L′; L′′(ε) = − i

~

∑

R′′′L′′′

Σσ
RL,R′′L′′(ε)Gσ

R′′L′′,R′L′(ε) , (5.14)

by introducing yet another new quantity Σσ
RL,R′L′(ε), the so-called self-energy. If

(5.14) is substituted in (5.13) the famous Dyson equation is obtained

Gσ
RL,R′L′(ε) = G0 σ

RL, R′L′(ε) +
∑

R′′R′′′

L′′L′′′

G0 σ
RL, R′′L′′(ε)Σσ

R′′L′′,R′′′L′′′(ε)Gσ
R′′′L′′′,R′L′(ε) (5.15)

If we now switch to a matrix notation of the Dyson equation

Ĝσ(ε) = Ĝ0 σ(ε) + Ĝ0 σ(ε) Σ̂σ(ε) Ĝσ(ε) (5.16)
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with the new Green function Ĝσ, the DFT Green function Ĝ0 σ and the self-energy
Σ̂σ considered to be matrix operators with elements for each combination of orbital
indices L and L′ and each pair of lattice sites R and R′, the Dyson equation directly
yields

Ĝσ(ε) =

[

[

Ĝ0 σ(ε)
]−1

− Σ̂σ(ε)

]−1

. (5.17)

for the operator of the new lattice Green function. To obtain a closed set of equations,
an expression for the self-energy is derived from (5.14)

Σσ
RL,R′L′(ε) = i~

∑

R′′′L′′′

L′′σ′′

(

vσσ′′

LL′′ K
σσ′′

RL,R′′′L′′′; L′′(ε)
)

(

Gσ
R′′′L′′′,R′L′(ε)

)−1
. (5.18)

In the following section, I introduce the FLEX method to calculate the two-particle
propagator (5.8), which is inserted into (5.18) to obtain the self-energy. With the self-
energy the new lattice Green function can then be calculated which will be used in
turn to calculate electron densities and spectral functions. Note that the equations
(5.17) and (5.18) have to be solved self-consistently, since the self-energy itself is
expressed in terms of the new lattice Green function. Before a solution of (5.18)
is derived, I like to examine some properties of the self-energy, which can be best
understood within the quasi-particle picture.

5.2.2 The Self-Energy and the Quasi-Particle Picture

If an electron or a hole moves through a crystal, the interaction with the other
particles of the crystal will lead to a redistribution of those particles, such that the
moving electron or hole will be surrounded by particles of the opposite charge. But
the cloud of particles surrounding the initial particle in turn influences the movement
of the initial particle. If the particle together with the cloud is understood as one
entity called the quasi-particle, the real part of the self-energy gives the energy of
this particle. The name “self-energy” thus originates from this quasi-particle picture,
where it is interpreted as the energy of a particle caused by the particle itself due to
interaction of the particle with its environment. The one-particle propagator of the
interacting system is therefore also called the quasi-particle propagator.

If equation (5.17) is restated in the following way

Ĝσ(ε) = Ĝ0 σ(ε)
[

1 − Ĝ0 σ(ε)Σ̂σ(ε)
]−1

(5.19)

it can be seen on the other hand that the one-particle propagator of the interacting
system is obtained due to renormalization of the DFT Green function. The new Green
function is therefore also called the renormalized Green function and the DFT Green
function is called the unrenormalized Green function respectively. The quasi-particle
picture then gives rise to the interpretation of the renormalized Green function as
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propagator of a dressed particle, whereas the DFT Green function is the bare particle
propagator in this interpretation. From the Dyson equation (5.16) however another
interpretation of the self-energy can be derived related to the interpretation of the
new lattice Green function as renormalized quantity. This is achieved by writing the
Dyson equation as a geometric series by subsequently replacing Ĝσ on the right-hand
side of (5.16) by Ĝ0 σ + Ĝ0 σΣ̂σĜσ, which leads to an infinite summation starting with
the following terms

Ĝσ(ε) = Ĝ0 σ(ε) + Ĝ0 σ(ε)Σ̂σ(ε)Ĝσ(ε) + Ĝ0 σ(ε)Σ̂σ(ε)ĜσΣ̂σ(ε)Ĝσ(ε) + . . . (5.20)

This is a typical equation of scattering theory, where the different terms of the ge-
ometric series describe single, double, triple, etc., scattering processes, and Σ̂σ is
the scattering potential. The renormalized Green function Ĝσ is expressed here by
the unrenormalized Green function Ĝ0 σ and all interaction processes of the unrenor-
malized Green function, which are contained in the self-energy Σ̂σ. In analogy to
this interpretation of the self-energy, an expression of the two-particle propagator in
terms of the vertex function will be introduced in the next section.

For now, I like to return once more to the quasi-particle picture. The quasi-particle
loses energy due to interaction with its environment, hence, it will decay and has a
finite life-time τ . It can be shown that the imaginary part of the self-energy is
inversely proportional to the life-time of the quasi-particle

1

τ
∼ Im Σ̂σ(ε) . (5.21)

When describing the system in terms of real particles, the decay of the quasi-particle
is equivalent to the decay of an excited state and the excitation energy is redistributed
within the crystal due to the interaction of the particles of the crystal among them-
selves. Because of the finite life-time of the quasi-particles or likewise because of the
decay of excited states the peaks seen in photo-emission spectra have finite height
and finite width. The spectral function calculated from the quasi-particle propagator
shows the same features, since it incorporates the interaction among the particles.
Within the quasi-particle picture it can be also understood now why these features
are not reproduced when using the DFT Green function to derive the spectral func-
tions, since the bare particle propagator does not describe the physical mechanisms
giving rise to these features in the spectra.

5.3 The Language of Feynman Diagrams

In this small section, I want to present the diagrammatic notation I use to formulate
equations in terms of diagrams. I assume that the reader is already acquainted with
the rules of drawing diagrams and with their application in the context of many-body
perturbation theory. Thus, this section is by no means a general introduction to the
topic of Feynman diagrams because this would be well beyond the scope of this work.
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For an intuitive approach to Feynman diagrams I can refer the reader to the book by
Mattuck [Mat67] and for a more mathematical introduction to the book by Fetter
and Walecka [FW71].

The first part of this section is a compendium of the symbols to be used in the
drawing of diagrams. In the second part, a diagrammatic expression of equation
(5.18) for the self-energy in terms of the two-particle propagator is derived.

5.3.1 Vocabulary of the Diagrammatic Language

The intriguing idea of the diagrammatic notation of equations is to replace lengthy
end complicated mathematical expression by simple drawings. Of course, the math
is still there but hidden in the diagrams, in the rules how to draw them and last
but not least in the rules how to translate them back into formulas. The table of
diagrammatic symbols 5.1 thus is not only a listing of all symbols to be used in
this chapter. It also contains the prescription how to translate these symbols into a
mathematical formula and in addition it gives a short description of all symbols. The
list can be applied to translate whole equations from diagrammatic notation into a
mathematical formulation using the following set of rules:

1. Each symbol in the equation is to be replaced by the corresponding expression
listed in table 5.1. For convenience, the prefactors are already listed there as
well.

2. The entries and exits of the diagrams in table 5.1 are labeled by the numbers
1, 1′, . . .. Each number represents the variables R, L and σ that have to be
inserted into the mathematical expression instead of the label. The numbering
of a diagram with two entries and two exits is always done as in the following
example for the vertex function Γ:PSfrag replacements

1

2 2′

1′

Γ

3. Finally, a sum/an integration has to be carried out over all internal indices of
the diagrammatic equation.

I like to mention explicitly that no time axis is associated when composing the di-
agrams. The diagrams are drawn using only the conventions of graph theory for
drawing connected graphs and the symbols do not carry any additional meaning
other than the one introduced in table 5.1. Consequently, the Green-function line
represents both electrons and holes. For example, if all lines in a diagram carrying
arrows that point into the same direction, the processes depicted in the diagram can
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Symbol Formula Description

iG1,1′(ε) G: Green function of
the interacting system

PSfrag replacements K i2K12,1′2′(ε1, ε2; ε1 + ε, ε2 ± ε) K: two-particle
propagator

−iv v: pair interaction

〈12| − iv|1′2′〉 − 〈12| − iv|2′1′〉 V̄ : antisymmetrized
pair interaction

PSfrag replacements
Σ −iΣ1,1′(ε) Σ: self-energy

PSfrag replacements Γ 〈12 |iΓ(ε1, ε2; ε1 + ε, ε2 − ε)| 1′2′〉 Γ: vertex function

PSfrag replacements T pp 〈12 |−iT pp(ε)| 1′2′〉 T pp: particle-particle
T-matrix

PSfrag replacements T eh
〈

12
∣

∣−iT eh(ε)
∣

∣ 1′2′
〉

T eh: electron-hole
T-matrix

Figure 5.1: List of all diagrammatic symbols used in this chapter.
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take place between two particles with the same charge. Thus, the same diagram
describes the process between two electrons and also between two holes. If a Green-
function line or an entry or an exit in a diagram does not carry any arrow, it means
that the same diagram can be drawn with arrows pointing in one direction and also
with the arrows pointing into the other direction.

The wiggly line in the list of diagrammatic symbols represents the pair interaction.
It can symbolize either the direct or the exchange interaction, hence it corresponds
to the combined interaction v defined in (5.10). If the interaction vertex is drawn
explicitly for the direct and the exchange interaction

PSfrag replacements

iU

LσLσ

L′σ′L′σ′

Ls

Ls

PSfrag replacements −iJ

L′σ

L′σ

(5.22)

where in these example graphs the entries and exits of the vertices were explicitly
denoted by the states of the incoming and outgoing particles, it becomes obvious why
the interaction was called direct for one case and exchange for the other: In the first
case, the interaction takes place between particles which are in the same state before
and after the interaction. During the exchange interaction one particle changes from
its initial state to the initial state of the other particle and vice versa. Therefore,
the exchange interaction can only occur between particles having the same spin and
the same charge, whereas the direct interaction can also occur between particles with
opposite charge.

The definition of the antisymmetrized interaction V̄ from table 5.1 can be written
in terms of diagrams as

PSfrag replacements
= −

.

(5.23)

The matrix elements of the Coulomb repulsion are to be replaced by the direct
interaction term of the multiband Hubbard model, since the antisymmetrized pair
interaction is introduced here solely for interactions between an electron and a hole.
Hence, the lines of incoming and outgoing states are marked with errors pointing into
opposite directions. It should be mentioned that this quantity is only a combination
of the (non-symmetrized) pair interaction and thus it does not describe any new
kind of interaction. It is only a different way to represent the pair interaction V in
diagrammatic language but it can simplify the drawing of diagrams significantly.
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5.3.2 Two-Particle Propagator and Self-Energy

In the previous section, I derived an expression for the self-energy in terms of the
interacting Green function and the two particle propagator

Σσ
λ,λ′(ε) = i~

∑

λ′′λ′′′,σ

(

vσσ′

λλ′′ K
σσ′

λλ′′λ′′′(ε)
) (

Gσ′

λ′′′λ′(ε)
)−1

, (see 5.18)

where the indices R and L in equation (5.18) are replaced by the multiindex λ here
to simplify the notation. So far, this expression for the self-energy is of little use,
since both the two-particle propagator as well as the interacting Green function are
unknown.

However, we can rewrite this equation in terms of diagrams now. In order to do
so, I introduce the following picture for the self-convoluted two-particle propagator
Kσσ′

λλ′′λ′′′ , which is a two-particle propagator with one entry and one exit at the same
site λ by

self

convolution

PSfrag replacements

Kσσ′

λ1λ2;λ1′λ2′

λ1σ λ1′σ

λ2σ′ λ2′σ
′

KK == Kσσ′

λλ′′λ′′′

λσ λ′′σ

λ′′′σ′

. (5.24)

Note that the closed loop is not a Green-function line added to the non-self-convoluted
diagram but it is a Green-function line that is already contained in the two-particle
propagator. With this definition, the diagrammatic expression for the self-energy in
terms of the two-particle propagator and the one-particle propagator is given by

PSfrag replacements

Σ K
[

=
]−1

.

(5.25)

In the next step, an diagrammatic expansion for the two-particle propagator is intro-
duced. From the general definition (5.8) of the two-particle propagator, it is known
that K must contain all two-particle processes. Therefore the two-particle propaga-
tor is expanded here in terms of two non-interacting one-particle propagators and
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the vertex function Γ

PSfrag replacements

K

Γ

ΓΓ

+

+

+

=

−

−

(5.26)

In analogy to the self-energy containing all interaction processes between one particle
and the surrounding medium, the vertex function is to contain all pair interaction
processes between two particles. Note that in the expansion of the two-particle
propagator as well as in all diagrams derived from equation (5.26) the one-particle
Green functions of the interacting system has to be used. Furthermore, it should be
mentioned that the first three terms are not simply products of two Green-function
lines but these products have to be convoluted as well. Thus, term one and two are
all contained in the bare particle-particle propagator, defined by

Ψσσ′

λ1λ2;λ′
1λ′

2
(ε) = i

∫ ∞

−∞

dε′

2π
Gσ

λ1λ′
1
(ε− ε′)Gσ′

λ2λ′
2
(ε′) (5.27)

whereas the third term is the bare electron-hole propagator

Φσσ′

λ1λ2;λ′
1λ′

2
(ε) = i

∫ ∞

−∞

dε′

2π
Gσ

λ1λ′
1
(ε+ ε′)Gσ′

λ2λ′
2
(ε′) . (5.28)

If the expansion for the two-particle propagator (5.26) is inserted into equation (5.25),
the self-energy is expressed in terms of the vertex function and the one-particle
propagator

PSfrag replacements

+

+=

−

−Σ

ΓΓ ΓΓ

ΓΓ

(5.29)
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The first two terms yield the contribution to the self-energy due to the static interac-
tion with the charge background caused by other particles in the system, which can
also be obtained from Hartree-Fock theory. Furthermore, this contribution is already
partly contained in the DFT description of the system. This is to be kept in mind
and will be treated when a double-counting correction is introduced.

In the last three terms two Green-function lines are connected to the vertex function
Γ, which stands for the fluctuation-exchange interaction between these two particles.
Thus, this part in each diagram depicts pair fluctuation-exchange interaction pro-
cesses. These pair interaction processes in each diagram are contracted with another
Green-function line to yield the contributions to the self-energy. Hence, the last
three terms describe the contribution to the self-energy due to the interaction of a
quasi-particle with all pair fluctuation processes. This expression for the self-energy
will be further evaluated within the framework of the FLEX method.

5.4 The FLEX Method

The fluctuation-exchange (FLEX) method is a simple approximation to determine
the vertex function describing the exchange fluctuation interaction between a pair
of quasi-particles retaining the correlation between these particles. Within FLEX
an expression for the vertex function is obtained by expansion in terms of Feynman
diagrams and then by selecting sub-classes of these diagrams, which are summed
up to infinite order using geometric series. The diagrams are selected such that
only these fluctuations between the pair of particles are taken into account which
correspond to multiple scattering processes of these particles. The selected diagrams
are thought to describe processes important for materials within the regime of the
weak and intermediate correlation. However, if the correlation strength becomes
stronger, the FLEX description becomes more and more insufficient, because it does
not reproduce the Mott metal-insulator transition since the diagrams yielding an
important contribution to the description of the transition are not contained in the
subclasses of the FLEX diagrams.

The FLEX method was introduced by Bickers and Scalapino in 1989 [BS89], who
also named the method FLEX. However, the same diagrams and equations were
already derived between 1971 and 1973 by Y. U. Babanov et al. [BNSF71], [BNSF73a]
and [BNSF73b]. The derivation of FLEX presented here is based on the works by
Y. U. Babanov et al. using their notation of FLEX, because it is much simpler
and much more transparent than the derivation and notation used by Bickers and
Scalapino while yielding the same results. Furthermore, the FLEX equations will be
derived here for the description of collinear systems, which is an extension to the
original formulation of both groups of authors. A similar yet not identical extension
of the original FLEX method to spin-polarized systems was introduced by Katsnelson
and Lichtenstein [LK98] and [KL99], which is named SPTF for ”Spin-polarized T-
matrix FLEX” method.
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I will first derive a set of equations to calculate the vertex function. These ex-
pressions are further simplified using the so-called ladder approximation and finally
the approximated vertex-function will be used to find an expression to determine the
self-energy of the multiband Hubbard model.

5.4.1 Equations for the Vertex Function Γ

The vertex function Γ is a connected quadrupole with two entry and two exit vertices.
For the sake of clarity, I like to point out again that the entries and exits are labeled
according to the following definition

〈12 | iΓ | 1′2′〉 ≡
PSfrag replacements

1

2 2′

1′

Γ . (5.30)

The diagrammatic expansion of the vertex function contains many different diagrams.
The set of all this diagrams shall be denoted by M . Three ways of cutting the
diagrams contained in M along two Green-function lines can be distinguished:

1. a cut of the first kind separates the entries (1, 2) form the exits (1′, 2′),

2. a cut of the second kind separates the vertices (1, 1′) form (2, 2′),

3. a cut of the third kind separates the endings (1, 2′) form (2, 1′) .

All diagrams contained in M can now be classified with respect to the possibility if
they can be separated by a cut of kind i, i = 1, 2, 3 or if they can not be separated.
Hence, the following subsets of diagrams can be defined:

• set mi contains all diagrams that can be separated by a cut of the i’th kind,

• set Mi denotes all diagrams that can NOT be separated by a cut of the i’th
kind and

• set R contains all diagrams that can NOT be separated by a cut of ANY kind.

To make this classification a little more transparent, some first and second order
diagrams of the expansion of the vertex function are depicted in figure 5.2. The
diagrams of the first order 1a and 1b contain no Green-function lines, hence they can
not be cut along such lines. Therefore, they belong to subset R and to all subsets
M1,M2,M3. The diagram 2a belong to m1,M2,M3, 2b belongs to m2,M1,M3 and
2c belongs to m3,M1,M2.
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PSfrag replacements
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Figure 5.2: Selected first and second order diagrams of the vertex
function

From the classification of diagrams, it should be obvious that all diagrams have
to be contained at least in one subset. In figure 5.3 it is shown graphically how
the complete set of diagrams M composing Γ can be separated into the subsets of
diagrams. All diagrams contained in subset M1 for example can not be separated per
definition by a cut of kind 1 but they might be separated with respect to the cuts of
kind 2 and 3. Thus, each subset Mi is composed of the other subsets mj, j 6= i and
R

M1 = R +m2 +m3, M2 = R +m1 +m3, M3 = R +m1 +m2 . (5.31)

Furthermore, the whole set of all diagrams of M can obviously be constructed of the
subsets mi and R:

M = R +m1 +m2 +m3 . (5.32)

which yields together with (5.31)

M = Mi + mi, i = 1, 2, 3 . (5.33)

Equation (5.33) is now used to derive a closed integral equation for the vertex function
Γ. In order to do that, I introduce two vertex functions
PSfrag replacements

Γ1 γ1and

,

(5.34)

which are to contain all processes described by all diagrams contained in the subsets
M1 and m1 respectively. Per definition, γ1 contains all graphs, which can be sepa-
rated by cutting two Green-function lines using a cut of kind 1. The diagrammatic
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Figure 5.3: Relations between the subsets of diagrams composing Γ

expansion of vertex function γ1 is therefore given by an infinite sum of diagrams,
where the first terms are depicted by

PSfrag replacements

Γ1Γ1Γ1Γ1Γ1Γ1Γ1Γ1Γ1γ1 +++= · · ·

(5.35)

The relation between the subsets of diagrams (5.33) is used to rewrite this infinite
series in terms of the vertex function Γ

PSfrag replacements

Γ1

Γ1Γ1

Γ1Γ1 Γ1

γ1

γ1 γ1

+

+

=

=

=

Γ

× (5.36)

and a closed integral equation for Γ can be obtained by inserting (5.36) into (5.33).

PSfrag replacements
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Γ

Γ1Γ1

Γ1

Γ1

Γ1 γ1
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+

=

=

Γ
×

.

(5.37)

This equation is the so-called horizontal equation [BNSF71]. For the sake of com-
pleteness it should be mentioned here that two other integral equations for Γ can also
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be derived in a similar way based on cuts of kind 2 and 3. They were named vertical
and parquet equation. However, these equations will not be discussed here because
they are not used in the FLEX method. In the next sections, an approximation for
Γ1 is suggested such that (5.37) can be used to determine the vertex function.

5.4.2 The Horizontal Ladder Approximation

The name horizontal ladder approximation was also introduced by Babanov et al.
and denotes the procedure to replace the vertex function Γ1 in the horizontal equa-
tion (5.37) by its lowest-order diagram which is simply the interaction v (or the
antisymmetrized interaction V̄ ). This procedure leads to a selection of subsets of
diagrams contained in the diagrammatic expansion of the vertex function Γ. One of
these subsets contains the diagrams known as ladder diagrams which are retained in
the “conventional” ladder approximation but in the horizontal ladder approximation
in the sense of Babanov et al. a variety of additional diagrams is also retained as
can be seen below. If this approximation is imposed, the remaining diagrams can be
divided into two subsets:

• Particle-Particle Channel: This set contains only diagrams that describe
processes between two particles with the same charge (either one electron with
another electron or a hole with another hole).

• Electron-Hole Channel: This set contains only diagrams that describe pro-
cesses between an electron and a hole.

