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INTRODUCTION

Magnets were already discovered in ancient times when humans observed
the unusual behavior of lodestones. One of the first applications of mag-
netic materials were compasses and until today humans developed count-
less other applications. Especially the usage of magnets for data storage
in modern technology is of particular importance since it has paved the
way for the digital era we live in today. Despite the fact that magnets
have been known to humans for thousands of years and that they are
a keystone of our digital society, a full understanding of the microscopic
processes that govern certain aspects of magnetism is still lacking.

Just recently in 2016 a Nobel prize was awarded for the work on topologi-
cal phases of matter and phase transitions to David J. Thouless, F. Duncan
M. Haldane and J. Michael Kosterlitz. The topological phase transition is
driven by topological defects in the form of vortices and anti-vortices which
separate under certain conditions similar to particles and anti-particles. To-
day topological vortices can be found in various research fields in all
domains of physics. For instance, in condensed matter physics topological
vortices are of relevance for spinfluid and suprafluid research and in the
description of magnetic fields.

FIGURE I .1 – Vortices illustration

The picture shows a single and a vortex anti-votex pair in the XY-
Heisenberg-model. This picture is taken from the information paper
of the 2016 Nobel prize in physics [1].

In magnetic materials with Dzyaloshinskii-Moriya interaction (DMI) [2]
those topological quasiparticles which form metastable states are called
magnetic skyrmions. Magnetic skyrmions have been predicted theoretically

1



I N T R O D U C T I O N

[3, 4, 5, 6, 7, 8, 9, 10] and observed experimentally [11] by various
research groups.

FIGURE I .2 – Visualisation of 2D Néel and Bloch type skyrmions

To the left a Néel type skyrmion, and to the right a Bloch type
skyrmion. In the Néel type skyrmion the spins orient within the
radial plane, while for the Bloch type skyrmion they orient perpen-
dicular to the radial plane. Green denotes orientation in +-direction
(right for the reader), red in +y-direction (upwards), purple in −-
direction (left), blue in −y-direction (downwards) and the colour
brightness denotes the orientation on the z-axis (bright +z- / dark
−z-direction). The pictures were taken with Spirit [12].

Owing to their non trivial topology, magnetic skyrmions have been shown
to possess novel and interesting transport properties and extraordinary sta-
bility [3, 4, 7, 9]. These fundamental discoveries in this new area have
driven forward the proposal of new kinds of data storage devices.

In the last decades humans made impressive progress in developing ever
faster and smaller computers. A primary ingredient for this progress is the
development of new data storage devices, this makes skyrmions a very
attractive field of research.

Memory in modern computers has to be fast in reading and writing data,
have long lifetimes and, especially for the usage in mobile devices like mo-
bile phones, tablets and laptops, energy efficiency and compact design are
necessary. Conventional types of data storage are hard disk drives (HDDs)
and flash storage. Flash storage is used in solid-state drives (SSDs), small
portable data storage like USB flash drives and mobile devices. HDDs store
data on magnetic material in which fixed energy minima, in the form of
magnetic domains, which point in one of two directions, are being in-
duced. They have the advantage of long lifetimes on the one hand, but
due to their moving parts they are limited in speed and energy efficiency
and are more vulnerable to concussions, what makes them, besides their
size, impractical for mobile devices. SSDs use electronic circuits instead of
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I N T R O D U C T I O N

magnetised mediums as memory to store data and do not rely on moving
components. SSDs have a shorter lifetime but faster read and write speeds
prevail this in most cases. Magnetic storage is, due its reliability and price,
prevailing in the ever growing marked of cloud centres. To eliminate the
disadvantages and increase the storage density of magnetic storage would
be a substantial progress.

With the topological comprehension of the effects inside magnetic material
new ideas for realising memory devices came up. A very popular concept
is domain wall racetrack memory [13, 14], a nanoscopic wire on which
magnetic domains are moved by spin-polarised currents. The main prob-
lem of domain wall racetrack memory are impurities in the nano wire or
spin chain. Impurities hinder the domain wall to travel and to overcome
them high current densities have to be applied, which in turn leads to
Joule heating of the nanowire and reveals limits of this approach.

This leads to the idea of skyrmion based memory (see also Figure I.3),
which currently receives a lot of attention and is an important topic for
many research groups [15, 16]. A significant advantage of skyrmion race-
tracks in comparison with domain wall racetracks, could be that they are
able to overcome impurities more easily. For skyrmion based memory one
needs to understand the properties of skyrmions with respect to external
stimuli and perturbations and how to control their movement.

FIGURE I .3 – Schematic of a skyrmion based racetrack memory

The picture shows the racetrack and deployed skyrmions and also
a tunnel junction read-out device (blue and orange boxes) in this
picture. The picture taken from [17].
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I N T R O D U C T I O N

skyrmions in thin layers can be moved by applying a current perpendicular
to the layer or in-plane. To solve the equations describing this movement
analytically many approximations have to be made, hence it seems natural
to use numerical methods, as they can capture a larger class of phenom-
ena and lead to more precise solutions.