The horizontal ladder approximation only retains diagrams from the expansion of Γ,
that belong to either one subset. Speaking from a more physical point of view, in
the description of a system with the FLEX method there are no processes contained
where the interaction of a particle pair with identical charges is combined with the
interaction of an electron-hole pair in one single process. For the discussion of the
ladder approximation it is convenient to analyze the diagrammatic equations for each
channel separately.

Particle-Particle Channel. If we consider only those diagrams with Green-function
lines carrying arrows which point into the same direction, replacing the vertex func-
tion Γ1 in (5.37) by the interaction line v yields the horizontal ladder approximation
for the particle-particle vertex function. The first term of the infinite sum of diagrams
can be depicted as

+ ++ =

PSfrag replacements

Γ ≈ . . . T pp , (5.38)

where the particle-particle T-matrix T pp was introduced as the quantity containing
the result of the summation over the infinite number of diagrams. All diagrams to
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be contained in T pp are made up of vertical interaction lines connected by a pair of
horizontal Green-function lines. Because of this structure the diagrams are called
ladder diagrams and the name ladder approximation originates from this subset of
diagrams. The infinite sum of ladder diagrams in (5.38) corresponds to a geometric
series. Thus, a closed integral equation for the particle-particle T-matrix can be
obtained

+= g1PSfrag replacements T ppT pp . (5.39)

To derive a mathematical formula for T pp from (5.39) the particle-particle propagator
Ψ defined in (5.27) can be used to express T pp in matrix operator notation as

T pp(ε) = v + v Ψ̂(ε) T pp(ε) (5.40)

= v + v Ψ̂(ε) v + v Ψ̂(ε) v Ψ̂(ε) v + v Ψ̂(ε) v Ψ̂(ε)v Ψ̂(ε) v + . . .

which can be solved using the geometric series yielding.

T pp(ε) = v [1 − Ψ(ε) v]−1 . (5.41)

The vertex function in the particle-particle channel is thus approximated by a sum
over ladder diagrams yielding the particle-particle T-matrix T pp. In figure 5.4 the first
three lowest-order diagrams form the ladder diagram series are depicted. These ladder
diagrams describe the repeated scattering of two particles with the same charge. In
diluted electron systems with a short-range repulsive potential the electron-electron
ladder diagrams are the leading term in the diagrammatic expansion of the exact
self-energy (see i.e. [FW71]). Hence, the electron-electron ladder diagrams from
the particle-particle channel yield a good description for the electron system in the
limit of small electron densities. The expansion of the self-energy in terms of the
electron-electron ladder approximation is conventionally referred to as “the” ladder
approximation. The horizontal ladder approximation in the sense of Babanov et
al. contains already more types of diagrams in the particle-particle channel namely
the hole-hole ladder approximation and in addition to that contains a whole subset
of diagrams in the electron-hole channel which are not retained in the conventional
ladder approximation. These diagrams belong to the electron-hole channel.

Figure 5.4: First, second and third order ladder diagram
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Electron-Hole Channel. In this channel the vertex function Γ1 in (5.37) is replaced
by the symmetrized interaction defined in (5.23). This also yields an infinite sum
over diagrams

+ ++ =

PSfrag replacements

Γ ≈ . . . T eh (5.42)

where the electron-hole T-matrix T eh was introduced. A closed integral equation for
this T-matrix is given by

+= g1PSfrag replacements T ehT eh . (5.43)

I like to further expand the electron-hole T-matrix by inserting the definition of the
antisymmetrized interaction (5.37). Furthermore, I like to make use of the underlying
cubic symmetry of the crystal. It was already discussed in chapter 4 upon introducing
the DFT lattice Green function that the electronic states at one atomic site do not
overlap due to the cubic symmetry. Therefore, if an electron and a hole interact the
final state of the electron and the hole has to be identical to the initial states for both
particles if only those process between particles at the same lattice site are consider. If
the electron-hole T-matrix is expanded only in terms of Green functions of particles
located at the same lattice site only two subsets of all the diagrams contained in
the expansion of T eh are retained. One subset contains only diagrams with vertical
interaction lines further referred to as electron-hole channel 1 (eh1) and the other
subset contains only horizontal interaction lines and shall be denoted as electron-
hole channel 2 (eh2). Due to the symmetry local processes between an electron and
a hole described by diagrams containing horizontal and vertical interaction lines at
the same time can not occur.

For each subsets of diagrams a closed integral equation of the same form as equation
(5.43) can be derived. Consequently, two electron-hole T-matrices further denoted
as T eh

1 and T eh
2 can be introduced by

= += g1PSfrag replacements T eh
1T eh

1 (5.44)

for the electron-hole channel 1 and for the electron-hole channel 2 by

+= g1PSfrag replacements T eh
2T eh

2 . (5.45)

I like to point out once more that by replacing the full electron-hole T-matrix T eh by
T eh

1 and T eh
2 an additional approximation is introduced which is identical to neglecting

all diagrams in the expansion of T eh describing inter-atomic processes. However, it
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will be demonstrated in the next chapter, that this approximation is justified if the
diagrams are finally evaluated within the framework of dynamical mean-field theory.

Figure 5.5 shows some examples of diagrams from the electron-hole channel 1 in the
first row and from the electron-hole channel 2 in the second line. The diagrams from
the electron-hole channel 1 have the same structure as the diagrams in the particle-
particle channel and describe multiple scattering processes between an electron and
a hole. The diagrams of the second electron-hole channel are all composed of one
interaction lines with a certain number of electron-hole bubble inserted into the
line. In the lowest order one electron-hole bubble is inserted as depicted in the first
example graph in 5.5 and for higher orders more electron-hole bubbles are inserted.
These diagrams depict the screening of the Coulomb repulsion due to pair interaction
fluctuations and have the same topology as the diagrams that yield the self-energy
in the GW method. These diagrams are known to give an important contribution to
the self-energy of the degenerated high-density electron gas (see i.e. [FW71]). In the
limit of high electron density, this subclass of diagrams contribute the leading term
to the diagrammatic expansion of the exact self-energy. Since the FLEX method
contains both subclasses of diagrams yielding the exact self-energy in the case of low
and high electron densities FLEX is also thought to yield an accurate extrapolation
for system with intermediate densities.

Figure 5.5: The first row shows example graphs from the eh1-
channel, the second row shows two graphs from the eh2-channel
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5.4.3 Determining the Self-Energy within FLEX

I return now to the diagrammatic expansion of the self-energy Σσ in terms of the
vertex function Γ given by

PSfrag replacements

+

+=

−

−Σ

ΓΓ ΓΓ

ΓΓ

. (see 5.29)

If the FLEX approximation to the vertex function is inserted into this expression,
the self-energy can be decomposed into a sum over four different terms, which are
depicted below.

The first contribution Σσ HF contains the first two graphs, which could be also
obtained within Hartree-Fock theory

−=PSfrag replacements Σσ HF

.

(5.46)

The second order terms from the expansion of the vertex function are summarized
in Σσ (2) and can be drawn as

−=PSfrag replacements Σσ (2)

.

(5.47)

The last two contributions originate from the particle-particle T-matrix

−=

PSfrag replacements

Σσ pp T ppT pp
(5.48)

and from the electron-hole T-matrix

=

PSfrag replacements

Σσ eh T eh

,

(5.49)
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where the contribution from the electron-hole channel is depicted here using the full
electron-hole T-matrix calculated form the antisymmetrized interaction. If only local
electron-hole interactions are taken into account the single term above can be replaced
by a sum over two terms of the same structure for the electron-hole channel 1 and
the electron-hole channel 2 respectively yielding two contributions Σσ eh1 and Σσ eh2

to the full FLEX self-energy where the first contribution is obtained by replacing T eh

in (5.49) by T eh1 and the second by inserting T eh2 instead of T eh in (5.49).

An diagrammatic expansion of the FLEX self-energy is thus obtained by summing
up the different parts depicted above. If all double-counting corrections are taken
into account, the FLEX self-energy is given by

Σσ
λλ′(ε) = Σ

σ (2)
λλ′ (ε) + Σ

σ pp (3)
λλ′ (ε) + Σ

σ eh (3)
λλ′ (ε) . (5.50)

The double-counting corrections can be carried out in two steps.

The first order term of the diagrammatic expansion of the self-energy contribu-
tions from the particle-particle channel and the electron-hole channel yield the same
contribution as contained in Σσ HF and the second order term leads to diagrammatic
contributions to the self-energy of the same kind as Σσ (2). Hence, in order to avoid
multiple counting of contributions like Σσ HF and Σσ (2) to the self-energy the second
and third term are included here starting from third-order graphs as denoted by the
superscript (3).

Secondly, the Hartree-Fock self-energy contribution is completely neglected in the
calculation of the self-energy in order to take care of the double-counting correction
introduced at the very beginning of this chapter in the TB description of the electronic
system (5.1). The double-counting correction term was introduced in (5.1) to formally
subtract the contributions describing electronic correlation which are contained in the
electron-electron interaction term but which are also contained already in the DFT
description of the system. DFT calculations carried out in the GGA in the present
context yield a local single-particle mean field description of the electronic system. On
the other hand, describing the electronic system approximately only in terms of the
Hartree-Fock (HF) diagrams also leads to a mean-field type yet non-local description
of the electronic system. Thus, within GGA and the HF approximation the electronic
system is described in a mean-field type manner. In particular, both descriptions
do not take into account correlation effects originating from true particle-particle
interaction. Hence, if the self-energy is calculated using (5.50) it will only contain
contributions neither contained in the DFT description nor contained in the Hartree-
Fock term and by assuming that the DFT mean-field description is of the same type
than the HF description the latter is not taken into account. It is however clear that
the two contributions from the HF diagrams and from the GGA will not cancel out
completely and might even differ substantially since both the HF approximation and
the GGA are obtained by applying completely different approximation techniques.

In general, if we assume for a moment that the exact self-energy of the interacting
system is known, it can be seen directly, that the contributions from the exchange-
correlation potential would have to be completely omitted from the description of
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the system since the following relations hold: The connection between the interacting
Green function G of an arbitrary electronic system and the bare Green function G0

describing a non-interacting particle is given by

G(ε) = G0(ε) + G0(ε)Σ(ε)G(ε) , (5.51)

where Σ now is the exact self-energy of the interacting system. For the Kohn-Sham
Green function GKS a similar equation is valid

GKS(ε) = G0(ε) + G0(ε)VxcGKS(ε) , (5.52)

where Vxc is the exact exchange-correlation potential. It follows immediately, that G
can be obtained from GKS by

G(ε) = GKS(ε) + GKS(ε)[Σ(ε) − Vxc]G(ε) . (5.53)

Hence, if Σ and Vxc could be determined exactly the double-counting correction can
be carried out straightforwardly. However, in practice the self-energy is only deter-
mined approximately e.g. by evaluating only the contribution of certain subsets of
diagrams contained in the diagrammatic expansion of the self-energy. On the other
hand, the exact exchange-correlation potential Vxc is also not known but is approxi-
mated by a parametrizations of Vxc in the LDA or GGA. Whereas the diagrammatic
contributions to the self-energy are explicitly calculated for particles in certain states
yet not all diagrams in the expansion of Σ are calculated the parametrization of Vxc

in general makes it impossible to single out the contributions of distinct electronic
states to the approximate form of the exchange-correlation potential. There are most
like contributions contained already in the lowest order (Hartree-Fock) diagrams of
the self-energy that are not contained in the parametrized Vxc and vice versa. Con-
sequently, simply subtracting Vxc from Σ will no longer yield the correct description
of the electron system. One might however still argue, that the HF approximation is
consistent with the perturbative many-body approach whereas the DFT description
is not and thus the Green function G0 would better be determined from the HF ap-
proximation. However, the self-energy correction obtained from the FLEX method
is treated as a perturbation to the non-interacting system and the quality of such an
perturbative approach depends on the choice of the starting point. Since it is well
known that LDA or GGA for metals yield a description much more in agreement with
experiments than the HF approximation, the LDA or GGA description is the favor-
able starting point. To conclude this discussion it might be worth mentioning that
all possibilities considered by other authors to introduce double-counting correction
terms in practical calculations are equally based on an approximate scheme and no
procedure has been found yet to derive an analytic expression for the double-counting
correction, so that there remains some degree of arbitrariness how to incorporate the
double-counting correction.
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6 Dynamical Mean-Field Theory

The introduction of the multiband Hubbard model (5.4) allowed to include the pair
interaction explicitly into the mean-field DFT description. By applying the FLEX
method an expression for the self-energy was derived to approximately determine the
self-energy and in turn to calculate the one-particle Green function of this new model.
However, a huge computational effort is necessary to calculate the full non-local
FLEX self-energy Σσ

RL,R′L′(ε) or likewise the momentum-dependent Fourier trans-
form Σσ

L,L′(k; ε). Therefore, the self-energy is to be calculated using a single-site
approximation (SSA) such that only the on-site part of the self-energy is to be calcu-
lated and the off-site matrix elements are set to zero. This is of course equivalent to
the neglect of the k-dependence of the Fourier transform. However, instead of simply
neglecting the k-dependence of the self-energy, the SSA is to be applied in a way that
corresponds to the so-called dynamical mean-field theory (DMFT). This will finally
lead to a combined GGA+DMFT scheme to determine the electronic structure of
the materials of interest.

The development of DMFT was triggered by Metzner and Vollhardt in 1989 [MV89],
who introduced a new limit to correlated electron systems, the limit of infinite di-
mensions d → ∞ or equivalently an infinite number of neighboring lattice sites.
Although the itinerant character of the electrons and the effects of the pair inter-
action is maintained, in this limit the description of the system yields a simplified,
momentum-independent self-energy. The second cornerstone of DMFT was then laid
by the works of Ohkawa in 1991 [Ohk91] and 1992 [Ohk92] and Georges and Kotliar
in 1992 [GK92], who showed that a many-body model like the Hubbard model can
be mapped onto an Anderson impurity model subject to a self-consistent bath for
d → ∞. Thus, reliable techniques for treating impurity models, that had been de-
veloped for over 30 years, could now be used to study correlated electrons in large
dimensions. Georges and Kotliar were also able to show a precise correspondence
of this description of correlated electron systems to the classical mean-field theory.
However, as opposed to the classical case the on-site quantum problem remains a
many-body problem such that only spatial fluctuations are frozen in this approach,
but local quantum fluctuations are fully taken into account. Therefore, this method
is called the dynamical mean-field theory leading to a neglect of the k-dependence
of the self-energy whereas the energy dependence of the self-energy is retained.

In this chapter, I want to first motivate the SSA of the self-energy obtained in
the framework of DMFT for the multiband Hubbard model in the limit of infinite
dimensions. By applying the SSA to a system with finite dimensions the set of
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dynamical mean-field equations is obtained which has to be solved self-consistently.
Based on these equations I then derive an GGA+DMFT description for spin-polarized
systems in combination with prior GGA calculations. In the last part of the chapter
I will present some details of the implementation of this GGA+DMFT scheme as
well as the equations used to calculate the self-energy numerically using the FLEX
method within the framework of DMFT.

6.1 Solution of the Multiband Hubbard Model within

DMFT

In the review article [GKKR96] by Georges et al. the DMFT equations are derived
from the analogy to classical mean-field theory and then applied to specific problems.
Since this deductive ansatz to introduce DMFT is very general I do not believe it to
be very instructive to resume this ansatz to explain DMFT as it is used in this thesis.
To avoid the abstract formalism of the general formulation of DMFT, I will hence
present the basic ideas of DMFT directly in connection with their application to the
multiband Hubbard model. Furthermore, I like to introduce dynamical mean-field
theory much more in accordance to the way it was originally developed. Hence, I first
analyze the behavior of the Hubbard model in the limit of large dimensions and then
discuss the dynamical mean-field equations obtain for a system with finite dimensions.
(This ansatz follows up closely the introduction of DMFT in the review article by
Held [HNK+06].) In the remainder of this section the DMFT mean-field equations
are than used to formulate the GGA+DMFT self-consistency scheme which is an
iterative scheme to determine the interacting lattice Green function of the multiband
Hubbard model.

The multiband Hubbard Model in infinite Dimensions. Let me first restate the
multiband Hubbard model as derived in chapter 5

ĤHubb =
∑

RL,R′L′; σ

HDFT σ
RL, R′L′ c

†
RLσcR′L′σ

+
1

2
U

∑

RL̃L̃′σσ′

(1 − δ
L̃L̃′δσσ′)c

†

RL̃σ
c†
RL̃′σ′cRL̃′σ′cRL̃σ

+
1

2
J
∑

RL̃L̃′σ

(1 − δ
L̃L̃′)c

†

RL̃σ
c†
RL̃′σ

c
RL̃σ

c
RL̃′σ

.

(see 5.4)

The matrix elements HDFT σ
RL, R′L′ in the first term describe the overlap between the

electronic eigenstate with the quantum numbers L, L′ at site R as well as the overlap
of these states with those on all other sites R′. The creation and annihilation operator
in this term describe so to speak the “annihilation” of an electron in one state, which
is then “created” again in another state. Therefore, the first term of the Hubbard
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model is often called the hopping term and the HDFTσ is often referred to as hopping
matrix in this context. I resign to this nomenclature and I also like to switch to the
conventional notation

HDFT σ
RL, R′L′ → tσ

RL, R′L′ (6.1)

for the elements of the hopping matrix tσ. To simplify the notation in the further
discussion I like to assume that the hopping from and to a site R does only take place
between this site and its nearest neighboring sites at positions {R′}. All Z‖R−R′‖

neighboring sites are of course situated in the same distance ‖R − R′‖ to site R.
In a Gedanken experiment a huge number of additional next nearest neighbors also
situated in the same distance to site R shall be added to the lattice. How do the
terms of the Hamiltonian above scale, if the number Z‖R−R′‖ of nearest neighbors
increases up to infinity?

Since the second and third term, which give the potential energy per site originating
from the pair interaction, are purely local, the adding of additional neighboring sites
will have no effect on these terms. The sum in the first term however runs over as
many terms as there are nearest neighboring sites, thus, this term diverges in the
limit Z‖R−R′‖ → ∞. Hence, the hopping matrix elements have to be rescaled to
ensure that the density of states has a well defined limit for Z‖R−R′‖ → ∞. It was
proved by Metzner and Vollhardt [MV89], that the proper scaling for a cubic lattice
is given by

tσ
RL, R′L′ =

t̃σ
RL, R′L′

√

Z‖R−R′‖

. (6.2)

where t̃σ
RL, R′L′ is a constant. With this scaling factor, the first term of the Hubbard

model stays finite in the limit of infinite coordination of the atom at site R. Due to
the direct connection between the hopping matrix and the Green function from the
non-interacting DFT description of the system

∑

R′′L′′

(

G0 σ
RL, R′′L′′(ε)

) (

εδ
R′′R′δL′′L′ − tRLσ, R′L′σ′

)

= δ
RR′δLL′ (6.3)

which was introduced in equation (5.12) in chapter 5 the Green function from the
non-interacting system must scale in the exact same way

G0 σ
RL, R′L′(ε) ∼ 1

√

Z‖R−R′‖

(6.4)

Based on the connection between the non-interacting Green function G0 σ and the
Green function of the interacting system Gσ given by the Dyson equation (5.17),
the assumption is made that the interacting lattice Green function as well shows a
scaling behavior

Gσ
RL, R′L′(ε) ∼ 1

√

Z‖R−R′‖

. (6.5)
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We can now analyze the effect of this scaling behavior of G0 σ and Gσ on the self-
energy Σσ of the Hubbard model in the form it was derived within the framework of
the FLEX method.

Due to the local nature of the interaction vertices in the Hubbard model, only the
particle-particle ladder diagrams and the electron-hole ladder diagrams in the dia-
grammatic expansion of the self-energy within FLEX yield contributions of diagrams,
which contain Green function lines connecting different sites. The example diagram
depicted in figure 6.1 is the lowest-order ladder diagram contained in the diagram-
matic expansion of the self-energy. It is the same for the particle-particle channel as
well as the electron-hole channel. It is drawn with Green-function lines that connect
the neighboring site R′ with site R. In this diagram as well as in all higher-order

PSfrag replacements

R
R′

Figure 6.1: 2nd
order contribution
to the self-energy

diagrams, neighboring sites are always connected (directly
or indirectly via additional sites) by three Green function
lines, which all yield a scaling factor of 1/

√

Z‖R−R′‖. There
are of course Z‖R−R′‖ equivalent contributions from each site
R′ 6= R, thus, the overall scaling for the summed contribu-
tion of all equivalent sites R′ 6= R to the self-energy goes
like 1/

√

Z‖R−R′‖. These contributions become irrelevant for
Z‖R−R′‖ → ∞ and consequently, only the contributions of lo-
cal diagrams to the self-energy remain. Thus the self-energy
becomes purely local in the limit Z‖R−R′‖ → ∞

Σσ
RL,R′L′(ε) →

Z‖R−R′‖→∞
Σσ

R;LL′(ε)δRR′ (6.6)

or likewise the Fourier transform becomes k-independent

Σσ
L,L′(k; ε) →

Z‖R−R′‖→∞
Σσ

LL′(ε) . (6.7)

From this and the Dyson equation, it follows that Gσ
RL, R′L′ ∼ 1/

√

Z‖R−R′‖, which
is consistent with the assumption made above. Thus, also the non-local elements of
the one-particle propagator become negligible in the limit of large dimension. An
electron may still leave the site R, interact with electrons at other sites and return
to site R, but this is all contained in the on-site matrix elements Gσ

R;LL′δRR′ of the
interacting Green function.