This thesis discusses spin-polarised currents, electrical currents, whose elec-
trons have a common direction of motion and different spin-polarisation
directions dependent on the magnetisation of the material, and investi-
gates the movement of magnetic skyrmions generated by such currents.
To accomplish this, a method to describe the interaction of spin-polarised
currents with the magnetic system will be added to the existing spin
simulation framework Spirit [12], for more details on the code see ref.
[18]. We will refer to this method as the "gradient method", it will be
implemented into the semi-implicit scheme B (SIB) method [19], a semi-
implicit integration of the stochastic Landau-Lifschitz-Gilbert equation. The
gradient method can also be used to model spin currents in any arbitrary
direction in bulk material, which is interesting for fundamental research.
In this Thesis we will confine to describing in-plane spin currents.

In Chapter 1 the basic atomistic model to effectively describe chiral mag-
nets and the Landau-Lifschitz-Gilbert (LLG) equation which is used to
describe spin dynamics will be introduced. These equations provide the
basis for the numerical experiments performed within this thesis.
In Chapter 2 the numerical method which is used to solve the LLG equa-
tion is extensively described and the validity of the implementation of
the gradient method into this integration scheme is annotated. Thereafter
the spatial gradient which is used to describe the spin-polarised current is
discussed and a numerical approximation, the difference quotient, is intro-
duced. Based on the difference quotient, the transition to a model of spin
transfer torque (STT)-induced spin current perpendicular to a monolayer
is shown.
In Chapter 3 numerical results for a domain wall on a head to head
spin chain and skyrmions on nanotracks with open boundary conditions
are presented. The tests for the domain wall are primarily used to verify
the validity of the implementation and are reproduced from the work of
Schieback et al. [20]. Afterwards skyrmion motion is simulated on lat-
tices with closed boundary conditions and on nanotracks. The velocity of
the skyrmion is compared for different parameters of the LLG equation
and further a comparison of in-plane current and perpendicular current is
made.
In the Conclusion a short summary of this thesis is presented and prospects
for the application of the gradient method are made.
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THE MODEL 1

1 . 1 HEISENBERG MODEL

The quantum mechanical model to describe magnetic phases and magne-
tization processes in realistic systems is highly complex, which makes the
description infeasible on a rigorous quantum-mechanical footing. Therefore
we will be using the atomistic Heisenberg model, which can be considered
as a semi-classical limit of a quantum-mechanical model. It considers the
magnetic moments as classical vectors, localised on a lattice.

We now use the classical Heisenberg model to describe the properties of
magnets that lead to stable skyrmion states. It reads, similar to the one
shown in [20]:

H = − J
∑

〈j〉
S · Sj − K

∑



(K̂ · S)2

− μsB ·
∑



S −
∑

〈j〉
Dj · (S × Sj)

1.1

where 〈j〉 denotes summation over nearest neighbours. The spins S =
µ/μs with μs = |µ| the magnetic moment of a spin are located on a
lattice. The first term is the isotropic exchange interaction between neigh-
bouring spins with the ferromagnetic exchange coupling constant J > 0.
In the case of ferromagnetic exchange interaction the spins S prefer to
align parallel. The second term is the uniaxial anisotropic term with the
unit vector K̂ pointing in the direction of the anisotropy easy axis and K
denoting the magnitude. The third term includes coupling to a magnetic
field B. The last term is Dzyaloshinskii-Moriya interaction, it has an rela-
tivistic origin (spin-orbit coupling) and favours a spin canting, of otherwise
(anti)parallel aligned magnetic moments.
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T H E M O D E L

1 . 2 LANDAU–LIFSHITZ–GILBERT EQUATION

We will have to describe the time evolution of the spin model introduced
in 1.1. A classical equation of motion to describe the spin dynamics is the
LLG-equation [21, 22, 23]. It can be extended to describe the effect of
spin-polarised currents [24, 25, 26, 27]:

∂S

∂t
= − γ

μs

S × H − αS ×
∂S

∂t

− (ĵe · ∇)S + βS × (ĵe · ∇)S .
1.2

This implicit form can be easily translated to an explicit form as shown in
[20]:

∂S

∂t
= − γ

(1 + α2)μs

S × H −
γα

(1 + α2)μs

S × (S × H)

− α − β
(1 + α2)

S × (ĵe · ∇)S +
1 + βα

(1 + α2)
S × (S × (ĵe · ∇)S)

1.3

with the effective fields H = −∂H/∂Si, the Gilbert damping constant α,
the gyromagnetic ratio γ = gμB/ℏ and constant non-adiabaticity parameter
β.  is given by  = jePgμB/(2eMs) with the absolute value of the current
density je, polarisation P, saturation magnetisation Ms, Landé g-factor g,
magnitude of electron charge e and Bohr magneton μB. S is a 3D mag-
netic moment of unit length and denotes the spin on lattice site . The
current density vector of unit length ĵe = je/ je points in the direction of
the polarised current.

The first Term of Equation 1.3 describes the precession of the magnetic
moment S within the effective field H. The second Term describes the
relaxation of the magnetic moment. Term three and four include a spin-
polarised current. The expression (ĵe · ∇) denotes a spatial gradient of the
magnetisation in real space. The spatial gradient expresses the rate of
change of the spins at the given position, it will be discussed more precise
later.