The single-site approximation for Σσ and Gσ becomes exact in the limit Z‖R−R′‖ →
∞ and the whole dynamic of the lattice model is reduced to the dynamic at the single
site. This resembles the situation described by an impurity problem. The local part
of Gσ plays the role of the interacting impurity Green function, the local part of Σσ

is the impurity self-energy and the bare impurity Green function is obtained from
Dyson equation

[

G0 σ
R;LL′(ε)

]−1
=

[

Gσ
R;LL′(ε)

]−1
+ Σσ

R;LL′(ε) , (6.8)

and G0 σ
R;LL′ is of course the local part of the bare lattice Green function G0 σ.
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The DMFT equations. In contrast to a lattice system in the limes of infinitely
many neighboring sites in a finite dimensional system the interacting lattice Green
function in k space is as well connected to the self-energy and the bare lattice Green
function via Dyson equation

Ĝσ(k; ε) =

[

[

Ĝ0 σ(k; ε)
]−1

− Σ̂σ(k; ε)

]−1

. (6.9)

However, in a finite dimensional system all quantities are k-dependent or likewise they
have non-local elements when transformed into real space. Note that all quantities in
the above equation are matrix operators with matrix elements in the orbital indices
L and L′ for each spin and each k-vector.

In 3 dimensional systems with high lattice coordination (i.e. body-centered cubic:
Z‖R−R′‖ = 8, face-centered cubic: Z‖R−R′‖ = 12) the suppression of the off-site
contribution to the self-energy due to the scaling factor 1/

√

Z‖R−R′‖ is already large.
Hence, the SSA can be applied to the self-energy of these systems approximating the
full non-local or likewise k-dependent self-energy by a local or non-k-dependent self-
energy. The first DMFT equation is obtained by replacing Σ̂σ(k; ε) in (6.9) by this
non-k-dependent self-energy yielding

Ĝσ(k; ε) =

[

[

Ĝ0 σ(k; ε)
]−1

− Σ̂σ(ε)

]−1

. (6.10)

The local self-energy can again be interpreted as the self-energy of a single-site impu-
rity problem and an effective bare impurity Greens function G0 σ can be introduced
by

[

G0 σ
R;LL′(ε)

]−1
=

[

Gσ
R;LL′(ε)

]−1
+ Σσ

R;LL′ . (6.11)

In contrast to the discussion of the lattice system in infinite dimension in finite
dimensional systems the bare impurity Greens function G0 σ also called bath Green
function differs from the bare Green function Ĝ0 σ of the lattice because the latter in
general contains also non-local terms. However, we can chose the local interacting
Green function Gσ

R;LL′(ε) in (6.11) such that the mapping of the lattice model onto
the single site impurity problem becomes exact in the limes of infinite dimension. It
can be proofed that the mapping becomes exact if the local part of the interacting
lattice Green function Gσ obtained by

Gσ
R;LL′(ε) =

∑

k

Gσ
LL′(k; ε) (6.12)

is inserted into (6.11). (Details of the proof e.g. based on the cavity method can be
found in the review article [GKKR96] by Georges et al.).

The bare lattice Green function G0 σ can be obtained via Lehmann representation
as described in chapter 4 by

G0 σ
LL′(k; ε) =

1

N

∑

ν

(

Aσ
L,ν(k)

)(

Aσ
L′,ν(k)

)∗

ε− εσ
k,ν + iη

. (see 4.34)
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with the muffin-tin coefficients Aσ
L,ν(k) and the Kohn-Sham eigenvalues εσ

k,ν taken
from DFT calculations. If the local self-energy can also be determined equation
(6.10) through (6.12) forming a closed set of mean-field equations can be solved self-
consistently to determine the interacting lattice Green function Gσ. In the remainder
of this section I like to introduce the GGA+DMFT scheme to iteratively solve the
the DMFT mean-field equation self-consistently. The detailed description how the
self-energy is obtained in the present approach employing the FLEX method within
DMFT is then presented in the last section of this chapter.

The GGA+DMFT Self-Consistency Scheme In this section it is discussed how all
parts from previous chapters can be merged together in one algorithm to calculate
the electronic structure of selected magnetic materials. In order to obtain a self-
consistent solution, an iterative procedure is used. A flow diagram of this procedure
is depicted in figure 6.2.

DFT

Converge DFT calculation and determine bare lattice G.F.

G0 σ
RL,R′L′(ε) (eq. (4.34))

DMFT

1. Calculate the self-energy using the FLEX method

(see details on the DMFT-FLEX solver in the next section)

2. Calculate interacting G.F. for the Hubbard model

– in k-space with input G0 σ(k) and k-independent Σσ

Gσ
LL′(k; ε) (eq. (6.10))

– in TB-representation using Fourier transformation

Gσ
R;LL′(ε) (eq. (6.12))

3. Calculate the bath-G.F. with local Gσ and local Σσ

G0 σ
LL′(ε) (eq. (6.11))

Iterate with G0 σ = G0 σ
new till convergence

Figure 6.2: Flow diagram of the GGA+DMFT self-consistency cycle
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From figure 6.2 it can be seen how the results obtained in the DFT description
of a system are connected to the many-body perturbation theory applied within the
framework of DMFT. It also lists the steps of the self-consistency cycle to solve the
DMFT equations presented in the previous section. This part of the GGA+DMFT
algorithm containing the DMFT self-consistency cycle was implemented straightfor-
wardly in the FLEX solver presented in the next section. Iterations in the DMFT
self-consistency cycle are carried out until the self-energy is converged up to the order
of 10−9.

To conclude this section I would like to point out explicitly that the GGA+DMFT
approach presented here differs from other GGA+DMFT approaches presented e.g. in
the review article by Held [HNK+06]. In the present approach only the many-body
corrections to the DFT description are calculated self-consistently as opposed to re-
calculating also the DFT quantities with the results obtained from one iteration step
in the many-body iteration scheme. The approach presented here thus might better
be described as DMFT on top of GGA. It can be expected however for the systems
under consideration that a full self-consistent calculation including the recalculation
of the DFT results will not yield substantially different results in the present context,
since the correlation effects included via the extension of the DFT description within
DMFT are rather weak. Thus, the DMFT calculations for these systems will mainly
yield minor corrections to the DFT description such that a recalculation of the DFT
results is not necessary for the systems under consideration.

6.2 The DMFT-FLEX Solver

Within the framework of DMFT the expression of the FLEX self-energy presented
at the end of chapter 5 in terms of Feynman diagrams can be restated as analyt-
ical expressions that are evaluated numerically in a straightforward manner in the
DMFT-FLEX solver. I will first derive these analytical expressions used to calculate
the self-energy. I will then discuss some of the additional approximations entering
the evaluation of the FLEX diagrams for the self-energy when these diagrams are
evaluated in the framework of DMFT.

In chapter 5 an expansion of the self-energy that can formally be written as a sum
over three terms

Σσ
λλ′(ε) = Σ

σ (2)
λλ′ (ε) + Σ

σ pp (3)
λλ′ (ε) + Σ

σ eh (3)
λλ′ (ε) . (see 5.50)

where each term has been defined in terms of Feynman diagrams in chapter 5 in the
equations (5.47), (5.48) and (5.49). Each multiindex λ stands for the site-index R
and the orbital index L.

Starting from this expression for the self-energy the following steps are taken to
translate the diagrammatic expression denoted by the three terms in (5.50) into
analytic expressions:
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1. The SSA from DMFT is applied. Consequently, only the on-site matrix el-
ements of the self-energy contributions in (5.50) with R = R′ are retained
since all elements with R 6= R′ are put to zero. Another consequences for the
translation of the diagrammatic expression of the third contribution in (5.50)
originating from the electron-hole channel is that this term becomes identical
to the sum over the two contributions from the electron-hole channel 1 and
electron-hole channel 2 as discussed in chapter 5.

2. If the cubic symmetry of the underlying crystal lattices is exploited taking into
account that the self-energy is only calculated for particles occupying d states
which split into non-overlapping t2g and eg states due to the crystal field, the
self-energy matrices become diagonal in the subspace spanned by the t2g and
eg states and for each spin direction only one self-energy contribution for each
state t2g and eg has to be calculated. If the following notation for the site and
L-diagonal self-energy contributions is introduced

Σσ
RL,RL(ε) = Σσ

RL(ε) (6.13)

the full self-energy can now be formally written as a sum over four terms

Σσ
RL(ε) = Σ

σ (2)
RL (ε) + Σ

σ pp (3)
RL (ε) + Σ

σ eh1 (3)
RL (ε) + Σ

σ eh2 (3)
RL (ε) , (6.14)

where the index L now denotes either a t2g or eg state. Note that up to now
only the diagrammatic expressions have been modified but they haven’t been
translated yet.

3. The diagrammatic expressions for the four terms in the sum presented above
are drawn using time-ordered quantities. However, each time-ordered quantity
can be expressed by retarded quantities as pointed out in chapter 4 using the
identity

Gt(λ, λ′; ε) = ReGret(λ, λ′; ε) + i sgn(ε− EF) ImGret(λ, λ′; ε)

= G1(λ, λ
′; ε) + i sgn(ε− EF)G2(λ, λ

′; ε) .
(6.15)

The imaginary part of a retarded function shall be denoted by the index two
and the real part by index one. All analytic expressions will be written down
using the imaginary part of a retarded quantity. If necessary, the real part can
be obtained using the Hilbert transformation (4.40). By switching from time-
ordered two retarded quantities the energy integrals in the analytic expressions
for the diagrams are simplified since the retarded quantities are analytical func-
tions of the complex energy ε + iη in the upper half-plane as opposed to the
time-ordered quantities which are non-analytic functions in the whole complex
energy plane.

4. The interaction lines in the formulas will be translated using the matrix v,
which stands for the matrix introduced in chapter 5 with matrix elements

vσσ′

LL′ = U(1 − δLL′δσσ′) + Jδσσ′(1 − δLL′) . (see 5.10)
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5. The symbol ˆ denoting matrix operators in previous chapters is dropped here
to avoid overloading the formulas. In addition to that all quantities are pre-
sented here as matrix operators to also avoid overloading the notation. The
matrices representing the one-particle quantities Σσ and the Green functions
are 5×5 matrices in the subspace spanned by the t2g and eg states whereas the
two-particle quantities like the T-matrices, the bare particle-particle and the
bare particle-hole propagator are matrices with elements carrying four distinct
indices denoting t2g or eg states.

6. Finally within the framework of DMFT all Green function lines in the self-
energy diagrams retained from the FLEX method are translated into formulas
using the bath Green function G0 σ instead of the interacting lattice Green
function Gσ.

After going through all these steps analytic expression for the four terms in (6.14)
can finally be written down.

Self-energy contribution from the second order diagrams. To evaluate the self-
energy contribution Σσ (2) form the second order diagrams first the retarded bare
particle-particle propagator is calculated as

Ψσσ′

2 (ε) = −
∫ ε−EF

EF

dε′

π
G0 σ

2 (ε− ε′)G0 σ′

2 (ε′) . (6.16)

This is used to calculate Σσ (2) as

Σ
σ (2)
2 (ε) = −

∫ ε

2EF−ε

dε′

π

∑

σ′

vσσ′

Ψσσ′

2 (ε− ε′)vσσ′ G0 σ′

2 (ε′) . (6.17)

Self-energy contribution from the particle-particle channel. To calculate the re-
tarded self-energy contribution from the particle-particle channel the particle-particle
T-matrix is calculated as described in chapter 5 staring from third order

T pp(3)(ε) = vΨ(ε)vΨ(ε)v [1 − Ψ(ε) v]−1 (6.18)

and the retarded self-energy contribution from the particle-particle channel Σσ (pp) is
given by

Σ
σ pp (3)
2 (ε) = −

∫ ε

2EF−ε

dε′

π

∑

σ′

T
σσ′pp(3)
2 (ε+ ε′)G0 σ′

2 (ε′) . (6.19)

Self-energy contribution from the electron-hole channels 1 and 2. To derive
analytic expressions for the two contribution to the self-energy from the electron-
hole channel 1 and 2, first the retarded electron-hole propagator is calculated

Φσσ′

2 (ε) =

∫ EF

EF−ε

dε′

π
G0 σ′

2 (ε + ε′)G0 σ
2 (ε′) . (6.20)
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To obtain the self-energy contribution from the electron-hole channel 1 the electron-
hole 1 T-matrix starting from the third order term is obtained from

T eh1(3)(ε) = vΦ(ε)vΦ(ε)v [1 + Φ(ε) v]−1 (6.21)

and the self-energy contribution of this channel is then given by

Σσ eh1
2 (ε) =

∫ ε

EF

dε′

π

∑

σ′

T
σσ′eh1(3)
2 (ε− ε′)G0 σ′

2 (ε′) . (6.22)

To evaluate the contribution to the self-energy of the second electron-hole channel
the full electron-hole T-matrix employing the antisymmetrized interaction V̄ defined
in (5.23) is first calculated starting also from third order

T eh(3)(ε) = V̄ Φ(ε)V̄ Φ(ε)V̄ [1 + Φ(ε) V̄ ]−1 (6.23)

The diagrams from the electron-hole channel 2 are now evaluated using the full
electron-hole T-matrix T eh(3) instead of T eh2(3). However, due to the symmetry of all
quantities the convolution of T eh(3) with the Green function in the expression below
leads to cancellation of all diagrams contained in the expansion of T eh(3) except for
those diagrams contained in T eh2(3). Hence, the first and second line in the formula
below are identical and the formula is the correct translation of the diagrammatic
contribution to the self-energy from the electron-hole channel 2:

Σσ eh2
2 (ε) =

∫ ε

EF

dε′

π
T

σσeh(3)
2 (ε− ε′)G0 σ

2 (ε′)

=

∫ ε

EF

dε′

π
T

σσeh2(3)
2 (ε− ε′)G0 σ

2 (ε′) .

(6.24)

Equations (6.16) – (6.24) are recalculated in each iteration step employing the new
bath Green function obtained from solving the DMFT equations of the DMFT self-
consistency cycle. In the zeroth order step the bare lattice Green function is used to
evaluate the expressions and to obtain the initial expression for the self-energy.

To translate the diagrammatic expressions in the expansion of the self-energy (5.50)
into formulas within the framework of DMFT two additional approximation where
used:

• The self-energy is calculated in single-site approximation.

• The diagrams are evaluated using the bath Green function G0 σ instead of the
interacting Green function Gσ of the crystal lattice.

In the SSA the k-dependence of the self-energy becomes negligible as demonstrated
in the first section of this chapter. This does not only simplify the formulation of
expressions to calculate Σσ, but it also reduces the computational resources necessary
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to evaluate these expression substantially. It has also been pointed out that the
SSA is supposed to yield rather accurate results for systems with highly coordinated
crystal structure as discussed in this thesis. Therefore, we assume the SSA to be
well applicable in our context. However, some phenomena i.e. spin-wave excitations
could only be studied, if the k-dependence would be included in the description of
the systems. In general, all effects related to the k-dependence of the self-energy are
of course lost, if the SSA is imposed, but these effects need not to be included to
study i.e. the densities of states for the different spin orientation which is to be done
here.

As to the second point it can be stated that using the bath Green function G0 σ

instead of the interacting lattice Green function seems to be the “canonical” pro-
cedure within DMFT which is applied by various authors e.g. in [KL99, LKK01].
However, at this point it remains an open question why this is done or if this has
to be done or likewise if this yields a better or worse description of the electronic
structure. Katsnelson and Lichtenstein discussed in [KL99] that the vertex function
is partially renormalized if the bath Green function is used to calculate the FLEX
diagrams instead of the interacting lattice Green function but they present no rigid
argument why this should be the case. On the other hand, the evaluation of the
FLEX diagrams employing the bath Green function leads to an approximate expres-
sion for the full lattice self-energy which is not conserving in the sense of Kadanoff
and Baym (or “Φ-derivable”). Due to a lack of time calculations to compare different
levels of self-consistency could not be carried out and all diagrams where evaluated
using G0 σ as suggested in the literature.
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7 Preparatory Calculations within
DFT

In this chapter I will first describe the convergence tests carried out with a given
DFT implementation, the FLEUR code, to obtain a robust description of the electron
systems within DFT of the materials to be studied. These data will be used as input
for the DMFT part of the GGA+DMFT scheme. To provide an insight of how the
converged data were obtained I discuss example calculations for Fe and Ni.

In the second part of the chapter, the approximations are examined which enter into
the implementation of the GGA+DMFT scheme by transforming the data obtained
from FLEUR in an LAPW basis into a representation using the TB-FLAPW basis.
The latter was introduced at the end of chapter 3. I present a quantitative analysis of
the changes due to the basis transformation by comparing the density of states (DOS)
of Fe, Co and Ni using both basis sets. It is demonstrated that the representation in
terms of the TB-FLAPW basis is well applicable for materials with a close-packed
crystal structure.

7.1 Convergence Tests for the Parameters of the

LAPW Basis

All DFT calculations were carried out using the FLEUR code, which employs a
basis set of linearized augmented plane waves (LAPWs) to represent the Kohn-Sham
eigenfunctions ψσ

k,ν . The expansion of the eigenfunctions in terms of the LAPW basis
was already presented in chapter 3

ψσ
k,ν(r) =

∑

G

cGσ
k,ν ϕ

σ
G

(k, r) , (see 3.1)

where the linearized augmented plane waves were introduced as

ϕG(k, r) =







exp[i(k + G) · r] interstitial region
∑

L

(

aµG

L (k) ul(r
µ) + bµG

L (k) u̇l(r
µ)
)

YL(r̂µ) muffin-tin µ
(see 3.7)

In principle, the summations over G and L run over infinitely many terms but they
have to be restricted to a finite number of terms to be implemented. This is achieved
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by an appropriate choice of cut-of values Kmax and lmax with |k + G| ≤ Kmax and
0 ≤ l ≤ lmax, −l ≤ m ≤ l for the first and second summation. If the results derived
from the eigenfunctions represented in the LAPW basis do not change significantly
when more terms are added in the expansions, the representation can be considered
converged within numerical accuracy. The procedure to determine Kmax and lmax is
described in detail below.

The calculations are carried out numerically in FLEUR by evaluating the Kohn-
Sham eigenfunctions on a mesh of equidistant points in k space. The mesh is con-
structed to cover the irreducible part of the first Brillouin zone (1st BZ). The number
of mesh points and consequently the distance between the points has to be chosen
such that the total-energy functional does not change if the number of k points is
increased further. For the calculation of the density of states (DOS) however a bigger
set of k points is necessary, since the DOS also depends on the energy and the energy
eigenvalues are determined for each k point on the discrete mesh. Hence, the number
of k points must by significantly larger to obtained a sufficient level of accuracy. In
the table at the end of this section both values for the number of k points are listed:
the number to converge the total energy calculations (listed as ‘k point, total en-
ergy’) and the number to calculated the DOS (listed as ‘FLEX input’). This number
of k points used to calculate the DOS within DFT is also used to calculated the
eigenvalues and coefficients of the eigenfunctions of the Kohn-Sham equation used
to construct the DFT lattice Green function as well as to determine the interacting
lattice Green function in k space.

Furthermore, an input value for the lattice constant of the materials to be ana-
lyzed has to be chosen and the muffin-tin radius RMT has to be determined. It was
described in the last section of chapter 2 that the equilibrium lattice constant could
be determined from calculations within DFT. However, these theoretically deter-
mined lattice constants depend on the choice of the parametrization of the exchange
correlation potential as will be discussed below. With approximate functionals the
equilibrium lattice constants are usually not identical to the lattice constants mea-
sured in experiments. To be able to compare results to experimental findings I used
the experimental value for the lattice constant in all calculations. The muffin-tin
radius RMT is chosen, such that as much space as possible is covered by the muffin
tins but they do not overlap.

Finally, to choose a parametrization for the exchange-correlation potential for the
DFT calculations, I determined the equilibrium lattice constants from FLEUR cal-
culations using three different parametrizations of the exchange-correlation poten-
tial, the LDA and two different GGAs. Based on these test calculations I used the
parametrization within GGA suggested by Perdew, Burke and Ernzerhof [PBE96] in
all further calculations, since it yielded the equilibrium lattice constants closest to
the experimental value for all three materials to be studied.

In the table below, the results of all convergence tests carried out in calculations
for Fe, Co and Ni are presented. These parameters were used to generate the DFT
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input for the GGA+DMFT calculations presented in the next chapter.

Material Lattice Const. RMT Kmax lmax k points
[aB] [aB] total energy FLEX input

Iron 5.42 2.3465 4.2 8 322 1892
Cobalt 6.69 2.3650 4.2 8 – 2480
Nickel 6.66 2.3540 4.2 8 280 2480

Note that only bulk crystal calculations were performed. Iron was calculated the
bcc structure, nickel and cobalt in the fcc structure. The experimental values of the
lattice constants can be found in [Wij86]. I will now discuss the convergence tests in
detail and give some examples of results from calculations for Fe and Ni.

7.1.1 Determining Kmax and lmax

The value ofKmax determines the number of augmented plane waves used to represent
a Kohn-Sham eigenfunction and lmax determines the number of radial functions used
to augment the plane waves inside the muffin-tin regions. Both Kmax and lmax are
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Figure 7.1: Data of convergence tests for Kmax and parabola fits
from bulk crystal calculations of iron. To better display the data, the
values are all shifted by a constant E0 = 1272.811 htr. The value for
a0 is the converged equilibrium lattice constant.
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obtained by calculating the total energy in FLEUR for a number of different values
of the lattice constant below and above the equilibrium lattice constant a0 for a
fixed choice of the exchange-correlation potential and a fixed number of k points. If
the value for lmax is also kept fixed a different parabola for each choice of Kmax is
obtained. Likewise, if Kmax is kept fixed, parabolas for different values of lmax can
be plotted. I first examine the results for the convergence tests for Kmax. Figure 7.1
shows as an example the calculations for iron for a fixed value of lmax = 8 and a total
number of 322 k points.

The converged value forKmax is obtained by converging the value of the equilibrium
lattice constant a0. The equilibrium lattice constant depends on the chemical bonds,
which are composed mainly by the s and p electrons in transition metals. Electrons
in s and p states are fairly delocalized over the crystal lattice. Thus, the accuracy
of the representation of the s and p wave functions in the LAPW basis depends
primarily on the total number of augmented plane waves used in the expansion of
the Kohn-Sham eigenfunctions. If the representation in the LAPW basis of the s and
p wave functions that contribute to the chemical bonds inside the material becomes
numerically exact, the value of a0 will not change further, if more plane waves are
included in the expansion. Thus, both values for a0 and Kmax are converged if the
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Figure 7.2: Data of convergence tests for Kmax and parabola fits
from bulk crystal calculations of nickel. To better display the data,
the values are all shifted by a constant E0 = 1520.8399 htr. The value
for a0 is the converged equilibrium lattice constant.
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position of the minima of the parabolas does not change when Kmax is increased
further. It can be seen in figure 7.1 that convergence of a0 is reached for a value of
Kmax larger or equal to 4.2. This has been confirmed by calculating the minima of
the parabolas obtained by fitting a quadratic function to the results of each FLEUR
calculation. Results obtained from calculations for nickel with lmax = 8 and 280 k
points are shown in figure 7.2. Again convergence is reached if Kmax is larger or equal
to 4.2.

It might seem odd that the minimum of the total energy still decreases, if Kmax

is further increased although convergence of a0 is reached. This is due to the fact
that the total energy is calculated as a functional of the electron density of all elec-
trons which is proportional to the sum of the squares of all occupied Kohn-Sham
eigenfunctions (see equation (2.22)). The minimum of the total-energy functional
can be obtained from the functional derivative of the total energy with respect to the
electron density. Adding more variational degrees of freedom to the electron density
by increasing Kmax will therefore always yield a smaller value for the minimum of the
total energy. Thus, the decrease of the total energy is independent of the convergence
of a0 and Kmax.
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Figure 7.3: Data of convergence tests for lmax from bulk crystal
calculations of iron. To better display the data, the values are all
shifted by a constant E0 = 1272.811 htr. The value for a0 is the
converged lattice constant.
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In figure 7.3 calculations of the total energy for iron with Kmax = 4.2 and 322
k points are presented for different values of lmax. Since the electron density is
proportional to the square of all occupied Kohn-Sham eigenfunctions, convergence
of lmax is reached if the minimum of the total energy does not change further upon
increasing the value of lmax for a given value of Kmax. The minimum of all three
data sets in 7.3 does not change for the different values of lmax, hence, convergence
is already reached with a choice of lmax = 6. This was to be expected, since the
electronic states in 3d transition metals are occupied for l-quantum numbers up
to 2. For free atoms with a spherically symmetric potential a value of 2 for lmax

should hence be sufficient to account for all occupied electronic states contributing
in the calculation of the total energy. Due to the anisotropic potential in a crystal
environment a slightly higher value for lmax is necessary to describe distortions of
the wave functions but theses deviations should only have a small impact on the
description of the materials studied here. However, an additional difficulty arises
from the fact, that the wave functions when represented by a finite sum over lmax

terms inside the muffin tins are not continuous at the sphere’s boundaries any more
as they should be per definitionem. Although the total energy does not change any
more for a choice of lmax between 6 and 10 this additional problem has to be taken into
account by choosing lmax large enough such that the continuation into the interstitial
space is as smooth as possible while keeping the numerical effort at a tolerable level.
Therefore, lmax = 8 was used in the calculations for all materials.
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Figure 7.4: Results of convergence tests for the number of k points
from bulk crystal calculations of iron (left) and nickel (right). For
Fe the parameters Kmax = 4.2 and lmax = 8 were used and for Ni
Kmax = 4.0 and lmax = 8.
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Figure 7.5: Results of convergence tests for the best choice of a
parametrization for the exchange-correlation potential vxc from bulk
crystal calculations of iron. The value for aexp denotes the lattice
constant as obtained from experiments. Parameters used in the cal-
culations: Kmax = 4.2, lmax = 8, number of k points is 322.

7.1.2 Converged Number of k Points

The augmented plane waves ϕσ
G

(k, r) are not calculated in FLEUR as analytical
functions in k space but they are calculated numerically and represented by a set of
values {ϕσ

ki
(r)} when G is kept fixed and the ϕσ

ki
are obtained from evaluating the

function ϕσ
G

(k, r) at certain points ki distributed on an equidistant mesh covering
the 1st BZ. To obtain a set of values {ϕσ

ki
(r)} that represents the wave functions with

sufficient numerical accuracy, the numberNk of k points must be chosen large enough,
but it may not be chosen too large because calculations would become too time
consuming. The number Nk of k points is obtained by calculating the total energy
in FLEUR for different values of Nk with Kmax and lmax kept fixed. Convergence
is reached, if the value of the total energy does not change further with increasing
number Nk of k points within a range of 0.001 htr around the converged value of the
total energy. Examples of calculations for Fe and Ni can be seen in figure 7.4. The
values for Nk of k obtained for Fe, Co and Ni are listed in the table at the beginning
of this section. Note that Nk is the number of k points used to solve the Kohn-Sham
equation self-consistently in FLEUR. As discussed above the density of states as well
as the input values for the DMFT part of the GGA+DMFT scheme were generated
with a larger number of k points.
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7.1.3 The Choice of the Exchange-Correlation Potential

Since the results obtained from the new GGA+DMFT scheme are to be compared
with experimental data, the experimental value for the lattice constant aexp was used
as input value for all materials in all calculations. However, it was already men-
tioned briefly in the introduction of this section, that different parametrizations of
the exchange-correlation potential vxc usually yield different values for the theoreti-
cally determined equilibrium lattice constant a0. Therefore, a parametrization of vxc

yielding a value for a0 close to the experimental value is preferable because it keeps
the calculations as close as possible to the theoretical equilibrium. For a fixed number
of k points and fixed values for Kmax and lmax, the total energy was determined with
FLEUR for different values of the lattice constant and for a total of three different
choices of the parametrization of vxc. The figures 7.5 and 7.6 show the results of
calculations performed for iron and nickel.

I used one parametrizations of vxc in the LDA denoted by PZ, which was originally
introduced by Perdew and Zunger [PZ81] and two parametrizations in the GGA,
the first one denoted by PW91 and the second one by PBE introduced both by
Perdew et al. [PW92, PBE96]. The absolute values of the total energy obtained
from calculations with the different parametrization for vxc differ so much that I had
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Figure 7.6: Results of convergence tests for the best choice of a
parametrization for the exchange-correlation potential vxc from bulk
crystal calculations of nickel. The value for aexp denotes the lattice
constant as obtained from experiments. Parameters used in the cal-
culations: Kmax = 4.2, lmax = 8, number of k points is 280.
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to shift the curves on the energy axis to plot all of them in one graph. Therefore,
I plotted only differences in the total energy instead of the absolute values. The
lattice constants are not affected by this rescaling, since I compared the position of
the energy minimum at a0 with the value for the lattice constant aexp obtained from
experiments [Wij86]. The parametrization PBE yields the value for a0, which comes
closest to aexp, hence, PBE was used in all further DFT calculations.

7.2 Transformation from the LAPW to the

TB-FLAPW Basis

In this section, I would like to discuss the two approximations entering into the
description of the electronic system of a certain material if a basis transformation from
the representation in the LAPW basis to a representation in the tight-binding(TB)-
FLAPW basis introduced in chapter 3 is carried out. This transformation is necessary
since the lattice electron model defined in chapter 5 in equation (5.4) describing the
electronic system within DMFT as well as the lattice Green functions used to solve
the model are written in terms of the TB-FLAPW basis. The TB-FLAPW basis
functions are obtained from the LAPW basis functions

• by neglecting the term containing the energy derivative of the radial function
u̇l in the LAPW basis in the muffin-tin regions and

• by neglecting the plane wave contributions in the LAPW basis from the inter-
stitial region.

The consequences of these approximations are to be examined now.

As for the first approximation, the results from various calculations prove that Fe,
Co and Ni are well described in terms of the TB-FLAPW basis inside the muffin-
tin regions, since the changes due to the neglect of the term containing the energy
derivative of the radial function in the LAPW basis are rather small. To demonstrate
this I present results of calculations of the spin-resolved density of states Dσ of the
electrons inside the muffin-tin regions denoted as MT Dσ using an expansion of the
Kohn-Sham functions in terms of the LAPW basis. These calculations are compared
with the density of states Dσ

TB obtained from a representation of the Kohn-Sham
functions in terms of the TB-FLAPW basis. The densities of states are obtained
directly from the Kohn-Sham eigenfunctions written in terms of one basis set or the
other as

Dσ(ε) =
∑

Lνµ

1

VBZ

∫

BZ

d3k
[

|Aµσ
l,ν (k)|2

+ |Bµσ
l,ν (k)|2

∫ RMT

0

r2 dr |u̇lσ(r)|2
]

δ(ε− εnkσ)

(7.1)
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and

Dσ
TB(ε) =

∑

R,Lνµ

1

VBZ

∫

BZ

|Ã Rµσ
l,ν (k)|2d3k δ(ε− εnkσ)

=
∑

Lνµ

1

VBZ

∫

BZ

|Aµσ
l,ν (k)|2d3k δ(ε− εnkσ) .

(7.2)

with the A- and B -coefficients as defined in (3.21) and ÃRµσ
l,ν defined in (3.33). Note

that Dσ
TB can also be obtained from the (DFT) lattice Green function as described

in chapter 4 in equation (4.21).

To compare the two densities of states Dσ and Dσ
TB both were plotted together in

one graph for Fe, Co and Ni. Figure 7.7 shows results for Fe and figure 7.8 and 7.9
for Co and Ni. For all three materials, the peak structure of Dσ and Dσ

TB is identical.
The only differences between both densities are small deviations in the height of the
peaks. To analyze these deviations quantitatively, the relative deviation ∆Dσ

l of the
orbital-resolved density Dσ

TB, l from the orbital-resolved density Dσ
l (with l denoting

the s, p or d-band density of states) can be calculated by

∆Dσ
l (ε) =

Dσ
l (ε) −Dσ

TB, l(ε)

Dσ
l (ε)

, (7.3)

-3

-2

-1

 0

 1

 2

 3

-8 -6 -4 -2  0  2

-6

-3

 0

 3

 6

-6 -4 -2  0  2

P
S
frag

rep
lacem

en
ts

D
O

S
(ε

)
[s

ta
te

s/
eV

/u
.c

.]

∆
D
d
(ε

)
[%

]

Fe

MT Dσ

Dσ
TB

ε−EF [eV]

ε−EF [eV]

majority spin

minority spin

minority

majority

Figure 7.7: DOS obtained from DFT calculations for iron (grid of
781 energy points): Comparison of the total DOS Dσ with Dσ

TB of the
electronic states inside one muffin-tin and plot of ∆Dl (small frame)
for the DOS of d electrons inside a muffin-tin.



7.2 Transformation from the LAPW to the TB-FLAPW Basis 89

where Dσ
l and Dσ

TB, l are obtained from the equations (7.1) and (7.2) for Dσ and Dσ
TB

by omitting the sum over the l quantum number.

In figure 7.7, 7.8 and 7.9 ∆Dσ
l is plotted for the d electrons in the small frames. I

chose to depict the deviation between the densities of the d states since the d electrons
yield the major contribution to the DOS of all three materials and the deviations
of Dσ

TB, d from Dσ
d is larger than the deviations between the s and p band densities.

However, even ∆Dσ
d does not get larger than a few percent for any of the materials

studied here. Furthermore, a significant deviation is reached only far away from the
center of gravity of the d bands, where the contribution of these bands to the density
of states Dσ

d (ε) is already close to zero. Hence, only very few states described by the
LAPW basis functions are not captured by the TB-FLAPW basis functions.

It might be interesting to mention that the parabolic form of ∆Dσ
d originates

directly from neglecting the energy derivative u̇l of the radial function in the LAPW
basis function when deriving the TB-FLAPW basis set. The term containing u̇l

in the expansion of the Kohn-Sham eigenfunctions and enters quadratically in the
definition of Dσ given by equation (7.1). This causes the parabolic form of the
deviation between Dσ

l and Dσ
TB, l since the term proportional to u̇l is missing in Dσ

TB l.
Furthermore, the radial function ul in the expansion of the Kohn-Sham eigenfunction
is obtained from the energy-dependent radial function ul(E) of the APW basis by
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for the DOS of d electrons inside a muffin-tin.
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evaluating ul(E) at some fixed energy El. The energies El for the states with orbital
numbers l = 2 (d states) for the majority and minority d bands of Fe, Co and Ni are
listed in the tabular below. Since the energies El are chosen at the center of gravity
of the bands to minimize the linearization error entering the LAPW basis functions,
u̇l becomes zero for E = El yielding Dσ

l (El) = Dσ
TB. l(El). Altogether, the difference

in the densities of states Dσ
TB from Dσ inside the muffin tins due to the neglect of

the term containing u̇l in (7.1) is negligible. An interesting discussion about the
influence of the term proportional to u̇l in the LAPW basis and the influence of
terms containing the second and higher energy derivatives of solutions to the radial
scalar-relativistic Dirac equation can be found in the article by Friedrich [FSBK06].

Material El − EF for the d states [eV]
majority spin minority spin

Iron -2.0 -1.4
Cobalt -2.5 -1.8
Nickel -2.2 -1.8

The other approximation upon deriving the TB-FLAPW basis functions, the total
neglect in the LAPW basis representation of the plane waves describing the inter-
stitial region, has a bigger quantitative influence than the neglect of the term in the
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7.2 Transformation from the LAPW to the TB-FLAPW Basis 91

LAPW basis function containing u̇l. This is due to the fact that the second approxi-
mation to the LAPW basis functions is equivalent to the total neglect of contributions
of the electronic states situated in the interstitial region. Consequently, in the TB-
FLAPW basis representation only the charges situated inside the muffin-tin regions
are accounted for. However, due to the choice of the muffin-tin radius to be as large
as possible and due to the fact that all materials to be examined have a close-packed
crystal structure, most of the electron charge is indeed situated inside the muffin tins.
This can be demonstrated by integrating the density of states Dσ

TB over the energy
up to the Fermi level, which yields the charge inside the muffin-tin region. This can
be compared to the total number of valence electrons. Both quantities are listed in
the table below for calculations of Fe, Co and Ni.

Material Charge situated Total number of
inside each muffin tin valence electrons per atom

Iron 6.952 8
Cobalt 8.160 9
Nickel 9.204 10

Although all charges of the valence electrons are not fully accounted for by the
description of the electronic system in the TB-FLAPW representation the majority
of the charges are taken into account. In particular, the charges situated in the
d bands are captured almost completely by the TB-FLAPW basis representation,
since the d bands are almost completely localized inside the muffin-tin regions. This
can be demonstrated by integrating the densities of the d states Dσ

d and Dσ
TB, d over

the energy up to the Fermi level and compare how many charges are missing in the
density obtained from the TB description of the electronic system.

Material Charges in the Charges in the
LAPW d states TB-FLAPW d states

Iron 6.1462 6.1418
Cobalt 7.2394 7.2387
Nickel 8.2992 8.2990

The amount of charges not captured by the TB description compared to the LAPW
description is smaller than 0.5% for all three materials. Thus, despite the neglect of
the charges in the interstitial region, the TB-FLAPW basis functions yield a descrip-
tion both sufficient and accurate enough for the further treatment within DMFT,
since it is most important for the calculations within DMFT that the electronic d
states are described accuratley.
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8 Benchmark Calculations within
GGA+DMFT for Fe, Co and Ni

In this chapter results from calculations of bulk-crystal properties of the 3d transi-
tion metals iron, cobalt and nickel obtained from the new GGA+DMFT scheme are
presented. These metals are used for benchmark calculations, since they are interme-
diately correlated materials due to the partially occupied d bands and the features of
the electronic structure related to the correlation effects are described rather poorly
within the LDA or GGA. The description of these materials within GGA+DMFT
should improve on the characterization of these features. Therefore, the density of
states (DOS), the spectral function and the spin-magnetic moment per atom were
calculated within the new implementation of the GGA+DMFT. By comparing the
resulting quantities with DFT calculations it is demonstrated how the incorpora-
tion of true many-body interactions between electrons changes the features in the
electronic structure. Furthermore, the results from the GGA+DMFT approach are
found to be in very good agreement with experimental data. This emphasizes the
importance of including correlation effects in the description of the electronic system.
Furthermore, it can be seen as strong evidence that the FLEX solver used within the
DMFT part of the new scheme takes into account the dominant effects responsible
for the electronic correlations within the regime of intermediately correlated electron
systems. Altogether, the new GGA+DMFT scheme definitely yields an improvement
of the bare LDA or GGA description of the electronic structure of the 3d transition
metals.

In the first part of the chapter I describe briefly how the DOS, the spectral function
and the spin-magnetic moment were calculated. In the second part, I present my
results for Fe, Co and Ni.

8.1 Calculations

Lattice Green functions are used for all calculations within GGA+DMFT. A lattice
Green function within DFT was derived in chapter 4 as a matrix with elements
G0 σ

RL,R′L′ for each spin σ for the lattice sites R and R′ and for the pair of orbital
indices L and L′ with the combined index L = (l, m) denoting a certain atomic-
like orbital. Within the DMFT part, the single-particle propagator of an interacting
particle is given by the lattice Green function with matrix elements Gσ

RL,R′L′ that
is derived by solving the Dyson equation (5.15) using G0 σ

RL,R′L′ and the self-energy
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Σσ
R; LL′. The latter is obtained using the FLEX method as described in chapter 5.

To use the FLEX method in this context, some input values for the Hubbard U and
Hubbard J are necessary. The values listed in the table below were taken from the
results and discussions presented in [DJcvK99].

Material Hubbard U [eV] Hubbard J [eV]

Iron 1.63 1.09
Cobalt 1.63 1.22
Nickel 2.45 1.63

Unfortunately, it is not clear from [DJcvK99] how the muffin-tin radii in the TB-
LMTO approach were chosen. However, for a different choice of these radii in the
present work different values for U and J might be obtained. On the other hand it is
also argued in [DJcvK99] that there is no unique way to determine U and J for the
d states and that a broad range of values can be found in the literature. For example
Grechnev et al. used slightly bigger values for U and J in [GDMK+06] e.g. U = 2.3eV
and J = 0.9eV for Fe. Since the values I used do not differ from those substantially
it should not make a big differnece in the calculations which values are finally used
within a certain energy window. However, no quantitative analysis was carried out
so far to support this assumption.

After the single-particle propagator Gσ
RL,R′L′ is determined self-consistently on the

basis of the iteration scheme described in chapter 6 it is used to calculate single-
particle bulk-crystal properties. In this section it is described in a little more detail
how these observables are obtained from Gσ

RL,R′L′ .

8.1.1 Density of States (DOS)

The density of states gives the spectrum of the energy eigenstates per atom in the
unit cell in real space. From the lattice Green function in real space an l-resolved
density of states Dσ

l for each spin is obtained by

Dσ
l (ε) = − 1

π

∑

m

ImGσ
Rlm, Rlm(ε) , (8.1)

which is identical at all lattice sites for elementary solids with one atom per unit cell.
The total density of states Dσ for each spin is derived from (8.1) by summation over
the l quantum numbers

Dσ(ε) =
∑

l

Dσ
l (ε) , (8.2)

and the spin-integrated total DOS is determined from (8.2) by summation of the
contributions for each spin

D(ε) =
∑

σ∈{↑,↓}

Dσ(ε) . (8.3)
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Note that the densities are all derived from the diagonal elements of the Green-
function matrix. Furthermore, it should be mentioned that the DOS and all further
quantities are derived from the retarded lattice Green functions. As opposed to the
DOS obtained from the time-ordered Green function in equation (4.22), expression
(8.1) contains a prefactor of minus one on the right-hand side for all energy arguments
of the Green function. In chapter 4 in equation (4.37) it was described how the
retarded Green function is connected to the time-ordered Green function which is
used to evaluate the diagrammatic expressions obtained from the FLEX method to
calculate the self-energy.

Inserting the DFT lattice Green function G0 σ
RL,R′L′ into (8.1) yields Dσ

TB l as derived
from the TB-FLAPW basis functions in the previous chapter. Consequently, (8.2)
yields the density Dσ

TB introduced in that chapter. Since all quantities introduced in
the present chapter are derived from the tight-binding description of the electronic
system, the index “TB” is dropped from now on.