A full quantum mechanical definition of spin-polarised currents is given by
Z. An et al. [28]. As expected, the spin current operator, which is defined
as JS =


2
(α̂μ̂ν), consists of a velocity operator α̂ and a spin operator ̂.

6



1.2 L A N DAU–L I F S H I T Z–G I L B E RT E Q UAT I O N

Heff

S

FD

FP

FIGURE 1.1 – Damped spin precession

The first and the second term of Equation 1.3 are visualised as the
vectors FP and FD. The red line denotes the classical trajectory the
spin takes. The precession term FP leads to a precession around
the effective Field, the damping term FD pulls the spin towards
the effective Field. Spin length is conserved since the forces are
perpendicular to the spin. Picture taken from [29].

The fourth term in Equation 1.2 is a correction term for the spin-polarised
current. It got introduced since qualitative findings by micromagnetic com-
putations [24] uncovered discrepancies with experimental results. The
modified LLG equation is shown and discussed by Thiaville et al. [26].

z
y



S0
S−1

S1

∂
∂S0

F3

F4

FIGURE 1.2 – Forces added by spin-polarised current

This figure shows a schematic visualisation for the third and fourth
term in Equation 1.3 for the spin current density ĵe = e, named F3
and F4. Spin length is conserved since the forces are perpendicular
to the spin.

To add thermal fluctuations to the LLG-equation, we add a thermal noise
term ζ(t) to the effective field [20]:

H = −
∂H
∂S

+ ζ(t) . 1.4

The thermal noise term ζ(t) has the properties of white noise. It is
normally distributed, has zero mean and variance

〈ζ2

(t)〉 = 2αμs

γ
kBT 1.5
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T H E M O D E L

with kB the Boltzmann constant and temperature T.
Since we solve the equation by calculating discrete time steps δt, the
variance has to be normalised with respect to the time step:

〈ζ2

(t)〉 = ξ2δt with ξ =

√

√

√
2 αμs

γ
kBT

δt
1.6

In this Chapter we obtained all equations we need to describe all kinds of
spin dynamics. We also included modulation of spin currents in arbitary
directions. The next step is to solve the equations. We will approach this
with numerical methods.

H
*

eff

n*

FIGURE 1.3 – Stochastic and damped spin precession

Schematic representation of the spin precession under influence of
the stochastic noise term. Since the stochastic noise ζ is applied
perpendicular to the spin, spin length is conserved. Picture taken
from [29].

To compare Equation 1.3 to the LLG equation used by Schieback et al.
[20] we consider a current in -direction with ĵe = e, we then obtain

(ĵe ·∇) =
∂

∂
for the spatial gradient. We note that in that case Equation 1.3

is equivalent to the one used by Schieback et al..

In Equation 1.3 we see an ansatz capable of modelling the spin transfer
torque in bulk materials. The current implementation in Spirit, based on
the LLG equation derivated in [30], can only simulate the effect of a
spin current perpendicular to a single-free-layer framed in pinned-layers
(see Figure 2.1). In this case the magnetic moment of the spin current
is described by a constant vector Sp of unit length which points in the
direction of the pinned-layer and the third and forth term of Equation 1.3
are in that case proportional to −S× Sp and S× (S× Sp), with prefactors
proportional to the spin current. This approximation solely works for the
pinned-layer - single-free-layer - pinned-layer case. The transition between
both methods will be discussed in Section 2.3.
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NUMERICAL METHODS 2

Some partial differential equations, like the LLG equation (1.3) we intro-
duced in the previous Chapter can not be rigorously solved by analytical
approaches. Therefore one needs to use numerical methods to obtain
accurate results.

2 . 1 SOLVING THE LLG EQUATION WITH THE SIB METHOD

We will now use the SIB method which was introduced by Mentink et
al. [19] to solve the LLG equation (1.3). The SIB method consists of two
iteration steps, the SIBt (semi-implicit B temporal) and the SIBf (semi-
implicit B final). Both steps use the implicit midpoint (IMP) structure to
preserve the spin length while SIBt calculates a predictor and SIBf uses
the predictor to calculate the new orientation of the spin S after the time
step δt. We annotate the spin at time t0 as Sn and at time t0 + δt as Sn+1,
thus in this section the index n of S denotes a step in time and not the
position of the spin.

Before applying the SIB method we rearrange Equation 1.3 to:

∂S

∂t
= S × A(S) , 2.1

where

A(S) = −
γ

(1 + α2)μs

H +
γ

(1 + α2)μs

α(S × H)

− α − β
(1 + α2)

(ĵe · ∇)S +
1 + βα

(1 + α2)
(S × (ĵe · ∇)S) .

2.2

This form can now be used in the SIB-method.