To calculate the DOS for the interacting lattice system, the interacting lattice
Green function Gσ

RL,R′L′ is used to evaluate (8.1), (8.2) and (8.3). The changes in
the newly derived DOS compared to the DOS derived from the DFT lattice Green
function can be directly related to the self-energy Σσ that is incorporated into Gσ

by solving the Dyson equation. In quasi-particle language Re(Σσ) gives the energy
of the quasi-particles whereas Im(Σσ) is inversely proportional to the life-time of
the quasi-particles. The additional energy shifts the peaks in the spectrum of the
density of states compared to their position in the DFT description while the finite
life-time of the quasi-particle excitations leads to a quasi-particle damping of the
peaks in the DOS such that the height of the peaks is reduced and the peaks are
simultaneously broadened. These changes can be observed in all spectra calculated
within GGA+DMFT.

8.1.2 Band Structure and Spectral Function

The spectral function introduced in chapter 4 gives the spectrum of the energy eigen-
states in k-space. Within DFT the spectral function can be obtained directly from
definition (4.23) using the Kohn-Sham eigenfunctions ψσ

k,ν and the Kohn-Sham eigen-
values εσ

k,ν

Aσ(k; ε) =
∑

ν

∫

d3r |ψσ
k,ν(r)|2 δ(ε− εσ

k,ν) =
∑

ν

δ(ε− εσ
k,ν) (8.4)

where I already made use of the fact, that the Kohn-Sham eigenfunctions are orthog-
onal. The spectral function within DFT thus has delta-peak structure.

In figure 8.1 it is depicted schematically how the band structure is derived from
the spectral function within DFT. The band structure is the energy dispersion along
high-symmetry directions inside the first Brillouin zone (1st BZ) of the crystal.
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ture. The spectral function Ak(ε) is plotted (left side) for two different
k vectors k1 and k2 to determine the bands yielding a contribution to
the energy dispersion for the selected k point. Plotting the energies
over the k points (right side) yields the band structure.

In chapter 4 it was described that the spectral function can also be obtained from
the one-particle Green function. Using the interacting lattice Green function in k
space Gσ

LL′(k; ε) (or the DFT lattice Green function G0 σ
LL′(k; ε)) the spectral function

is given by

Aσ(k; ε) = − 1

π

∑

L

ImGσ
LL(k; ε) . (8.5)

If (8.5) is evaluated using the retarded DFT Green function written in the Lehmann
representation below

G0 σ
LL′(k; ε) =

1

N

∑

ν

(

Aσ
L,ν(k)

)(

Aσ
L′,ν(k)

)∗

ε− εσ
k,ν + iη

(see 4.34)

and the formula

1

x± iη
= P

(

1

x

)

∓ iπδ(x) (see 4.19)

in the limit η → 0+ is applied, where P(1/x) is the principal value of 1/x, the DFT
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spectral function (8.4) is recovered

Aσ(k; ε) =
η→0+

− 1

π

∑

L

(

− 1

N

∑

ν

|Aσ
L,ν(k)|2 πδ(ε− εσ

k,ν)

)

=
∑

ν

δ(ε− εσ
k,ν)

(8.6)

In the second step, the orthonormality of the TB-FLAPW basis function was used.
Note that on the left-hand side Aσ denotes the DFT spectral function whereas on
the right-hand side the Aσ

L,ν are the coefficients of the TB-FLAPW basis.

If the interacting lattice Green function is inserted into (8.5) the spectral function
no longer has delta-peak structure due to the self-energy contained in Gσ

LL′(k; ε).
Since the imaginary part of the self-energy usually is non-zero, the imaginary part of
the lattice Green function is of Lorentzian-like shape approximately given by

Im
(

Gσ
LL(k; ε)

)

∼ Im(Σσ(ε))
[

ε− εσ
k,ν + Re(Σσ(ε))

]2
+
[

Im(Σσ(ε)
]2 , (8.7)

where it was assumed that the self-energy is not k-dependent as is the case within
DMFT. The spectral function obtained from Gσ

LL′(k; ε) will therefore also consist of
Lorentzian-type peaks with finite height and finite width.

The Lorentzian shape of the spectral density is caused by the same physical effects
as the broadening of the peaks of the DOS. Due to the interaction between particles
incorporated in the DMFT description of the interacting lattice system excited par-
ticles may not stay in the same single-particle eigenstate for all time but may lose
some of their energy through scattering events. This leads to the broadening of the
peaks in the spectral function, which is proportional to the imaginary part of the self
energy which is in turn inversely proportional to the finite life-time of the excited
state.

Despite the Lorentzian-shaped spectral features a generalized band structure can
still be derived from the spectral function of the interacting lattice electron system.
This band structure takes explicitly into account finite quasi-particle life-times. In
figure 8.2 the procedure to obtain this generalized band structure is depicted. First,
the spectral function Aσ(k; ε) obtained from the interacting lattice Green function
Gσ

LL′(k; ε) is plotted as a function of the energy ε along some high-symmetry directions
in the 1st BZ. The resulting peak structure is projected onto the (k, ε)-plane with
the energies plotted along the vertical and the k vectors plotted along the horizontal
axis. The broadening of the peaks, being inversely proportional to the quasi-particle
life-times, is depicted as a shaded area around the peak maxima, the latter giving
the position of the actual bands. Compared to the band structure derived from DFT
a shift of the position of the energy bands in the generalized band structure can be
observed which is caused by the real part of the self energy as can be seen in equation
(8.7). This is again consistent with the changes observed in the DOS.
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Figure 8.2: Example of a fictitious spectral function for a system
of interacting electrons (top). The contour lines are projected onto
the k, ε-plane below the spectral function. The shades of gray encode
the amplitude varying between black = maximum height and white
= zero height. The complete projection plotted separately in a two-
dimensional graph (bottom) yields the generalized band structure.

Although the effects causing the changes in the generalized band structure are
the same effects causing the DOS obtained from the GGA+DMFT scheme to differ
from the DFT DOS it is instructive to consider both quantities for the materials
under investigation. Furthermore, the generalized band structure can be compared
to experimental data from ARPES (angular-resolved photo-emission spectroscopy)
while the DOS can be compared directly to photo-emission spectra. This will be
discussed in more detail below.
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8.1.3 Total Spin-Magnetic Moments

The magnetization density is derived from the spin-electron densities n↑(r) and n↑(r)
according to

m(r) = n↑(r) − n↓(r) (see 2.6)

as described in chapter 2. For the materials studied here, only the total spin-magnetic
moment µspin derived from the integrated spin-electron densities nσ were calculated

µspin =

∫

MT

m(r) d3r = n↑ − n↓ (8.8)

and the integrated spin-electron densities are obtained from the lattice Green function
in real space by

nσ = − 1

π

∫ EF

−∞

∑

L

ImGσ
RL, RL(ε) dε . (8.9)

8.2 Results for Nickel (Ni)

Density of States. The first graphs presented for nickel in figure 8.3 show the
spin-resolved total muffin-tin density of states Dσ obtained from DFT calculations
within the FLAPW which is compared with the density of states obtained from
the interacting lattice Green function dtermined within GGA+DMFT. On the right
side, the real and imaginary part of the self-energy contained in the GGA+DMFT
description of the electron system of Ni are shown. These self-energy contributions are
to be discussed first, since the changes in the DOS obtained from the GGA+DMFT
method can be directly related to the self-energy.

The self-energy was determined within FLEX assuming cubic symmetry for all
materials and the self-energy contributions were only calculated to describe the in-
teraction between electrons occupying d states. The crystal field in solids with cubic
symmetry splits the 5 electronic d bands into three-times degenerate t2g bands and
two-times degenerated eg bands. Consequently, the self-energy contributions from
the majority and the minority spins also split into two contributions Σσ

t2g
and Σσ

eg
for

each spin yielding four different self-energy contributions in total. Since the differ-
ence between Σσ

t2g
and Σσ

eg
due to the crystal field splitting of the d bands is rather

small I will not discuss it in detail.

The differences in the self-energy contributions for the majority spins compared
to the minority’s contribution is much larger. This can be qualitatively understood
by analyzing equation (6.16) yielding the second order contribution to the FLEX

self-energy. From this expression the following equations for Σ
σ(2)
t2g

and Σ
σ(2)
eg are
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obtained

Σ
σ(2)
t2g

(ε) = (U − J)2
[

2Iσσσ
t2gt2gt2g

(ε) + 2Iσσσ
t2gegeg

(ε)
]

+ U2
[

3Iσ−σ−σ
t2gt2gt2g

(ε) + 2Iσ−σ−σ
t2gegeg

(ε)
]

,

Σσ(2)
eg

(ε) = (U − J)2
[

3Iσσσ
egt2g t2g

(ε) + Iσσσ
egegeg

(ε)
]

+ U2
[

3Iσ−σ−σ
egt2gt2g

(ε) + 2Iσ−σ−σ
egegeg

(ε)
]

(8.10)

and

Iσσ′σ′′

LL′L′′(ε) =

∫ ∫

dε′dε′′

(2π)2
G0 σ

L (ε− ε′)G0 σ′

L′ (ε′ + ε′)G0 σ′′

L′′ (ε′′) . (8.11)

Because J is comparable to U the largest contribution to Σ
σ(2)
t2g

and Σ
σ(2)
eg comes from

states with opposite spins. Furthermore, the first convolution in (8.11) yielding

Ĩσ′σ′′

L′L′′(ε′) = ImG0 σ′

L′ (ε′ + ε′′)ImG0 σ′′

L′′ (ε′′) (8.12)

is large for half-filled bands L′ and L′′ while the second convolution leading to

ImIσσ′σ′′

LL′L′′(ε) = ImG0 σ
L (ε− ε′)Ĩσ′σ′′

L′L′′(ε′) (8.13)

is large for a completely filled band L. These two conditions are fullfilled for the
majority states but they are not fullfilld for the minority states. Therefore, the self-
energy for the majority electrons is larger than for the minority electrons and the
majority bands are consequentely influenced more strongly by the electron correla-
tion.

Finally, it should be mentioned, that the imaginary parts of all self-energy contri-
butions yield Im Σ(ε) ∝ (ε − EF)2 around the Fermi energy in accordance with the
Fermi liquid theory for metals predicting this kind of behavior for the self-energy
of metals in the vicinity of the Fermi level. The behavior of the real part of the
self-energy however seems to be rather odd because Re Σσ(EF) should also be zero
according to Luttingers theorem. However, Luttingers theorem is only rigid for one-
band models. For now it remains an open question how this behavior of the real part
of the self-energy at the Fermi level can be understood.

Since the self-energy contributions are much larger for the majority spin, the
GGA+DMFT spin-resolved density of states in figure 8.3 for the majority spin
shows some significant differences compared to the DFT DOS whereas the minority-
spin DOS obtained from DFT calculations is barely changed in GGA+DMFT. The
majority-spin bands in GGA+DMFT move closer to the Fermi level while simulta-
neously a narrowing of the bands can be observed. This behavior originates from
the positive real part of the self-energy for energies larger than −7 eV that moves
the center of gravity of the bands closer to the Fermi level. The smearing of the
features of the DFT DOS within GGA+DMFT is caused by the imaginary part of
the self-energy leading to the broadening of the sharp peaks of the DFT DOS. The
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Figure 8.3:

Left : Majority and minority DOS for fcc nickel obtained within
GGA+DMFT (red) compared with the DFT DOS (blue).
Right : Real (top) and imaginary part (bottom) of the self-energy con-
tained in the GGA+DMFT calculations on the left. Contributions to
the majority-spin self-energy are black and those to the minority-spin
self-energy are green. The crystal field splits the self-energy contribu-
tions for both spin directions into eg and t2g contributions.

broadening becomes stronger with decreasing energies as Im Σ is zero at EF and in-
creases for energies smaller than EF. One of the most remarkable features in the
DOS obtained from GGA+DMFT is the forming of a new peak, the so-called satel-
lite, around −7 eV in the majority-spin DOS. The large peak of the imaginary part
of the self-energy around −7.3 eV denotes the existence of some long-living quasi-
particle excitations in this region. The steep descent between −6 and −8 eV as well
as the negative peak at −8 eV of the real part of the self-energy indicates a shift of
the weights of the low-lying valence bands to lower energies. This is consistent with
the common explanation for the appearance of the satellite in nickel (see e.g. [Ary92])
that is caused by two holes that interact by multi-scattering processes thus forming
a virtual bound state. The holes are created, if e.g. one electron is emitted from the
d bands during a photo-emission process and a second d electron at the same site is
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Figure 8.4:

Left : DOS of fcc nickel obtained within GGA+DMFT calculated using
only the second-order self-energy contribution (dashed lines) and the
second-order plus one higher-order contribution of the self-energy.
Right : Imaginary part of the self-energy contributions Σσ eh1 (3) (top
row), Σσ eh2 (3) (second row), Σσ pp (3) (last row) including crystal-field
splitting effects. Contributions to the majority-spin self-energy are
black and those to the minority-spin self-energy are green.
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excited to a state slightly above the Fermi energy. The resulting configuration in the
atomic picture corresponding to 3d74s2 is separated from the main band (3d84s) by
more than −6 eV. Due to the selection rules, electrons at the bottom of the d bands,
that hybridize with the s-p bands, have the largest probability to be excited to the
empty d states. Consequently, the spectral weight going to the satellite mainly comes
from the bottom of the d band as observed in figure 8.3.

The construction of the self-energy within FLEX enables us to analyze, if the
multiple scattering of two holes really is the dominant effect responsible for the
formation of the satellite. This can be done by evaluating the single contributions
to the self-energy from the different subclasses of the diagrams for the self-energy
separately for each contribution. A DOS containing only self-energy contributions
derived from one subclass of diagrams can be calculated then. It was shown that the
self-energy expression obtained form the FLEX method can be expressed within the
framework of DMFT as a sum over the contributions from four different subclasses

Σσ(ε) = Σσ (2)(ε) + Σσ pp (3)(ε) + Σσ eh1 (3)(ε) + Σσ eh2 (3)(ε) , (see 6.14)

where Σσ (2) is the second-order self-energy contribution and Σσ pp (3) is the contri-
bution from the multiple particle-particle scattering processes further referred to
as T-matrix approximation (TMA) starting from third order. The last two terms
originates from the electron-hole channel and Σσ eh1 (3) contains all contributions de-
scribing multiple scattering processes between an electron and a hole and Σσ eh2 (3)

describes the screening of the Coulomb interaction. In figure 8.4 the DOS calculated
within GGA+DMFT are presented, that incorporate only one of the self-energy con-
tributions of higher order and the second-order self-energy contribution (e.g. in the
first row the DOS obtained from the self-energy Σ′σ = Σσ (2) + Σσ eh1 (3) is depicted).
In each graph, the DOS obtained from including only the second-order self-energy
contribution Σσ (2) in the GGA+DMFT scheme is also shown for several reasons: the
second-order contribution has to be present in all calculations incorporating some
higher-order corrections. If the additional changes due to these higher-order terms
are to be studied it is reasonable to also compare them directly to the results con-
taining only the second-order corrections. It furthermore proves, that the second-
order term is the dominant term for all three different channels of the self-energy
corrections. When comparing the contributions depicted in the graphs of 8.4 it is
obvious, that the TMA yields the major contribution to the total DOS obtained from
GGA+DMFT. Furthermore, it can be seen that the particle-particle interaction cap-
tured by the TMA really is responsible for the formation of the quasi-particle peak
in the majority-spin DOS whereas the contributions from the two electron-hole chan-
nels are minor. This is confirmed by the presentation of the imaginary parts of the
self-energy contributions Σσ eh1 (3), Σσ eh2 (3) and Σσ pp (3) also depicted in figure 8.4 on
the right. Note that the imaginary part of the self-energy within the TMA is more
than a factor two larger than the contributions from the other channels. Further-
more, the quasi-particle life-time of the particles causing the satellite also originates
solely from the particle-particle channel.
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Finally, the calculations of the DOS shall be compared to some experimental data.
The density of states is the spectrum of the energy-resolved eigenstates per atom
in the unit cell in real space. Hence, it can be compared directly to photo-emission
spectra obtained from measurements of states below the Fermi energy or inverse
photo-emission spectra obtained from experiments probing states above the Fermi
level. The measurement of spin-resolved photo-emission spectra seems to be rather
difficult and it was not possible to find experimental data with a sufficient level of
accuracy and resolution. However, some measurements of the high-resolution x-ray
photo-emission spectrum (HRXPS) of the spin-integrated DOS for Fe were reported
in [SK96]. In figure 8.5 the spin-integrated DOS as obtained within DFT (blue)
and GGA+DMFT is plotted together with the HRXP spectrum (black dots). The
experimental data are given in arbitrary units. Thus, the height of the experimental
curve was rescaled to match the height of the theoretical spectra. Note that only
the spectrum of the occupied electronic states can be obtained from photo-emission
spectroscopy. Hence, the contributions to the DOS above the Fermi level calculated
within DFT and GGA+DMFT are not captured in this experimental setup. Fur-
thermore, the experimental curve does not decrease as quickly as predicted by the
calculations for the lower-lying energies. This originates from effects occurring dur-
ing the measurement e.g. instrumental broadening, matrix-element modulation or
the appearance of an inelastic tail due to electron-electron scattering. An interesting
discussion of these effects can be found e.g. in the article by Höchst, Goldmann and
Hüfner [HGH76] on the measurement of the XP spectrum of iron. Despite these
discrepancies in the HRXP spectrum it is evident, that the data agree well with the
calculations from GGA+DMFT. The band narrowing, the shift of the main peak
towards the Fermi level as well as the formation of the satellite are all reproduced
by the GGA+DMFT calculation in accordance with the measured data. Only the
experimentally obtained position of the satellite is slightly higher then the position
as predicted by GGA+DMFT. The moving of the satellite closer to the Fermi level

Figure 8.5: Comparison between
the spin-integrated DOS for fcc
nickel obtained within DFT (blue)
and GGA+DMFT (red) and from
measurements deploying high res-
olution x-ray photo-emission spec-
troscopy (HRXPS, black dots).
HRXPS can only determine the oc-
cupied electronic states below EF,
hence the resonances in the calcu-
lated DOS above the Fermi level are
not recorded by HRXPS.  0
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could originate from screening of the Coulomb potential not included sufficiently in
GGA+DMFT. This assumption would have to be verified in further studies.

Spin Magnetic Moments and Exchange Splitting. From DFT calculations carried
out with FLEUR a spin-magnetic moment of 0.66µB was obtained which is slightly
above the experimental value of 0.60µB [SAS92]. The GGA+DMFT scheme yields a
spin-magnetic moment of exactly 0.60µB. The exchange splitting denoting the energy
difference between the peak positions of the majority and minority-spin d band was
not calculated explicitly but it can be taken approximately from the DOS in figure
8.3. The DFT calculations yield approximately 0.8 eV whereas in GGA+DMFT the
splitting is reduced by a factor of two which is already much closer to the experi-
mental value between 0.2 and 0.3 eV. Hence, a clear improvement of the description
of properties related to the electronic structure is also observed here when taking
correlation effects into account within GGA+DMFT.

Spectral Function and Band Structure The spectral function for fcc nickel was
calculated as described in the previous section using both the DFT lattice Green
function and the interacting lattice Green function. As described in detail in sec-
tion 8.1.2, the band structure within DFT and a generalized band structure within
GGA+DMFT can be obtained from the spectral function. Bothe the DFT band
structure and the generalized band structure for the majority bands are depicted in
the upper graph in figures 8.6 whereas the graph at the bottom shows the band struc-
tures for the minority bands. The band structures for the majority and minority-spin
electrons are plotted along distinct high symmetry lines in the first Brillouin zone
(1st BZ).

The most pronounced feature in the GGA+DMFT band structure is the smearing
of the bands due to the finite quasi-particle life-times. The smearing is much stronger
for the majority-spin electrons than for the minority spin which is in accordance with
the changes observed in the GGA+DMFT DOS. It can also be observed that the d
bands below and above the Fermi energy move closer to the Fermi level causing the
reduction of the spin splitting described earlier. This shifts of the d bands relative to
the position of the d bands obtained from DFT calculations as well as the smearing of
bands has been observed for all three materials Fe, Co and Ni. Since the electronic
correlation has a stronger influence on the majority states as explained above the
shifting and smearing is alwys much more pronounced for the majority bands than
for the minority bands.

The band structure can be compared with measurements of the energy dispersion
in the 1st BZ obtained from angular-resolved photo-emission spectroscopy (ARPES).
In the generalized band structure for the majority-spin bands data measured by
Eastman, Himpsel and Knapp (margenta) [EHK78], by Himpsel et al. (light blue)
[HKE79] and by Eberhardt and Plummer (green) [EP80] were added. The data
points close to the Fermi energy all agree well with the calculated band structure
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Figure 8.6: Generalized band structure obtained from GGA+DMFT
and DFT band structure (blue curve) calculated for the majority-spin
electrons (top) and minority-spin electrons (bottom) for fcc nickel.
The different symbols all denote data obtained from ARPES from
[EHK78] (magenta), [HKE79] (light blue) and [EP80] (green)
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but for the low-lying s band between the Γ point and the X point, a constant shift
between the measurement and the band calculated within GGA+DMFT is observed.
Since this shift is observed in comparison with data from independent measurements
it is most likely that the GGA+DMFT calculation does not yield the correct energy
dispersion here. To improve on the GGA+DMFT description correlation effects for
the electrons in s bands have to be taken into account but these were not included
in the GGA+DMFT scheme here. Thus, for the s bands only the DFT bands are
reproduced within GGA+DMFT that are known to yield an inaccurate description
of the energy dispersion. For the minority-spin bands only few data could be found
in [EHK78] and [HKE79] measured close to the Fermi level. As for the majority
spins, these data are in good agreement with the calculated band structure.
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Figure 8.7:

Left : Majority and minority DOS for fcc cobalt obtained within
GGA+DMFT (red) compared with the DFT DOS (blue).
Right : Real (top) and imaginary part (bottom) of the self-energy con-
tained in the GGA+DMFT calculations on the left. Contributions to
the majority-spin self-energy are black and those to the minority-spin
self-energy are green. The crystal field splits the self-energy contribu-
tions for both spin directions into eg and t2g contributions.