The implicit midpoint method, which the SIB method bases on, solves
differential equations of the form y′(t) = ƒ (t, y(t)), y(t0) = y0 and an

9



N U M E R I CA L M E T H O D S

iteration step is defined as

yn+1 = yn + h · ƒ
�

tn +
h

2
,
yn + yn+1

2

�

. 2.3

For the LLG equation 2.1 and the time step δt this leads us to

Sn+1 = Sn + δt
Sn + Sn+1

2
× A

�

Sn + Sn+1

2

�

. 2.4

The semi-implicit scheme B (SIB) uses a predictor S̃ to reduce the im-
plicitness of the equation above by replacing Sn+1 in the argument of A.
To preserve spin length the predictor is obtained with the spin length
conserving IMP structure.

We start with the SIBt to obtain a predictor:

S̃ = Sn + δt
Sn + S̃

2
× A(Sn) . 2.5

First we have to calculate A(Sn) = A(H,Sn) + Arnd(ζ,Sn) where we have
separated the thermal (stochastic) term from H. Arnd simulates white noise
which models the thermal fluctuations.

When multiplying δt/2 to the field in Equation 2.5 we have to consider
Equation 1.6 for the thermal term:

Aδt =
1

2
(δt ·A +

p

δt ·Arnd) 2.6

With Aδt Equation 2.5 can be rewritten as:

M · S̃ =MT · Sn 2.7

with matrix M =  + skew(Aδt) =









1 −Aδt
z

Aδt
y

Aδt
z

1 −Aδt


−Aδt
y

Aδt


1









.

The right side of Equation 2.7 can be easily calculated from the given
parameters:

MT · Sn = Sn + Sn × Aδt =:  .

To solve Equation 2.7 we use Cramer’s rule. The components S̃α with
α = , y, z of S̃ are calculated with

S̃α =
det(Mα)

det(M)

10



2.2 S PAT I A L G R A D I E N T

where Mα is the same matrix as M but column α is replaced with the
vector , for example

M =









 −Az Ay

y 1 −A

z A 1









.

We now use the predictor S̃ in the SIBf step to calculate Sn+1:

Sn+1 = Sn + δt
Sn + Sn+1

2
× A

�

Sn + S̃

2

�

. 2.8

The SIBf step is mostly analogue to the SIBt step, see analogy between
Equation 2.5 and 2.8, but now we calculate the fields from (Sn + S̃)/2.
Therefore we have to use A(H, (Sn + S̃)/2) and Arnd(ζ, (Sn + S̃)/2).

Mentink et al. [19] showed this method for the LLG equation without spin
transfer torque. Adding the spin transfer torque terms to A can be done
without further ado and no special normalization is needed, since they
do not include statistical processes. Furthermore this is verified by the
reproduction of numerical results of Schieback et al. [20] in Chapter 3.

2 . 2 SPATIAL GRADIENT

For the implementation of the gradient method we have to determine a
numerical method to calculate the spatial gradient. The spatial gradient
occurs in equation 2.2 in the context: (ĵe · ∇)S. The finite difference quo-
tient will be used to obtain a good approximation.

The expression (ĵe · ∇)S can also be written as:

(ĵe · ∇)S = je ·
∂Si
∂
+ jy

e
· ∂Si
∂y
+ jz

e
· ∂Si
∂z

2.9

where j
e
, jy
e
, jz
e

denote the cartesian components of the spin current ĵe of
unit length and ∂Si/∂α with α = , y, z are the partial derivatives of the
spin in all positive cartesian directions.

What we see above is the vector gradient grad(S) calculated in the
direction of ĵe. The vector gradient maps vector fields F

*

: Vn → Vm from
the euclidean vector space Vn to a vector space Vm and is defined as:

grad(F
*

) = (∇
* ⊗ F*)T = (∇*F*)T ∈ Vn ⊗ Vn . 2.10

11



N U M E R I CA L M E T H O D S

With the vector gradient we can calculate the directional derivative of a
vector field in the direction of a vector h

* ∈ Vn:

grd(F
*

) · h* = (∇* ⊗ F*)> · h* = h* · (∇* ⊗ F*) = (h* · ∇*)F* . 2.11

We will now use the difference quotient to get a good approximation
for the derivatives in Equation 2.9. The following calculations are lattice
dependent, but as an example we will now consider a cubic lattice. The
difference quotient of the magnetic moment between neighbouring spins
on a cubic lattice in -direction is calculated as follows:

∂S

∂
=
S+ − S

t
2.12

where S+ is the neighbour in -direction of S and t the absolute value
of the translation vector, respectively the lattice constant, in -direction.
To obtain a more precise value we can calculate the difference quotient in
forward and backward direction and take the mean:

∂S

∂
=
1

2

�

S+ − S

t
− S− − S

t

�

=
S+ − S−

2t
2.13

where S− is the neighbour in −-direction of S.
If we repeat this for the derivatives in  and z-direction we can calculate
the spatial gradient for the cubic lattice and a spin-polarised current in
any direction with Equation 2.9.

One could consider to only calculate the difference quotient in backward
direction relative to the spin current direction ĵe and multiply the result
by −1. Intuitively this seems, considering the atomistic model, to be the
most physical approach, since the last spin which a electron of the spin
current interacts with before interacting with the spin S, is the one in
opposite direction of the spin current. However to calculate this can be-
come very complex considering spin currents in arbitrary directions and
more complex lattices. For all cases relevant to this thesis the approach in
Equation 2.13 is convenient.

For arbitrary lattices the translation vectors need not be parallel to the
euclidean -, y- or z-axis. Therefore we have to project the difference
quotients on the basis vectors of the coordinate system. Exemplary we
consider a lattice with six neighbours, respectively two neighbours sym-
metrical in the exact opposite direction, similar to a cubic lattice but with
non-perpendicular translation vectors. We have to project the derivatives
in arbitrary directions on each direction in cartesian space, exemplary we

12



2.3 T R A N S I T I O N T O P I N N E D -L AY E R M O D E L

obtain the -direction from:

2
∂S

∂
=
�

e* · t*
� ∂S

∂
+
�

e* · t*b
� ∂S

∂b
+
�

e* · t*c
� ∂S

∂c
�

e* · (-t*)
� ∂S

∂(-)
+
�

e* · (-t*b)
� ∂S

∂(-b)
+
�

e* · -(t*c)
� ∂S

∂(-c)
,

2.14

t
*

m (m = , b, c) are the translation vectors pointing to the (forward)
neighbours and ∂S/∂m (m = , b, c) are the difference quotients in the
direction of the translation vectors, whereby ∂S/∂(-m) are the difference
quotients in negative translation vector direction. In this case we obtain a
difference quotient in the form of Equation 2.13 for each two difference
quotients in t

*

 and -t
*

 direction.

In general we can use:

∂S

∂
=
1

2

N
∑

j=1

�

e* · t*j
� ∂S

∂j
2.15

for lattices with N nearest neighbours and every neighbour, with translation
vector t

*

j , has an 180◦ opposing neighbour. However for open boundary
conditions we have to consider the spins on the edges which have no
opposing neighbour in that case we only obtain one difference quotient
on a certain line (in forward and backward direction) and have to strike
the factor 1/2 off.

In the same manner we obtain the difference quotients in y and z-direction.
We are now again able to calculate the spatial gradient in Equation 2.9.

This is also possible in lower dimensions. In N-dimensions one needs a
minimum of N linear independent neighbours to calculate Equation 2.9
with ĵe pointing in an arbitrary direction. For the purpose of this thesis
we only need to calculate the spatial gradient in high symmetrical lattices,
a spin chain and a two dimensional cubic lattice.

2 . 3 TRANSITION TO PINNED -LAYER MODEL

In 2016 Daniel Schürhoff [18] already implemented a method into the
SIB method to model spin-polarised currents. However the method is only
capable of modelling spin currents for specific use cases, where the gra-
dient method should be able to model spin currents in a larger set of cases.
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FIGURE 2.1 – Layer model for current induced skyrmion motion

The graphic shows a three layer system, two pinned-layers (blue),
where the spins are pinned in a certain direction and a free-layer
(red), a one atom thick layer whose spins are not pinned. Between
the two pinned-layers a voltage gets applied, what leads to a current
perpendicular to the free-layer. The cylinder represents a skyrmion
which gets moved by the spin current. Picture taken from [18],
slightly modified, to show the orientation of the spins in the pinned
layer.

With the knowledge about the spatial gradient and the difference quo-
tient as a good numerical approximation we can now show the transition
of the gradient method to the previous implementation of the spin current.

The previous implementation was based on the work of Chureemart et al.
and S. Zhang et al. [25, 27, 30, 31, 32]:

∂S

∂t
= −γS × H + αS ×

∂S

∂t
+ γjS × (S × Sp) . 2.16

The implicit form above can be translated to an explicit form:

∂S

∂t
= − γ

(1 + α2)μs

S × H −
γα

(1 + α2)μs

S × (S × H)

− γαJ

(1 + α2)
S × Sp +

γJ

(1 + α2)
S × (S × Sp) ,

2.17

with Sp the spins of the pinned-layer and parameter J, which is pro-
portional to spin current density, but not further determined. The non-
adiabatic term with factor β was not implemented in this version.

We will first take a look at the third term in Equation 1.2. It can be
motivated similar to the motivation by S. Zhang et al. [31]. To obtain
the term we look at the derivative of the spin current density j/Ms =
gμBPjeS/(2eMs). For simplicity we first consider a spin current pointing in
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-direction, this leads to:

τ ≡ ∂j(, t)/Ms

∂
= 

∂S

∂
2.18

with  = jePgμB/(2eMs). As described in ref. [31] we may make use of the
fact that the magnitude of the magnetization is a constant at temperature
well below the Curie temperature, we can rewrite the spin torque as:

τ = −S × (S × ∂S

∂
) . 2.19

For a spin current in arbitrary direction we replace ∂S/∂ and obtain:

τ = −S × (S × (ĵe · ∇)S) , 2.20

this form is conform with the third term in Equation 2.16.