8.3 Results for Cobalt (Co)

Density of States. To start the discussion of the results for cobalt the total DOS
obtained from DFT calculations and GGA+DMFT calculations as well as the real
and imaginary part of the self-energy contained in the GGA+DMFT calculations are
shown in figure 8.7. In principle, most of the changes found in the GGA+DMFT
description of nickel can also be found in the spectra of cobalt. The majority spin
DOS within GGA+DMFT shows some significant effects of band narrowing while the
center of gravity of the peak caused by the d-band states moves closer to the Fermi
level. A shift of some spectral weight of the lower part of the DFT spectrum towards
even lower energies producing a shoulder at about −7 eV can also be observed and
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Figure 8.8: Imaginary part of the self-energy contributions for fcc
Co derived from the different subclasses of diagrams within FLEX.
The red curves depict contributions from the particle-particle channel
(TMA), the light blue from the eh1 channel and the dark blue from the
eh2 channel. The left graph gives the contributions for the majority
spins, the right for the minority spins.

is examined in a little more detail below. The DOS obtained within GGA+DMFT
for the minority spin states is practically identical with the DFT DOS.

All changes in the DOS can be directly related to the real and imaginary part of
the self-energy in the same way it was done for nickel. The imaginary part shows the
correct behavior close to the Fermi level whereas for the real part of the self-energy
the same odd behaviour at the Fermi energy can be reported as for Ni. The effects
of the crystal-field splitting on the self-energy contributions is minor, whereas the
difference between the self-energy contributions of the majority and minority-spin
states is more severe. However, the contributions are smaller compared to nickel
and altogether cobalt has the smallest self-energy contribution for the minority-spin
states of all three materials Fe, Co and Ni.

While the narrowing of the bands close to Fermi level is caused by the positive
contribution in the real part of the self-energy for energies larger than −6 eV, the
negative peak at around −8 eV as well as the negative peak in the imaginary part
of the self-energy at about −7 eV indicates the formation of a satellite structure as
observed in the DOS of nickel. This could be the origin of the shoulder observed
in the DOS of cobalt around −7 eV. I assume, that the physical effect causing this
quasi-particle excitation is the same as that producing the satellite peak in the DOS
of nickel, namely the repeated scattering of two holes. To verify this assumption,
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Figure 8.9: Left : DOS of fcc cobalt obtained within GGA+DMFT
calculated using only the second-order self-energy contribution
(dashed lines) and the self-energy obtained from the TMA.
Right : Imaginary part of the self-energy contributions Σσ pp (3) (last
row) including crystal field splitting effects. Contributions to the
majority-spin self-energy are black for the minority-spin green.

the imaginary parts of the different self-energy contributions from the TMA, the eh1
channel and the eh2 channel for the majority-spin states are plotted in one graph
in figure 8.8 and the contributions for the minority-spin states in a second graph
also in figure 8.8. Although the contributions are weaker the peak structure of the
contributions for the different channels is very similar to that observed in nickel.
The TMA yields the largest contribution whereas the self-energy corrections due to
the electron-hole interactions should only cause minor changes. Note that the self-
energy contributions calculated for the minority-spin states are an order of magnitude
smaller than for the majority spin states.

Due to the structural analogies to nickel, the DOS from the TMA and also from the
second-order self-energy contribution are depicted in 8.9 together with the imaginary
part of the self-energy obtained within the TMA. In the DOS of the majority-spin
states the forming of a satellite can really be observed. The satellite features are
even more pronounced than in the total DOS in figure 8.7 containing all self-energy
contributions. This is probably caused by the additional self-energy contributions
from the eh1 and eh2 channel contained in the total DOS. The peaks of the imaginary
part of the self-energy contribution from the eh1 channel at −7 eV and from the eh2
channel at around −5 eV as observed in figure 8.8 cause the satellite features to be
washed out due to additionally quasi-particle damping. Nevertheless, a shift of some
quasi-particle weight causing a satellite-like peak is clearly visible in 8.9.

Finally, the calculation of the DOS for fcc cobalt shall also be compared to exper-
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Figure 8.10: Comparison between
the spin-integrated DOS for fcc
cobalt obtained within DFT (blue)
and GGA+DMFT (red) and from
measurements deploying high res-
olution x-ray photo-emission spec-
troscopy (HRXPS, black dots).
HRXPS can only determine the oc-
cupied electronic states below EF,
hence the resonances in the calcu-
lated DOS above the Fermi level are
not recorded by HRXPS.  0
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imental data. For the same reasons mentioned in the discussion of the results for
nickel, only the spin-integrated DOS obtained from DFT and GGA+DMFT calcu-
lations are compared to a high-resolution x-ray photo-emission spectrum (HRXPS)
taken again from [SK96]. While the DFT results clearly show some deviation from
the experimentally obtained spectrum, the GGA+DMFT result is in excellent agree-
ment with the HRXP spectrum with respect to the position of the main peak as well
as the shape and width of the peaks. As explained in detail in the last section, the
photo-emission spectroscopy can not describe the states in the DOS above the Fermi
level and the tail in the spectrum at low energies comes from side-effects during the
measurement.

Spin Magnetic Moments and Exchange Splitting. For hcp cobalt a spin-magnetic
moment of 1.52µB is measured in experiments [SAS92]. In this work cobalt could
only be calculated in the fcc phase and a spin-magnetic moment obtained from ex-
periments for this phase could not be found. Hence, the spin-magnetic moments
calculated within DFT and GGA+DMFT can not be compared directly to the data.
As for nickel, the moment obtained from DFT (1.72µB) is larger than the moment
calculated within GGA+DMFT (1.65µB). The same tendency is observed for the spin
splitting which is large within DFT (2.0 eV) and decreases within GGA+DMFT (1.4
eV). For the hcp phase a spin splitting of 0.9 eV was measured (see [SAS92]).

Spectral Function and Band Structure From the spectral function calculated with
the DFT lattice Green function the DFT band structure was obtained as depicted in
figure 8.11 for the majority-spin bands (graph on top) and for the minority-spin bands
(graph on the bottom). In the same graphes the generalized band structures obtained
from the spectral function using the interacting GGA+DMFT Green function are
also presented. As opposed to nickel, it is not possible to compare these results
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Figure 8.11: Generalized band structure obtained from
GGA+DMFT and DFT band structure (blue curve) calculated for the
majority-spin electrons (top) and minority-spin electrons (bottom) for
fcc cobalt.
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with experimental data, since the calculations were performed for cobalt with an fcc
structure and data are only available for cobalt in a hcp phase. However, it can be
verified again, that the d bands for the majority-spin states move closer to the Fermi
level and are washed out due to finite quasi-particle life-times if correlation effects
are incorporated within the framework of GGA+DMFT. Once again, these effects
are much less pronounced for the minority-spin states.
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Figure 8.12:

Left : Majority and minority DOS for bcc iron obtained within
GGA+DMFT (red) compared with the DFT DOS (blue).
Right : Real (top) and imaginary part (bottom) of the self-energy con-
tained in the GGA+DMFT calculations on the left. Contributions to
the majority-spin self-energy are black and those to the minority-spin
self-energy are green. The crystal field splits the self-energy contribu-
tions for both spin directions into eg and t2g contributions.

8.4 Results for Iron (Fe)

To evaluate the results obtained for bcc iron again a comparison between the DFT
DOS and the GGA+DMFT DOS together with the real and imaginary parts of the
self-energy contained in the GGA+DMFT results in figure 8.12 is presented. The
correlation effects in iron as described by the self-energy are roughly as strong as in
cobalt, but the self-energy of iron shows a richer structure. The self-energy contribu-
tions to the minority-spin states are again much smaller than for the majority spins
and the deviation between Σσ

t2g
and Σσ

eg
originating from the crystal-field splitting of

the d bands is marginal. It is worth mentioning that the deviation in the majority-
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Figure 8.13: Imaginary part of the self-energy contributions for bcc
Fe derived from the different subclasses of diagrams within FLEX.
The red curves depict contributions from the particle-particle channel
(TMA), the light blue from the eh1 channel and the dark blue from the
eh2 channel. The left graph gives the contributions for the majority
spins, the right for the minority spins.

spin contributions between the different contributions Σσ
t2g

and Σσ
eg

is strongest in
iron. The obvious differences between Σσ

t2g
and Σσ

eg
for the majority-spin contribu-

tions might be an interesting topic to be investigated in future work. Furthermore,
the imaginary part of iron has a second peak around −3 eV that is as pronounced as
the peak around −7 eV. In the imaginary parts of nickel and cobalt only the latter
peak is present whereas around −3 eV only a small shoulder can be observed (see
figure 8.3 for nickel and 8.7 for cobalt).

It was demonstrated for nickel and cobalt that the peak in the imaginary part of the
self-energy is caused by particle-particle interactions captured in the TMA. Hence,
the second peak observed for iron must arise from the electron-hole interaction. This
assumption can be verified by comparing the distinct contributions to the self-energy
Σσ pp (3) stemming from the particle-particle channel and Σσ eh1 (3) and Σσ eh2 (3) from
the particle-hole channels 1 and 2. The imaginary parts for all three contribution
are depicted for the eg and t2g bands in figure 8.13 for the majority-spin states on
the left and for the minorities on the right. The self-energy part from the particle-
particle channel shows the same behavior as for nickel and cobalt but the scattering
processes between electrons and holes captured in the electron-hole channel 1 yield
a much stronger contribution than in Ni and Co and dominate among all self-energy
contributions for iron. For iron with fewer valence electrons than nickel and cobalt,
the increasing amount of holes in the valence band obviously leads to an increase
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Figure 8.14: Generalized band structure obtained from
GGA+DMFT and DFT band structure (blue curve) calculated for the
majority-spin electrons (top) and minority-spin electrons (bottom) in
bcc iron. The green triangles are experimental data form ARPES
measuremnts from [EJW+79].
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Figure 8.15: Comparison between
the spin-integrated DOS for bcc iron
obtained within DFT (blue) and
GGA+DMFT (red) and from mea-
surements deploying high resolution
x-ray photo-emission spectroscopy
(HRXPS, black dots). HRXPS
can only determine the occupied
electronic states below EF, hence
the resonances in the calculated
DOS above the Fermi level are not
recorded by HRXPS.  0
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of the correlation effects caused by electron-hole interaction. The strong self-energy
contribution from the electron-hole channel 1 obviously causes the second peak in
the total self-energy contribution to the majority spin bands in 8.12.

In the GGA+DMFT DOS in 8.12 the imaginary part of the self-energy leads to a
strong broadening and damping of the peak structure obtained from DFT calculations
for the majority spins for energies below −2 eV. Again, this effect is much smaller
for the minority-spin states. For both majority and minority-spin states a significant
shift of the main peaks close to the Fermi level is observed as well as some shifting of
the weight of the lower-lying bands to even lower-lying energies for the majority-spin
bands. These shifts are directly related to the real part of the self-energy in the same
way as described for nickel and cobalt.

The spin-integrated DOS for iron is compared to experimental data stemming
from the same high-resolution x-ray photo-emission experiments as for nickel and
cobalt [SK96]. In figure 8.15 the experimental spectrum is plotted together with
the results from the DFT and GGA+DMFT calculation. Once again, GGA+DMFT
results are in better agreement with the peak positions and the peak structure of
the experimental data than the DFT results underlining again the importance of
correlation effects for the formation of the electronic structure in Fe.

Spin Magnetic Moments and Exchange Splitting. The spin-magnetic moment
for iron measured in experiment is given by µspin = 2.13µB. From DFT calculations
with FLEUR a moment of 2.26µB was obtained whereas GGA+DMFT yields 2.12µB.
Furthermore, the spin splitting obtained from GGA+DMFT as seen in figure 8.12
of roughly 2.2 eV is much closer to the experimental value of 2.1 eV than the DFT
result of 2.7 eV. The experimental results were again taken from [SAS92].
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Spectral Function and Band Structure Finally, the DFT band structures and the
generalized band structures obtained from the spectral function calculated within
GGA+DMFT are presented in 8.14. The generalized band structure shows again
the smearing of the bands and the shift of the bands as expected when incorporating
correlation effects. Data derived from ARPES measurements carried out by Eastman
et al. [EJW+79] are plotted as green trinangles marks on top of the generalized band
structures. These data agree well with the generalized band structure obtained from
GGA+DMFT.
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In the atomic Auger decay [Aug25] first a deep electron vacancy (hole) created e.g. by
a photo-emission process recombines with an outer electron. When the outer electron
moves closer to the core it transfers part of its energy to a second electron — the
so-called Auger electron — which is ejected into the energy continuum, leaving two
holes in the outer shells of the atom. In Auger electron spectroscopy (AES) or Auger
photo-electron coincidence spectroscopy (APECS) information about the final two-
hole state as well as the formation of this state are obtained by measuring the energy
dispersion of the Auger electron.

Compared to the atomic ones, solid-state Auger transitions introduce qualitatively
new features, since the core states are approximately the same as in isolated atoms
while the valence states are significantly different. For example, Auger transitions
in the late 3d transition metals involving two valence holes in the final state, so-
called core-valence-valence (CVV) transitions, are known to exhibit a considerable
sensitivity to electronic correlations in the valence band. A theory of CVV spectra
within GGA+DMFT is introduced in this chapter. A two-particle density of states
for Fe, Co and Ni mimicking the spectrum of the Auger electron is derived upon
this theoretical framework. It is demonstrated how interactions between two holes
in the d valence bands can be incorporated into the spectra within the framework
of GGA+DMFT through the particle-particle ladder approximation from the FLEX
method. Calculating the two-particle density of states with and without taking
correlation effects into account as well as contrasting these results with experimental
data reveals the influence of the electronic correlation on CVV Auger transitions and
provides further insight into the CVV Auger processes of Fe, Co and Ni.

9.1 The Physics of the Auger Process

I would like to first examine the physical nature of the Auger process in solids in some
more detail. This will be helpful to understand the modeling of the Auger process
within GGA+DMFT described in the next section.

In figure 9.1 the two steps of a CVV Auger transition in a solid are depicted. In
the first step (A), an x-ray photon with energy

Eγ = ~ω (9.1)

removes an electron from a core level of a lattice atom of energy εcore. The photo-
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Figure 9.1: Schematic description of the two steps (A) and (B) of a
CVV Auger transition, here for a 3d transition metal.

electron thus has a kinetic energy of

Eph
kin = Eγ + εcore . (9.2)

After some time the excited atom relaxes due to the recombination of the hole in the
core level with an electron from the valence band. In figure 9.1 this electron had an
energy εv1 (step B) before the recombination. Thus an energy ∆E given by

∆E = εv1 − εcore (9.3)

is released during the process which is given to a second electron in a state with
energy εv2. The second electron is ejected from the solid with a kinetic energy of

EAuger
kin = ∆E + εv2 = (εv1 + εv2) − εcore . (9.4)

There are no strict selection rules for this process as opposed to the case of photo
emission (see e.g. the review article about AES by Chang [Cha71]). Therefore, any
other electron with a binding energy smaller than the energy ∆E could be ejected.
Furthermore measurements exhibit a strong dependence of the CVV transition on
the total number Z of electrons at one atomic site. To explain this dependence in
detail would be beyond the scope of this introduction but to give at least some idea
about the influence of Z, I like to mention that the atomic Auger process is most
likely to occur in atoms with Z < 30 whereas for Z > 60 the relaxation after step A
in figure 9.1 occurs in virtue of emission of an X-ray photon with a probability rate
of over 90%.

The kinetic energy of the Auger electron is detected in AES but it is quite difficult
to derive reliable information from the observed spectra. This is due to the fact
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that figure 9.1 does not “tell the whole story” because it only describes the actual
Auger process. However, there are a number of other processes taking place in the
same energy range such that the observed spectra are often a superposition of the
Auger process and some additional effects. Some additional processes contributing
to the observed spectra are e.g. the creation of electron-hole pairs by the escaping
photo electron when passing through the electron gas of the solid, emission of other
core holes from neighboring ions or the appearance of core-core-valence (CCV) Auger
transitions, so-called Coster-Kronig transitions. But even in a “normal” Auger pro-
cess secondary electrons with different energies may be detected since the remaining
ion may either relax to the ground state by ejecting the electron or might still be
in an excited state after the ejection. These effects can cause damping, broaden-
ing or even additional features in the observed spectra and they are often hard to
be distinguished from the contribution of the actual Auger process without addi-
tional information. (See the article by Thurgate for a detailed listing of a number of
processes and their influence on the Auger spectrum [Thu96].)

In Auger photo-electron coincidence spectroscopy (APECS) the Auger electron as
well as a photo-electron are detected. It was already mentioned above that there do
not exist any strict selection rules for the CVV transition such that the energies εv1

and εv2 may differ if the same process is observed twice. However, the conservation
of energy ensures that the sum of the energies of the photo electron and the Auger
electron must be constant in the case where the two-hole final state and no other
processes are observed. The above formula (9.2) through (9.4) yield

EAuger
kin + Eph

kin = Eγ + (εv1 + εv2)
!
= const . (9.5)

Hence, it is possible to detect “the” photo electron responsible for the ejection of the
observed Auger electron. Thus, APECS is able to single out many of the additional
processes contributing to the observed Auger spectra. For example the photo-electron
analyzer is fixed on one part of the XPS spectrum and the Auger spectrum is scanned
to find which parts of the Auger spectrum have their origin in that part of the XPS
spectrum. Thus, APECS can in principle provide reliable data of spectra from CVV
Auger transition describing the final two-hole state in the valence band. After this
small excursion into the field of Auger electron spectroscopy a theoretical description
of Auger spectra is derived in the next section.

9.2 A Model for Auger Spectra

In this section I will derive a model description of the Auger spectra detected in
AES or APECS. The derivation is based on an early model for Auger spectra by
Sawatzky [Saw77]. The same assumptions made by Sawatzky hold for the derivation
of the model presented here. However, by solving the model within the framework of
GGA+DMFT an improved description of Auger spectra is obtained by solving the
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derived equations self-consistently. In the earlier theories by Sawatzky [Saw77] or
Cini [Cin79] the self-consistency is missing.

First of all the following approximation typically used in the literature (see e.g. [DC94])
to model Auger spectra are also used here

• The two-step approximation assumes that the formation of the core hole and
the Auger process are independent.

• The competition with other decay processes is neglected.

• All surface-related effects are neglected.

In [Saw77] it was discussed that the Auger transition rate is determined by matrix
element of the type

〈

Cσ1, kσ2

∣

∣ Uee

∣

∣R1L1σ
′
1, R2L2σ

′
2

〉

, (9.6)

where the states |Cσ1〉 and |kσ2〉 denote the non-dispersive initial state of the core
electron and the state of the escaping free photo-electron, whereas the two final states
of the two holes in the valence band are represented in terms of the TB-FLAPW basis
introduced in chapter 3. Thus, Li specify an orbital at the site Ri and the holes carry
the spins σ′

i with i ∈ {1, 2}. The Uee denotes the Coulomb interaction between the
two initial and the two final states. The Auger transition rate is simplified by applying
the following additional approximations:

• The contributions of matrix elements with R1 6= R2 are neglected. This is
well justified for the matrix elements involving the d-states of the 3d metals
since the contribution of the intra-atomic Auger process between valence states
with R1 = R2 is four to five orders of magnitude larger than the inter-atomic
contributions due to the localized character of these bands. Furthermore, the
contribution of s- and p-band electrons for R1 = R2 is also neglected because
of their delocalized character.

• The interaction between the outgoing electron and the ionized material left
behind is neglected as far as the shape of the Auger spectra is concerned. This
is the so-called sudden approximation.

If it is furthermore assumed that the transition matrix elements are energy-independent,
they are constant for each contribution of a specific final two-hole state to the ob-
served Auger spectra. If this approximation for the transition rates is deployed and
the final two-hole state is thought to be independent from the first step of the core-
electron excitation, the Auger spectrum is simply given by the density of states of
this final two-hole state in analogy to the spectra from photo-emission processes that
are described by the single-particle density of states as discussed in the previous
chapter. The two-hole state can be described within GGA+DMFT in terms of the
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two-particle propagator for two holes Kpp, which in turn can be written in terms of
diagrams as

PSfrag replacements

Kpp Γpp+=
−

, (9.7)

where Γpp is the vertex function encoding all interactions between the two holes in
the final state. It is worth mentioning that this general description also incorporates
interactions between two electrons in the final state which is shown to yield a non-
negligible effect in the calculated spectra later on. Within the FLEX method Γpp is
approximated by the particle-particle T-matrix and an analytic expression for Kpp

within the T-matrix approximation (TMA) can be derived as

Kpp(ε) = Ψ(ε) + Ψ(ε)T pp(ε)Ψ(ε) , (9.8)

with the particle-particle T-matrix given by

T pp(ε) = v [1 − v Ψ(ε)]−1 (see 5.41)

and the bare two-particle propagator given by

Ψ(ε) = i

∫ ∞

−∞

dε′

2π
G(ε− ε′)G(ε′) . (see 5.27)

For the description of the underlying electronic structure, the multi-band Hubbard
model (5.4) is used. Hence, the interacting lattice Green function is used to determine
the bare two-particle propagator Ψ and to calculate the dressed two-particle propa-
gator Kpp. The interaction v is the combined interaction defined in equation (5.10).
Note that all two-particle quantities are matrices of four orbital indices L1, . . . , L4

and two spin indices σ, σ′ and all matrix elements are in general k dependent. The
single-particle lattice Green function is a matrix of two orbital indices and one spin
index.