The transition from the gradient method to the pinned-layer/free-layer
case can now be shown by using the difference quotient to calculate the
gradient (see Section 2.2). In the following we consider a spin current
ĵe = e perpendicular to a free layer in the yz-plane. The backward
neighbour in spin current direction of the spin in the free layer is Sp. For
the inner cross product in Equation 2.20 this leads to:

S × (ĵe · ∇)S = S ×
∂S

∂
= S ×

�

−Sp − S

t

�

=
−1
t
S × Sp 2.21

The neighbour opposite to the spin current direction is the last spin which
the spin of the current interacts with before interacting with S. Therefore
we have to use the difference quotient in opposite direction of the current
and multiply it by −1.

When we now plug the result in Equation 2.20, we obtain:

τb = +


t
S × (S × Sp) , 2.22

comparing this with the third term in Equation 2.16, gives us a relation
between the pre factors γj = /t and shows the same structure and cor-
rect sign. t in this case represents the layer thickness, since it denotes the
distance between the spins Sp of the pinned-layer and S of the free-layer.
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NUMERICAL RESULTS 3

The method introduced in the previous chapter will now be tested and
used for simulating domain wall and skyrmion movement caused by in-
plane spin currents. First the results for domain wall motion obtained by
Schieback et al. [20] will be reproduced and afterwards skyrmion motion
will be analysed in general and on a nano-track.

3 . 1 DOMAIN WALL MOTION

To test the implementation of the gradient method we will reproduce the
results from the work of Schieback et al. [20]. They studied the behaviour
of a domain wall on a head to head spin chain.

FIGURE 3.1 – Domain wall on head to head spin chain

The figure shows the initial spin configuration of the domain wall
corresponding to Equation 3.1. All spins are oriented in the y-plane
(parallel to the paper). Green denotes orientation in positive -
direction (right for the reader), red in positive y-direction (upwards)
and purple in negative -direction (left). Picture was taken with
Spirit.

The chain is oriented along the -axis and the first and the last spin
are fixed in + and − direction, respectively. We adjusted three spins
in the middle of the chain forming a domain wall and then used direct
energy minimization to relax them. We obtain a spin chain as shown in
Figure 3.1. Schieback et al. [20] used the following description for the
spin orientations:

S() = − tnh
� 

W

�

e +
cos(ϕ)

cosh( 
W
)
ey +

sin(ϕ)

cosh( 
W
)
ez . 3.1
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The final spin orientations after the relaxation with the direct energy min-
imization and the theoretical description in Equation 3.1 matched very
well. Therefore we can use the domain wall as the starting configuration
for the following tests.

The Hamiltonian for this system can be written as follows [20]:

H = − J
∑

〈j〉
S · Sj − K1

∑



(K̂1 · S)2 − K2
∑



(K̂2 · S)2 , 3.2

the terms were already described in Section 1.1, in this case a second
uniaxial anisotropy term is added. K̂1 points in -direction and K̂2 in
y-direction.

The domain wall in Figure 3.1 and the following simulations all use the
parameters listed in Table 3.1.

Parameter Value Unit

J 1 meV

 1 Å

K1 0.01 meV

K2 0.005 meV

μs 2 μB

T 0 K

TABLE 3.1 Domain wall parameters

For the following numerical experiments the damping was set to α = 0.02,
the non-adiabatic parameter to β = 0, the time step was chosen to be
δt = 20fs (see Equation 2.4) and the chain size was chosen to be 513 or
1025 lattice sites, except for the long term velocity measurements where
sizes up to 2562 lattice sites where needed.

To illustrate the effect of a spin current on the domain wall, the initial
spin orientations and the orientations after 10ns are shown in Figure 3.2.
We can already see, that the domain wall tilting out of the y-plane by
a small angle since the z-component increases. A decrease of the domain
wall width is also visible.

We will now go in greater detail and investigate the behaviour of the do-
main wall in respect to the distance m it travels before it stops moving
forward, the angle ϕ it tilts out of the y-plane, its width W and the
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FIGURE 3.2 – Spin orientations - DW translation by spin current

In dashed lines the initial orientations of the spins is shown, which
match the theoretical description by Equation 3.1. The other lines
show the spin orientations after the domain wall was exposed to a
spin current (μs/(Jγ) = 0.04) for 500000 iterations, respectively
10ns. The initial domain wall width was W ≈ 10.02, distance 0
and angle ϕ = 0.

average velocity 〈〉 it reaches for different non-adiabatic parameters β.
All properties are obtained in dependence of the magnitude of the applied
spin current.

For currents below the walker breakdown [33], a phenomenon first ob-
served for domain walls driven by external magnetic fields [33, 34, 35],
but also observed for current driven domain walls [25, 26], and β = 0 the
domain wall only moves a distance m and then stops, this is shown in
Figure 3.3. The constraint of the travelled distance is to trace back to the
domain wall tilting out of the y-plane by a small angle ϕ like seen in
Figure 3.4.

The applied current also decreases the width of the domain wall. To
determine the width of the domain wall at a given time the derivation
of the -component in Equation 3.1 is taken. At  = 0 this yields to
d/d(− tnh(/W))|=0 = −1/W. Now the derivation can be numerically
computed from the data and we obtain the width W. The results for the
domain wall widths are shown in Figure 3.5.
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FIGURE 3.3 – Displacement of the domain wall

Maximum travelled distance m for different spin currents. The
non-adiabatic parameter was set to β = 0 and damping to α = 0.02.
Blue dots denote measurements on the 513, red ones on the 1025
lattice sites chain. For higher currents the domain wall on the 513
sites chain was too close to the pinned end and got reflected at the
end. This lead to a smaller maximum displacement as seen in the
figure. The dashed line shows a linear fit for small .
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FIGURE 3.5 – Final width of the domain wall

The domain wall width W in units of lattice sites  = 1 after the
wall stopped moving for different spin currents. The distortion can
be described by W/W0 ≈ 1− C · 2 for small currents, the line shows
a fit to the data.
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FIGURE 3.4 – Maximum out of plane angle of the domain wall

The maximum out of plane angle ϕ reached by the domain wall,
when it stops moving, in dependence on the spin current. The non-
adiabatic parameter was set to β = 0 and damping to α = 0.02. The
dashed line shows a linear fit for small .

Schieback et al. used the analytical results, describing the behaviour of the
domain wall, obtained by Li et al. [27] to fit the data. The same formulas
were used to fit the data produced for this thesis and a good agreement,
between the data and the analytical predictions for small currents u, was
obtained. The deviations obtained for larger currents are expected, since
the assumption made by the analytical calculations, that the domain wall
shape remains in the standard transverse domain wall is only valid for
small currents. The deviation for large currents occurs in Figure 3.3, Fig-
ure 3.4 and Figure 3.5.

Finally, the results for the domain wall velocity for different non-adiabatic
parameters β, were reproduced. The results can be seen in figure 3.6. In
agreement with the results of Schieback et al. we observed the Walker
breakdown and a critical effective velocity c.

21



N U M E R I CA L R E S U LT S

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
μs/ (Jγ)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

〈
〉μ

s/
(J

γ
)

cW

β = 0.00
β = 0.02
β = 0.10

FIGURE 3.6 – Average velocity of the domain wall

The average velocity for different non-adiabatic parameters β. For
β = 0.10 we observe the Walker breakdown at approximately W ≈
0.01. For β = 0 we can observe a critical current at c ≈ 0.0414,
from this point the relation 〈〉 = q

2 − 2
c
/(1 + α2) mentioned by

Thiaville et al. [24] takes effect. The mentioned relation is fitted
to the data for β = 0. For β = 0.1 and currents under the walker
breakdown and β = 0.02 the dashed lines show linear fits. Open
symbols denote rotation around the -axis.

The approximate prediction 〈〉 =q2 − 2
c
/(1+α2) derived by Thiaville et

al. [24] fits very well to our data in Figure 3.6 and we observe a critical
current of c ≈ 0.0414, Schieback et al. observed a value of c ≈ 0.0416
which is very close. For β = 0.1 and currents larger than W and for β = 0
and currents larger than c, the wall starts rotating around the -axis.
The slightly deviation, from the results by Schieback et al., for the mea-
sured points at μs/(Jγ) ≈ 0.04 for β = 0 and μs/(Jγ) ≈ 0.015 for
β = 0.10 are probably due to insufficient simulation time.

All results shown by Schieback et al. [20] could be well reproduced.
The results strengthen the validity of the implementation of the gradient
method into the SIB method as well as the underlying framework which
is part of Spirit.
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3 . 2 SKYRMION MOTION

We will now use the gradient method to model in-plane spin currents in
two dimensional lattices and study the precipitated skyrmion motion. For
this simulation Equation 1.1 is used, the values of the parameters are
listed in Table 3.2. The damping was set to α = 0.02 for all following
simulations and the time step was chosen to be δt = 2fs.

Parameter Value Units

μs 2 μB

|B| 24 T

J 10 meV

K 0 meV

μs 2 μB

D 6 meV

TABLE 3.2 Parameters for skyrmion simulations

We start by simulating in-plane current in a quadratic 50 × 50 lattice
with closed boundary conditions in - and y-direction to obtain a first
qualitative insight about the skyrmion motion (Figure 3.7).
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FIGURE 3.7 – Skyrmion motion with closed boundary conditions

The graph shows the initial skyrmion position with no applied
current located in the middle and the position after a current was
applied in -direction for a total time of 0.98ns. The applied current
is proportional to  = 0.04. The non-adiabatic constant was chosen
to be β = 0.1. The lattice has closed boundary conditions and the
red dots determine the path of the skyrmion.

In Figure 3.7 we can see that the velocity of the skyrmion has its main
component in the direction of the current and a small component in posi-
tive y-direction, known as the skyrmion Hall effect [36]. The component
in y-direction depends on the chosen non-adiabatic constant β as one
can see in the figures in the Appendix. For β < α the velocity has a
component in −y-direction, for β > α in +y-direction and in the case of
β = α we get no transverse component, in this case the third term of
the implicit LLG equation (Equation 1.3) cancels out. We can also see by
eye that the diameter of the skyrmion decreases when a current is applied.