To solve equation 9.8, the lattice Green function G has to be determined. Within
GGA+DMFT the k-dependence ofG is neglected andG is determined self-consistently
in a single-site approximation (SSA). Consequently, the dressed two-particle prop-
agator Kpp in equation (9.8) is also obtained within the SSA using the T-matrix
approximation from the FLEX method to approximately determine the vertex func-
tion. This is the so-called local self-consistent T-matrix approximation (local SC
TMA) for the two-particle propagator Kpp. Finally, in analogy to the single-particle
density of states introduced in chapter 8 a spin-integrated two-particle density of
states Dpp can be derived from the imaginary part of the site-diagonal elements of
the two-particle propagator Kσσ′ pp

RLL′

Dpp(ε) = − 1

π

∑

LL′σσ′

ImKσσ′ pp
RLL′ (ε) . (9.9)
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The theory of Auger spectra presented above was developed by Drchal and Ku-
drnovský in 1984 [DK84] to describe the Auger processes in materials like the 3d
transition metals with partially filled bands. These authors used a simpler scheme
to calculate the lattice Green function self-consistently. It is the first time to the
knowledge of the author that the self-consistency is achieved within the framework
of DMFT. The theory presented in [DK84] can be viewed as a natural generalization
of models developed earlier by Cini in 1976 [Cin76] and Sawatzky in 1977 [Saw77]
for Auger processes in materials with completely filled valence bands. In 1979 it was
then shown by Cini [Cin79] that a non-self-consistent version of the T-matrix approx-
imation for the two-particle propagator (NSC TMA) yields an adequate description
of materials with high band filling. However, it was demonstrated by Drchal and Ku-
drnovský in [DK84] that the self-consistency is important for the correct prediction
of the Auger spectra of materials with partially filled bands. In this work the results
from the NSC TMA approach can be recovered by simply replacing all interacting
lattice Green functions G by the non-interacting DFT lattice Green function G0 in
the equations above. This gives the opportunity to study the importance of the self-
consistency in the context of the GGA+DMFT description. In the NSC TMA the
two-particle Green function Kpp

NSC is calculated as

Kpp
NSC(ε) = Ψ0(ε) + Ψ0(ε)T pp

NSC(ε)Ψ0(ε) , (9.10)

with the particle-particle T-matrix calculated with the bare two-particle propagator

T pp
NSC(ε) = v [1 − Ψ0(ε) v]−1 (9.11)

and Ψ0 is given by

Ψ0(ε) = i

∫ ∞

−∞

dε′

2π
G0(ε− ε′)G0(ε′) . (9.12)

Finally, the results from GGA+DMFT can also be contrasted with a description of
the Auger spectra within DFT. In DFT there is no pair interaction between particles.
This can be realized by approximating the two-particle Green function Kpp

bare by the
bare two-particle propagator Ψ0. This corresponds to an approximation of Kpp in
(9.10) by the term of zeroth order on the right-hand side. The two-particle propagator
is calculated using the DFT lattice Green function as in (9.12). It is clear right from
the start that omitting the interaction between the two holes yields an incomplete
picture of the underlying physics and cannot describe the Auger spectra sufficiently.
However, it allows to extract explicitly the influence of correlation on the Auger
spectra by comparing the spectra obtained from the different forms Kpp

bare, K
pp
NSC and

Kpp.

9.3 Calculations and Results

In all the calculations in this chapter the same values for the input parameters Kmax,
lmax and the number of k points in the DFT part as well as U and J in the DMFT
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Figure 9.2:

Left : Comparison for fcc nickel between the theoretically obtained
Auger spectra from DFT (green), NSC TMA (blue) and SC TMA
(red).
Right : Comparison of the Auger spectra calculated in the SC TMA
(straight line) with a spectrum obtained from an AES experiment
(dots) from [MNJ84].

part were used as in the calculations presented in the previous two chapters. The
formulas to calculate the Auger spectra can be implemented straightforwardly. Note
that in all equations the lattice Green functions have to be used as opposed to the
formulas in the GGA+DMFT self-consistency scheme where the equations derived
from the diagrammatic expressions are evaluated using the bath Green function.

The first results to be discussed are calculations done for nickel. In the previous
chapter, it has been demonstrated that interaction processes between two holes are
the dominant contribution to the self-energy correction within FLEX (which com-
prises the particle-particle scattering captured by the T-matrix approximation, the
electron-hole scattering and the screening of the Coulomb interaction due to particle-
hole pairs). Furthermore, the particle-particle interaction was shown to be strongest
in nickel among the three metals Fe, Co and Ni. Last but not least, the single-particle
DOS of nickel exhibits a quasi-particle satellite that was directly related to a two-hole
interaction process of the same kind as the interaction of the two holes in the final
state of the ion after a CVV Auger transition. Therefore, the difference in the Auger
spectra calculated in the NSC TMA or the SC TMA compared to the DFT Auger
spectra can be best observed in the Auger spectra of nickel.

In figure 9.2 on the left the resulting spectra from the three theoretical approaches
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are depicted. On the right the spectra obtained from the SC TMA is shown together
with a spectrum from an AES measurement by Mårtensson et al. [MNJ84]. The
comparison of the theoretical spectra reveals that inclusion of the interaction be-
tween the two holes in the final state in the CS TMA causes the weight of the peak
observed in the DFT spectrum to shift to lower energies. The Coulomb repulsion
between the two holes contributes an additional positive term to the energy of the
two-hole final state. Hence, the inclusion of the interaction increases the energy of
the final state and in turn decreases the energy of the Auger electrons observed in
the spectrum. Deploying the self-consistent TMA leads to an additional damping
and broadening of the peak structure relative to the NSC TMA spectrum whereas
the position of the main peak does not significantly change in the SC TMA with
respect to the peak position in the NSC TMA spectrum. In the SC TMA the two
holes are described as dressed particles as opposed to the bare-particle description in
the NSC TMA. This renormalization accounts for the interaction of each individual
hole with the rest of the medium. However, the change in the energy of one hole
due to this renormalization is obviously much smaller than the potential-energy shift
due to the direct Coulomb interaction between the two holes while the position of
the peak is mainly determined by this latter interaction. This is different from the
effects observed in the single-particle densities in the previous chapters where re-
placing the non-interacting DFT Green function with the interacting Green function
caused damping and broadening but also shifts in the observed spectra. In the Auger
spectrum only a minor shift of some quasi-particle weight to the left side of the peak
can be observed. However, effects of the finite life-times of excited one-particle states
causing the damping and broadening of the peaks can also be observed in the two-
particle spectrum from the SC TMA spectra much like it was already observed in
the single-particle spectra in the previous chapter. Nevertheless, the biggest change
in the description of the spectrum is due to the interaction of the two holes which is
described well in the SC TMA but is already contained in the NSC TMA spectrum.

If the SC TMA spectrum is compared to the Auger spectrum measured in an
experiment by Mårtensson et al. [MNJ84] (right side of figure 9.2) it can be seen
that the position of the main peak of the Auger spectrum corresponds to the position
predicted by the SC TMA. (The height of the measured curve given in arbitrary units
was adjusted to the height of the SC TMA spectrum.) Mårtensson et al. were able
to prove that the main peak is mostly determined by the CVV transition calculated
in the SC TMA. This implies that the inclusion of correlation effects in the newly
derived theory is vital for an accurate description of Auger spectra.

Unfortunately, it is not possible to analyze the importance of the self-consistency
in the description of the two-hole process by further comparing certain features of
the two spectra, since the experimental data have to be taken with care. The exper-
imentalists pointed out explicitly in the presentation of their work that the observed
spectrum is a superposition of the actual Auger process and three other processes.
There is an additional process involving the creation of another pair of holes that
contributes some additional weight to the main peak. The shoulder on the left of the
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Figure 9.3: Comparison between the theoretically obtained Auger
spectra from DFT (green), NSC TMA (blue) and SC TMA (red) for
fcc cobalt (left) and for bcc iron (right).

main peak is also caused by a process involving the creation of more than two holes.
Both processes are not described within the SC TMA. The shoulder to the right of
the main peak is caused by the part of the CVV Auger transition where the two holes
in the final state are bandlike. These holes have itinerant character e.g. they can be
created at the same site but one hole immediately moves to another site. Due to
the single-site approximation in the DMFT part of the GGA+DMFT scheme these
bandlike holes are not contained in the SC TMA description of the Auger spectrum,
hence, the shoulder is absent in the SC TMA spectrum. The broadening of the
features in the AES spectrum is probably caused by finite-temperature effects since
a contribution to the spectrum was also observed above two times the Fermi level.
All these additional processes make it however impossible to determine, if the addi-
tional shift on the left side of the peak in the SC TMA spectrum yields the correct
description of the main peak stemming from the CVV transition.

It has been discussed at some length above that it would be ideal to compare
the theoretically obtained spectra to results from APECS measurements since the
superposition of competing processes in the AES spectra (as observed e.g. in the
spectrum of nickel) can be avoided to some extent by the coincidence spectroscopy.
Unfortunately, the data available from APECS measurements are yet too few and
the resolution is too poor to draw further conclusions in comparison with the calcu-
lated spectra. For cobalt and iron even less data were available. Therefore, only the
comparison between the theoretically obtained Auger spectra is presented for these
materials in figure 9.3. The same trends as observed for nickel can be found but
are less pronounced. This is exactly what was to be expected since the hole-hole
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interaction is strongest in nickel. In contrast to nickel, the spectra of cobalt and
iron also show the formation of appearance-potential spectra manifested by the peak
forming at energies higher than two times the Fermi energy. This peak originates
from an effect often referred to as inverse CVV Auger transition where two addi-
tional correlated electrons in the valence band can be seen. While nickel has the
highest number of occupied d states iron has the lowest of all three materials thus
leaving more empty states to be occupied by excited electrons. Therefore, iron has
the largest contribution of appearance potential states to the two-particle DOS. In
appearance-potential spectroscopy (APS) this part of the two-particle DOS can be
studied experimentally.

To conclude this chapter, the importance of correlation effects for the correct de-
scription of the Auger spectra of Fe, Co and Ni was demonstrated. With the new
theoretical description the Auger process involving dressed particles can be described.
Thus the new model is consistent with the ladder approximation for the two-particle
Green function. Although the modeling, being an extension of earlier theories elim-
inates some inconsistencies in these theoretical descriptions ,the importance of the
self-consistency for the description of experimental data has yet to be demonstrated.



10 Chromium – A Case Study of
Antiferromagnetism within
GGA+DMFT

The 3d transition metal chromium has been studied extensively ever since Shull and
Wilkinson first demonstrated in 1953 that chromium is an antiferromagnet (AFM)
[SW53]. Although the electronic structure of Cr is well known today on a qualitative
level the standard ab initio approaches like DFT do not describe all its proper-
ties correctly in a quantitative manner. In particular within LSDA the averaged
spin-magnetic moment per atom is predicted correctly while the equilibrium lattice
constant is much smaller than the experimental lattice constant. As opposed to that
within GGA the equilibrium lattice constant is very close to the lattice constant
found from experiments, but the averaged spin-magnetic moment per atom is too
large.

In this chapter an extension of the GGA+DMFT scheme is introduced to study
bulk chromium in a commensurate antiferromagnetic configuration. This yields the
opportunity to analyze local correlation effects for electrons in the d bands of Cr and
their influence on the antiferromagnetism and it might remove some deficiencies from
the DFT description of this material.

10.1 A Model for Chromium as Commensurate AFM

Chromium is a 3d transition metal with a bcc crystal structure and about half-band
filling. Below a Néel temperature of TN = 311K Cr exhibits itinerant antiferromag-
netic behavior: the spin-magnetic moments of the atoms in the (001) planes couple
ferromagnetically and the coupling from layer to layers along the (001) direction is
antiferromagnetic. This so-called layered antiferromagnetism (LAF) is depicted in
figure 10.1 for one bcc unit cell. For the sake of completeness it should be mentioned
that the surface of Cr is found to be magnetic both in experiment and theory (see
e.g. the article by Bihlmayer, Asada and Blügel [BAB00]). In this work, however,
only the bulk electronic structure of Cr will be studied. The ground state of Cr is a
spin-density wave (SDW) state where the LAF structure is modulated by a wave vec-
tor q = (2π/a0)(0, 0, q) with q = 0.952 ≈ 19

20
. The experimentally determined lattice

constant a0 = 2.88 Å is taken from [SA92]. Based on measurements of the periodicity
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of the SDW Shirane and Takei estimated that the maximum of the spin-density wave
amplitude is as large as 0.59µB corresponding to an average spin-magnetic moment
of 0.46µB per atom [ST62]. This value of the spin-magnetic moment is much smaller
than might be expected from the fact that the 3d bands are half-filled indicating the
proximity of the magnetic properties of Cr to a magnetic instability as pointed out
by Singh and Ashkenazi [SA92].
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Figure 10.1: Bcc unit cell of chromium. The
arrows denote the spin-magnetic moment per
atom

George et al. [GKKR96] re-
ported for incommensurate mag-
netic orderings like the spin-
density wave modulated ground-
state of Cr that no simple set of
mean-field equations can be writ-
ten within DMFT. Consequently,
the GGA+DMFT scheme as de-
rived in this work can not be ap-
plied to describe the exact elec-
tronic structure of the ground
state of Cr. However, calcula-
tions can be carried out assum-
ing a commensurate antiferromag-
netic structure in which the spins
at the corner and the center of the

bcc unit cell are of equal magnitude but point in opposite directions as depicted in
figure 10.1. It was demonstrated by Koehler et al. [KMTM66] that this structure can
be actually stabilized by alloying with less than 1% Mn. Thus, the commensurate
phase is very close to the true ground-state of pure Cr and it is therefore instructive
to perform calculations for this much simpler structure.

10.2 Calculating Commensurate AFM within

GGA+DMFT

Generating Input Data within DFT. The adapted GGA+DMFT scheme to calcu-
late electronic structures exhibiting commensurate antiferromagnetic ordering needs
input from a converged DFT calculation and again the FLEUR code was used to
generate this input. Chromium with commensurate antiferromagnetic structure can
be modeled by a unit cell of simple cubic structure with two atoms, one at the corner
and one at the center of the cell, with opposite spin-magnetic moments. The exper-
imental lattice constant was used in all calculations. Furthermore the parameters
Kmax and lmax were set to 3.4 and 8 in all calculations.

The choice of the number of k points has to be done carefully, since the magnetic
properties of chromium are sensitive to the Brillouin-zone sampling which reflects
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the proximity to the magnetic instability close to the experimental lattice constant
as mentioned above. Therefore a large number of 969 k points in the irreducible part
of the 1st BZ was used in the iterations to solve the Kohn-Sham equations. With
this sampling the Cr moment is within 0.002µB of the converged value calculated
for the experimental lattice constant. The densities of states and the eigenvalues
to construct the DFT lattice Green function were determined with an even larger
number of 1140 k points.

Finally a parametrization of the exchange-correlation potential has to be chosen.
As pointed out in the introduction of this chapter, one may chose for Cr between a
GGA yielding accurate lattice constants but too high values for the spin-magnetic
moment, or a LDA parametrization which usually gives a value for the spin-magnetic
moment close to experiment but underestimates the lattice constant substantially.
Furthermore, it was shown by Singh and Ashkenazi [SA92] that the LDA actually
predicts the ground state of chromium to be paramagnetic if the equilibrium lattice
constant determined within LDA is used instead of the experimental lattice constant.
As in previous calculations for Fe, Co and Ni I therefore use the PBE parametrization
within the GGA.

Construction of the Lattice Green Functions. The two most important steps
in the derivation of the new LDA+DMFT scheme are the construction of the lat-
tice Green function within DFT for a crystal symmetry with two atoms per unit
cell and the incorporation of this lattice Green function into the GGA+DMFT self-
consistency cycle. The construction of the Green function can be done straightfor-
wardly as described in chapter 4 and I only recall the most important steps here.

The general form of the TB-FLAPW basis functions is used

χµσ
L (rµ) = uσ

l (rµ) YL(r̂µ) , (see 3.29)

where L = (l, m) is the combined orbital index, µ denotes the muffin tin inside the
unit cell thus corresponding to a label of the different atoms per unit cell and rµ gives
the position inside the muffin tin µ. If the Kohn-Sham eigenfunctions are expanded
in terms of the general form of the TB-FLAPW basis functions and the lattice Green
function is constructed using this expansion of the Kohn-Sham eigenstates the Green
function is obtained as a matrix with elements

G0 µµ′σ
LL′ (k; ε) =

1

N

∑

ν

(

Aµσ
L,ν(k)

)(

Aµ′σ
L′,ν(k)

)∗

ε− εσ
k,ν ± iη

. (see 4.34)

The number N gives the number of atoms in the crystal and εσ
k,ν are the Kohn-Sham

eigenvalues. The deviation between this Green function and the Green function for
a crystal structure with one atom per unit cell stems form the restriction of k to the
first Brillouin zone which differs in both cases.
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For chromium with two different atoms µ ∈ {A,B} in the unit cell, the DFT lattice
Green function in k space can be written in the following matrix form

G0 σ(k; ε) =

(

G0 AAσ(k; ε) G0 ABσ(k; ε)
G0 BAσ(k; ε) G0 BBσ(k; ε)

)

. (10.1)

From the Green function in k space a Green function in real space is obtained using
the lattice Fourier transformation introduced in chapter 4. The Fourier transforma-
tion can be applied to each matrix element separately. Thus, we can make use of the
fact that within DMFT only the local elements of the Green functions are needed,
i.e. only the sub-matrices G0 AAσ(k; ε) and G0 BBσ(k; ε) need to be transformed into
real space. The lattice transformation for these matrix elements however is of the
simple form

G0 µµσ(ε) =
∑

k

G0 µµσ(k; ε) . (10.2)

The new GGA+DMFT Iteration Cycle. As discussed by George et al. [GKKR96]
within DMFT the same mean-field equations as derived for crystal structures with a
single atom per unit cell can be derived for each atom A and B from the two sub-
lattices of Cr. This is due to the single-site approximation in DMFT. If the mean-field
equations presented in chapter 6 now hold for each atom separately the sub-matrices
G0 AAσ(ε) and G0 BBσ(ε) can be used directly as input in the first iteration step for
the FLEX solver to calculate a self-energy contribution ΣAAσ(ε) and ΣBBσ(ε) for each
atomic site. The resulting matrix

Σσ(ε) =

(

ΣAAσ(ε) 0
0 ΣBBσ(ε)

)

. (10.3)

is used together with the DFT lattice Green function in k space from equation (10.1)
to solve a Dyson equation yielding the interacting lattice Green function G in k
space as a matrix of the same form as the DFT lattice Green function in (10.1).
The sub-matrices GAAσ(ε) and GBBσ(ε) of the interacting lattice Green function can
now be obtained by applying the lattice Fourier transformation to the newly derived
Green function G. The bath Green function for each atom is obtained from these
sub-matrices using the same formulas as in the case of a single atom per unit cell since
the mean-field equations hold. The bath Green functions are then used to calculate
new self-energy matrix elements ΣAAσ(ε) and ΣBBσ(ε) and this scheme is iterated
until convergence is reached.

Due to the specific structure of chromium, i.e. all local properties of an atom A in
the unit cell in real space are the same as the other atom B with reversed spin, the
self-energy contribution has to be calculated only once e.g. for atom A. To obtain
the self-energy for atom B the relation

ΣBBσ(ε) = ΣAA −σ(ε) (10.4)
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Figure 10.2: GGA density of states per unit cell of bulk chromium
with a simple cubic unit cell for each spin orientation.

can be used. The same relation also holds for the local parts of the Green function
in real space

GBBσ(ε) = GAA −σ(ε) . (10.5)

Applying these relations reduces the numerical effort drastically. Finally some input
values have to be chosen for the calculations within many-body perturbation theory.
A Hubbard U of 1.36 eV was used and a Hubbard J of 0.82 eV. I will now present the
results from calculations for Cr as obtained from the newly derived GGA+DMFT
scheme.

10.3 Results for Chromium

Like for Fe, Co and Ni, I first discuss the density of states of Cr calculated in a
commensurate configuration. The density of states is derived from the site-diagonal
elements of the interacting lattice Green function in real space just like for the other
materials. In figure 10.2 the DFT DOS per unit cell is depicted. The simple cubic
cell was chosen such that it contains two atoms with exactly antiparallel aligned spin-
magnetic moments per atom. Consequentely, when considering the density of states
in the whole unit cell an equal amount of states is occupied with spin up electrons
and spin down electrons thus the total density in the unit cell is indistinguishable
from that of a paramagnet as can be seen in figure 10.2.

The true magnetic character of the Cr atoms is revealed if the DOS per atom in real
space is examined. Figure 10.3 shows the density of states at one atomic site. The
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Figure 10.3:

Left : Majority and minority DOS per atom for simple cubic chromium
obtained within GGA+DMFT (red) compared with the DFT DOS
(blue).
Right : Real (top) and imaginary part (bottom) of the self-energy
contained in the GGA+DMFT calculations. Contributions to the
majority-spin self-energy are black and those to the minority-spin are
green. The crystal field splits the self-energy contributions for both
spin directions into eg and t2g contributions.

peak structure for an atom from a layer coupled antiferromagnetically to the layer of
the observed atom would exhibit the same DOS but with the peak structures of the
minority spin corresponding to the DOS of the majority spins in the other layer and
vice versa. In figure 10.3 the DOS per atom as obtained within DFT is compared
to the DOS obtained from the new GGA+DMFT scheme. The same changes as
for Fe, Co and Ni can be observed, in particular broadening and damping of the
DFT peak structure and band narrowing occur and the bands move closer to the
Fermi level. On the right side of figure 10.3, the real and imaginary parts of the self-
energy contributions from the description of Cr within GGA+DMFT are plotted. In
contrast to the self-energy corrections for Fe, Co and Ni, the influence of the crystal
field, resulting in a splitting of the self-energy contributions calculated for one spin
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direction into two contributions Σσ
t2g

and Σσ
eg

, is stronger and of the same magnitude
as the difference in the self-energies calculated for the two distinct orientation of the
electron spin. Altogether, the self-energy corrections are rather small, in particular
close to the Fermi level the imaginary part almost drops to zero. The changes in
the GGA+DMFT DOS may be related to the self-energy contributions as was done
before for Ni, Co and Fe.

I would like to examine now whether the GGA+DMFT approach yields a spin-
magnetic moment for Cr closer to the experimental value than the DFT spin-magnetic
moment. It was explained in subsection 8.1.3 that the spin-magnetic moment is
the difference of the integrated spin-electron densities. The spin-magnetic moments
determined within the DFT part, within GGA+DMFT and from experiment are
listed below.

Method spin-magnetic moment [µB]

DFT 1.177
GGA+DMFT 1.091
experiment 0.49

It can be seen that the GGA+DMFT scheme yields a small correction of the spin-
magnetic moment into the right direction when comparing the DFT spin-magnetic
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Figure 10.4: Imaginary part of the self-energy contributions for sim-
ple cubic Cr derived from the different subclasses of diagrams within
FLEX. The red curve depicts contributions from the particle-particle
channel (TMA), the light blue from the eh1 channel and the dark blue
from the eh2 channel. The left graph gives the contributions for the
majority spins, the right one for the minority spins.
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moment to the moment obtained from experiment. Nevertheless, the agreement with
the experimental value is still very poor. I assume that the disagreement stems from
the perturbative nature of the GGA+DMFT approach. Within the GGA+DMFT
scheme many-body effects are considered to yield a perturbative correction to the
GGA description. Hence, if the starting point of the perturbative correction is far
away from the expected values as is the case for the spin-magnetic moment within
GGA the many-body correction will not lead to a substantially different description.
However, it can not be cleary determined from the results obtained so far if the choice
of the starting point for the application of the many-body perturbation theory causes
the results to differ form experimental findings or whether there are other effects

Figure 10.5: A part of the band structure of AFM Cr calculated
within GGA+DMFT is compared to the data of ARPES measure-
ments along the (110) direction in the bulk BZ (the repeated-zone
scheme) from Sakisaka [SKO+88]. The red crosses and blue stars
where measured by the same group but the blue starts correspond to
weaker signals. The smearing of the calculated bands originates from
finite life-time effects.
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e.g. the neglect of the spin-density wave character of the ground state that give raise
to the discrepancy between the theoretical and experimental values. Further tests
would have to be carried out to clarify this.

To conclude the discussion of the DOS the imaginary parts of the different self-
energy contributions from the TMA, the two electron-hole channels eh1 and eh2 for
the majority-spin states are plotted in the left graph in figure 10.4 and the contribu-
tions for the minority-spin states are plotted in the right graph in figure 10.4. The
contributions from the TMA are even smaller than in iron whereas the contribution
of the eh2 channel is increased and obviously yields the main contribution to the
self-energy correction. On the whole the self-energy parts do not exhibit a very rich
structure. The very small values in all channels close to the Fermi level might be
worth mentioning since the absence of almost any self-energy corrections in a window
of 2 eV around the Fermi energy has not been observed for any of the other materials.

Figure 10.6: The experimentally observed
band dispersion (red crosses) from [KRLS85]
along the (010) symmetry line in AFM com-
mensurate Cr in the bulk BZ (the repeated-
zone scheme) is compared to the band struc-
ture calculated within GGA+DMFT.

In the remaining part of the
chapter, the band structure of
Cr is to be examined. The
band structure was derived from
the spectral function which can
be obtained in turn from the k-
dependent lattice Green function
as described in chapter 8. I first
present two plots comparing the
calculated band dispersion along
distinct symmetry lines of the 1st

Brillouin zone with experimental
data. At the end of the chapter
in figure 10.7 the complete band
structure obtained from DFT cal-
culations as well as GGA+DMFT
calculations is presented.

In figure 10.5 the band struc-
ture calculated along the (110) di-
rection in the 1st bulk Brillouin
zone (repeated-zone scheme) is
compared to data obtained from
ARPES measurements by Sak-
isaka et al. [SKO+88]. For the
low-lying s bands a systematic de-
viation between the almost dis-
persionless measured data and the
calculated band structure can be
observed. This is similar to the
observation made for nickel where
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the low-lying bands were not described accurately due to the fact that no self-energy
corrections for these bands is calculated within the present GGA+DMFT scheme.
Thus, the s bands are determined from the DFT bands which are known to yield
a good qualitative but not a qunatitative description of the band disperion. It is
however quite peculiar that the measurred date do almost show no dispersion and
they should be taken with care. The data for the higher occupied bands agree quite
nicely with the calculated spectra, however, Sakisaka et al. observed some resonances
around the first M point around −1 eV that do not correspond to any part of the
calculated band structure. Unfortunately, it can not be determined with the present
data, if this stems from errors in the measurement or whether it might be an error
in the theoretical description of the band structure. Since the data seem to scatter
quite randomly and no additionally band or bands can be determined that might
be missing in the calculated band structure I assume it to be more likely that the
experimental data are inaccurate.

In the second figure 10.6 measurements along the (010) direction are compared
to the theoretically determined band structure. The data were obtained in ARPES
experiments by Klebanoff et al. [KRLS85]. The low-lying bands are again only
reproduced qualitatively by the GGA+DMFT results which can ba atributed to
the reasons mentioned above. Again, some features were observed experimentally

Figure 10.7: Generalized band structure obtained from
GGA+DMFT and DFT band structure (blue curve) calculated for
the AFM commensurate ground state of bulk Cr in a simple cubic
unit cell.



10.3 Results for Chromium 139

that can not be related to any part of the calculated band structure, whereas other
parts of the spectra agree well with the GGA+DMFT bands. One reason for the
discrepancies might of course be the assumed commensurate AFM as opposed to the
actual incommensurate structure. However, the differences in the two structures are
supposed to be rather small. Hence, for a deeper understanding of these differences
further studies are necessary.

I close the chapter by presenting the complete band structure obtained form DFT
calculations in figure 10.7 and compare it to the generalized band structure form
GGA+DMFT calculations. In the GGA+DMFT band structure the d bands move
closer to the Fermi level and the bands are washed out due to the finite life-time effects
as is also the case for Fe, Co and Ni. These effects are however less pronounced than
for example in nickel, since the self-energy corrections in Cr are much smaller.

The band structure exhibits a large variety of almost two- and four-fold degenerated
levels. It was discussed by Skriver [Skr81] that this might be a manifestation of the
close relationship to a band structure that can be obtained if a bcc band structure is
folded back into the first Brillouin zone of the simple cubic lattice. Furthermore, two
gaps can be seen between the d bands left and right to the Γ point positioned in the
center of each band structure here. The gaps are held responsible for the stabilization
of the antiferromagnetic phase.

Summarizing it has been demonstrated that the description of Cr in a commen-
surate form within GGA+DMFT yields some changes in the DOS and the band
structure due to the incorporation of electronic correlation among the d electrons.
This has however a minor effect on the spin-magnetic moment per atom which might
be related to some conceptual problems of the GGA+DMFT scheme in the present
form. To verify these assumptions further investigations would be necessary.
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11 Conclusion and Outlook

Conclusion. At the end of this thesis I would like to go back to the very begin-
ning and recall the main goal: I started out with the task to introduce a scheme
to incorporate electronic correlation into the standard ab initio DFT description of
magnetic 3d metals. In particular it was intended to improve on the characterization
of the material properties sensitive to correlation effects. In order to achieve that the
GGA+DMFT approach was introduced. In the first part of my work I demonstrated
how an existing DMFT implementation employing the fluctuation-exchange (FLEX)
method as a solver for the DMFT impurity problem can be merged with the linearized
augmented-plane-wave DFT code FLEUR. Special attention was devoted to the de-
scription of the FLEX method and a thorough and consistent derivation of the FLEX
diagrams describing the self-energy of the d electron systems of the 3d transition
metals was presented. In the second part I applied the new GGA+DMFT scheme to
obtain the one-particle densities of states and two-particle densities of states (Auger
spectra) of the prototype ferromagnetic materials iron, cobalt and nickel both in real
space and in k space. All spectra exhibit features seen in experiments that are re-
lated to electronic correlations. The same applies to the spin-magnetic moments and
the exchange splitting of the d bands of Fe, Co and Ni obtained from GGA+DMFT
calculations. These quantities are in very good agreement with experimental data.
On the other hand, a case study of commensurate antiferromagnetic chromium yields
only minor changes in the calculated properties due to the incorporation of electronic
correlation. The many-body corrections in principle lead to a small improvement of
the DFT description of Cr when compared to experimental findings. However, this
case study also revealed some limitations of the GGA+DMFT scheme in its present
form.

Altogether it was shown in this thesis that the GGA+DMFT approach is an
intriguing concept that can be employed successfully in the description of mag-
netic materials with intermediately correlated electron systems. The GGA+DMFT
scheme presented here should however be taken only as a first step towards a com-
plete GGA+DMFT characterization of realistic materials because of some limita-
tions of the present scheme for example the neglect of charges in the interstitial
region due to the choice of the TB-FLAPW functions for a basis or the suggested
form of the double-counting correction. Some suggestions to improve the present
GGA+DMFT implementation as well as some ideas to develop more sophisticated
schemes are presented on the following pages. I hope that this thesis will be the
starting point for a thorough exploitation of both the fluctuation exchange method
and the GGA+DMFT approach for the characterization of the exciting physics of
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correlated many-electron systems from first principles.

Outlook. I would like to first discuss some limitations of the present GGA+DMFT
scheme and how they might be removed. For the applications presented in this
thesis satisfactory solutions for these problems have been found, but for applications
to a broader range of materials with more complicated configurations more elaborate
strategies have to be developed.

First of all, the choice of the basis set is a very elementary but also important part in
the construction of the GGA+DMFT scheme. Although the TB-FLAPW basis used
in this thesis yields good results for the muffin-tin densities of states for Fe, Co and
Ni, the total neglect of the interstitial space imposes a too crude approximation for
materials with a larger interstitial region. Furthermore, it is unsatisfactory to employ
a basis set leading a priori to a neglect of some fraction of the valence charge. A
better choice for an atom-centered basis are Wannier functions. They are suitable for
calculations within DMFT since they characterize the electrons as situated in orbitals
localized at distinct lattice sites. On the other hand a basis transformation from a
full LAPW basis obtained from DFT calculations to the Wannier representation can
be employed such that all charges are captured by the Wannier functions.

Upon the derivation of the Hubbard-type lattice model in chapter 5 the difficulties
in determining the Hubbard U and J for calculations of realistic materials have been
addressed. In the calculations for chromium some further problems were encountered
that are thought to be connected to some inconsistencies in the choice of the so-
called double-counting correction. In the context of ab initio calculations of realistic
materials the Hubbard U and J as well as a double-counting correction term can
be obtained quite naturally from calculations within the constrained LDA method
by McMahan et al. [MMS88] and Gunnarsson et al. [GAJZ89]. In constrained
LDA calculations the d electrons are confined to the d orbitals by setting all hopping
matrix elements involving d electrons to zero. Hence, the number of electrons in
the d orbitals is fixed. If the total number of d electrons Nd has been determined
e.g. from DFT calculations, the total energy E of the electron system for three
different configurations is calculated: for a configuration with Nd electrons yielding
E(Nd), a configuration with an additional electron in the d states giving E(Nd+1)
and with an electron removed from the d states leading to E(Nd−1). The screening
effects on the interaction among the d electrons caused by the s and p electrons is
included in these calculations since s and p electrons are still allowed to move and
they will redistribute if the number of d electrons changes. It can be shown that the
screened Coulomb interaction U is then given directly by

U = E(Nd+1) + E(Nd−1) − 2E(Nd)

≈ εd
(

Nd +
1

2

)

− εd
(

Nd −
1

2

)

,
(11.1)

where in the second step the constrained LDA eigenlevel εd of the orbitals of the
confined d electrons was inserted. The latter can be obtained from the relation
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εd(Nd) = dE(Nd)
dNd

introduced by Slater [Sla74] and Janak [Jan78]. In a similar way the
exchange interaction J and a double-counting correction term can be obtained from
this ansatz.

Last but not least, the FLEX solver used in this thesis is limited to crystals with
cubic symmetry. Naturally, one likes to extend its applicability to other crystal
symmetries, possibly even surfaces, and fortunately there are no principal obstacles
preventing this. Thus, it would only be a matter of programming work to overcome
this shortcoming of the present scheme.

In the second part of this outlook I would like to present some ideas how the
GGA+DMFT approach could be extended beyond the present scheme. My incentive
is to pursue the idea of combining ab initio methods for realistic materials with a
DMFT-like scheme to incorporate electronic correlation. A cornerstone of all schemes
to be presented shall be the FLEX method employed in all cases as “the” DMFT
solver to solve the DMFT impurity problem since it has been demonstrated in this
work that FLEX is a powerful and efficient technique for the description of interme-
diately correlated electron systems.

A quite natural extension of the present GGA+DMFT approach seems to be the
implementation of a full self-consistent GGA+DMFT scheme converging not only
the DMFT calculations but also recalculating the DFT results. Within the DMFT
part of the GGA+DMFT scheme a new electron density is obtained directly from
the interacting lattice Green function. As this density usually differs from the DFT
electron density, it is rather intuitive to also recalculate the DFT solution employing
the new density. Furthermore, the changes in the density also affect the screened
Coulomb interaction and it should therefore be recalculated as well e.g. within a
constrained LDA calculation. Both steps then lead to a new many-body problem
that is to be solved within DMFT and this scheme can be iterated until convergence
is reached. For this work such a complete self-consistency scheme was not considered.
Since the GGA description of Fe, Co and Ni is already close to the experimental
results, the DMFT many-body corrections yield no fundamental changes to the DFT
description and thus the effects of the changes in the electron distribution on the DFT
description are thought to be negligible. Furthermore, the full self-consistency scheme
is much more computationally expensive than the present approach. Savrasov and
Kotliar introduced such a scheme in their calculations for Pu [SK04] albeit without
self-consistency for the screened Coulomb interaction but most implementations of
GGA+DMFT-like schemes so far do not employ the full self-consistency.

Non-local correlation plays an important role in the physics of correlated elec-
tron system such as high-Tc superconductors or heavy-fermion metals. In general
the FLEX method yields an energy and k-dependent self-energy and it has already
been successfully employed e.g. in calculations for the three-band model for CuO2

by Esirgen and Bickers [EB98] to describe superconductivity. Within the present
GGA+DMFT approach all spatial fluctuations are frozen due to the single-site ap-
proximation employed in DMFT. Consequently, the self-energy becomes k indepen-
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dent. However, if the DMFT description is extended as suggested by Hettler et al.
[HTZJ+98] using the so-called dynamical cluster approximation (DCA) the momen-
tum conservation relinquished in DMFT can be systematically restored. In the DCA
the self-energy is assumed to be only weakly momentum dependent so that it is well
approximated on a coarse grid of cluster momentum points K. The grid of momen-
tum points is constructed by dividing the 1st BZ into Nc patches around certain
points K and the self-energy is assumed to be constant within each patch. The DCA
contains the DMFT in the limiting case of Nc = 1 and it becomes exact if Nc goes
to infinity. Furthermore, the DCA preserves the translational symmetry, hence the
bath couples to each site of the cluster in DCA. Despite the fact that Hettler et al.
themselves considered this extension of DMFT to be “easily adapted to specific mod-
els and various existing exact and perturbative solution techniques for these models”
[HTZJ+98] so far there exist only few applications of the DCA scheme. For example
Hague et al. presented a combined scheme employing DCA to treat short-range cor-
relation and the FLEX method to describe long-range correlation [HJS03]. I believe
the DCA is an interesting scheme to reintroduce the momentum dependence into the
many-particle description of the electron system.

Another extension of DMFT worth mentioning was already introduced in 1996
by Georges et al. [GKKR96]. This is the cluster DMFT treating not only one
impurity site but a cluster of impurity sites in an averaged environment which has
to be calculated self-consistently. This approach seems to be quite natural for the
descriptions of materials with more than one atom per unit cell but it could also
be interesting to employ it in the description of surface states. Since the number
of nearest neighbors of surface atoms is reduced relative to the bulk coordination
the nearest-neighbor sites yield a non-negligible contribution to the self-energy of
such an atom in contrast to the situation in the bulk crystal where the neighboring
contributions to the self-energy are rather small. In cluster DMFT only the spatial
fluctuations between the atomic sites in the cluster are restored and the bath couples
exclusively to the boundary sites of the cluster, thus translational symmetry is not
preserved. Cluster extensions of DMFT have been applied successfully to a couple
of model systems e.g. by Lichtenstein and Katsnelson [LK00] in calculations of the
d-wave superconductivity in the two-dimensional Hubbard model. In the context of
a GGA+DMFT-like scheme cluster extensions have been carried out by Poteryaev
et al. [PLK04].

Finally I like to discuss a new approach designed to remove the deficiencies of the
present GGA+DMFT scheme inherited by the underlying DFT description. The
idea is to replace the initial DFT description by the GW approximation (GWA)
and treat correlation effects in a combined GW+DMFT scheme as first proposed
by Biermann et al. [BAG03]. The GWA is systematically derived from perturba-
tion theory. The electrons in a solid are described as quasi-particles interacting via
a screened potential that is connected to the self-energy ΣGW obtained from the
GWA. The self-energy obtained from the GWA has a similar form as in the Hartree-
Fock approximation (HFA) but the Coulomb interaction in the GWA is dynamically
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screened. This dynamical screening removes some of the major drawbacks of the
HFA like the zero density of states at the Fermi level within metals. The resulting
self-energy ΣGW is non-local and energy-dependent. Due to the non-locality of ΣGW

long-range screening effects between all electronic states including s and p orbitals are
naturally incorporated in the GWA yielding a more realistic description of the band
structure of the s and p electrons than the LDA or GGA that incorporate correlation
effects only locally via the exchange-correlation potential Vxc (see e.g. the works by
Northrup et al. [NHL87, NHL89] and Surh et al. [SNL88], who studied quasi-particle
spectra of various alkali metals). However, the GWA fails to describe intermediate or
strong correlation effects between more localized electrons as was already pointed out
in the introduction of this work. This drawback of the GW method can be removed
when combining it with DMFT. The idea presented by Biermann et al. in [BAG03]
is to take the non-local part of the self-energy from the GWA and the local part from
the dynamical impurity model of DMFT. The FLEX solver being a perturbative ap-
proach just like the GWA could be applied quite naturally in this context to solve the
DMFT impurity problem by simply adding the diagrams calculated in FLEX that
are missing in the GWA and treat them locally in the single-site approximation of
DMFT just like in the present GGA+DMFT approach. Such a new GW+DMFT ap-
proach does not only have the advantage to treat the s and p states in a more realistic
manner than the GGA. Within this GW+DMFT approach the screened Coulomb
interaction is also determined from first-principles calculations. As demonstrated by
Aryasetiawan [AS06], the GW+DMFT approach can hence yield a true parameter-
free description of the electronic system, in contrast to the presented GGA+DMFT
approach that still depends on the Hubbard U and J . In practice DFT calculations
are usually chosen as a starting point to construct the Green function for GW calcu-
lations. Thus, the problem of the double-counting correction still has to be solved.
However, since the self-energy in the GWA is calculated for all electronic degrees
of freedom the scheme for a double-counting correction suggested in chapter 10 by
simple subtracting Vxc from ΣGW is applicable here and the resulting GW descrip-
tion usually does not depend strongly on the choice of the starting point for many
materials as demonstrated by Fleszar [Fle01]. (Note that for some materials where
different starting points yield very different results for example nitride semiconduc-
tors that depend sensitively on the position of the semicore d states, the GWA will
also yield different results as pointed out by Rinke et al. [RQN+05]. Thus the GWA
is not entirely independent of the selected starting point.) Nevertheless, the self-
energy corrections to the s and p states in GWA also remove some of the deficiencies
of the DFT descriptions still present in the GGA+DMFT approach. Summarizing,
the GW+DMFT scheme is an intriguing new approach with the potential to yield a
most valuable contribution to the description of realistic intermediately and strongly
correlated materials. The results of some first applications by Biermann et al. in
[BAG03] are indeed very promising.
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his usual enthusiastic manner told me about some of his colleagues in Prague working
in the field of electronic correlation in solid-state physics applying some technique
called FLEX. Although it all seemed very appealing to me, I actually had no clue
what he was talking about. Nevertheless, I decided to go on this small journey from
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