A potential use case for moving skyrmions with spin-polarised currents is
skyrmion based memory. skyrmion based memory is realised by nucleation
and motion of skyrmions on an atom layer, called nanotrack. Therefore
we will study the motion of skyrmions on nanotracks in the following.
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FIGURE 3.8 – Skyrmion on a nano-track

This picture shows our experimental setup, a Bloch type skyrmion
on a 200 × 20 nano-track, the tilting of the spins at the edges is
produced by the DMI. The picture was taken with Spirit.

For this experiment a small 200×20 lattice points nanotrack with a single
skyrmion on one site was set up, see Figure 3.8, and a spin-polarised in-
plane current was applied in positive -direction (left to right). Since the
track is relatively small, the skyrmion only moves a very small distance in
+y-direction (for values of β > α, respectively in −y-direction for β < α ),
transverse to the spin current direction before the DMI which tilts the spins
at the edges of the track acts against the transverse movement and forces
the skyrmion to travel in the direction of the applied current. For large
current densities  and high non-adiabatic parameters β, the skyrmion can
reach the upper edge and is expelled. This also applies for the end of the
track, in the case of high current densities the skyrmion can get expelled
at the end of the track. Otherwise, if the skyrmion remains on the track
it gets reflected at the end and bounces at the edge a few times before
finding an equilibrium state, as seen in Figure 3.9.
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FIGURE 3.9 – Skyrmion on short nanotrack, distance over time
steps

The graphs show the distance travelled by the skyrmion for different
spin currents and non-adiabatic parameters. μs/γ is proportional to
the spin current magnitudes.

We simulated (Figure 3.9) spin-polarised in-plane currents for different
current densities and different values of the non-adiabatic parameter β.
The Gilbert damping was set to α = 0.02. For β = 0 we observed no
steady motion.
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FIGURE 3.10 – Skyrmion velocity on a short nanotrack

The final steady velocity of the skyrmion for different spin current
magnitudes. Open boundary conditions in - and y-direction.

In Figure 3.10 we can see a linear dependence of the velocity for
β = 0.01,0.02,0.04. For β = 0.08 and β = 0.12 we would expect the
same dependence, but obtain smaller velocities, the derivation can be ex-
plained with the length of the nanotrack, as one can see in Figure 3.9,
the skyrmion seems not to reach its maximum velocity before reaching the
end of the track.
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FIGURE 3.11 – Comparison of skyrmion velocity for in-plane
and perpendicular current

Double log representation of the skyrmion velocity for certain spin
current amplitudes. The effect of in-plane current is compared to
perpendicular current simulated with the implementation of Daniel
Schürhoff [18].

In Figure 3.11 the skyrmion motion with in-plane current is compared to
skyrmion motion with current perpendicular to the nano-track. The cur-
rent densities needed to reach a high velocity are much higher for in-plane
current than for perpendicular current. To plot both currents, in-plane and
perpendicular, in dependence of  we used the relation between the pre
factors of the two spin current models obtained at the end of Section 2.3,
considering a layer thickness equal to the lattice constant t = 1. In the
case of very thick layers (t), one would probably obtain higher velocities
for the same current applied in-plane, rather than perpendicular to the
plane.

To observe the maximum velocity of the skyrmion we simulated an infinite
nanotrack by applying closed boundary conditions in -direction. The
results are shown in Figure 3.12.
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FIGURE 3.12 – Skyrmion on nanotrack, distance over time steps

The graphs, similar to Figure 3.9, show the distance travelled by the
skyrmion for different spin currents and non-adiabatic parameters β
on a nanotrack with closed boundary conditions in -direction. The
steps are 1/500ns, what leads to a simulated time of 1ns.
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FIGURE 3.13 – Skyrmion velocity on a nanotrack

The maximum steady velocity of the skyrmion for different spin cur-
rent magnitudes. The nano-track has closed boundary conditions in
current-/(-)direction and closed boundary conditions in y-direction.
For β = 0.16 and a current of μs/γ = 0.2 the force towards the
upper edge of the track suffices to destroy the skyrmion.

For open boundary conditions in -direction, we now observe constant
slopes for all non-adiabatic parameters β.

From the slopes in Figure 3.13, the following can be derived for the
velocity of the skyrmion:

 = 0.78
β

α
 . 3.3
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CONCLUSION 4

In Chapter 1 the model, which this work is based on, is introduced. En-
suing in Chapter 2, first the derivation of the SIB method is detailed and
the inclusion of the spin current terms is justified. The spin currents are
modelled with the gradient method. The gradient method is based on a
spatial gradient and the connection between the spatial gradient and the
difference quotient is shown. The difference quotient is then used to give
a transition from a model of STT-induced spin current perpendicular to a
monolayer to the gradient method.

In Chapter 3 results from numerical experiments with the implemented
method are presented. The implementation of the mentioned model for
spin-polarised currents into the spin simulation framework Spirit has been
validated by reproducing the results of Schieback et al. [20], before using
it to simulate skyrmion movement caused by in-plane currents on nan-
otracks. The first experiment performed on a quadratic lattice with closed
boundary conditions delivered qualitative insights about skyrmion motion
induced by in-plane currents. Since skyrmion motion on nanotracks is of
particular interest, especially regarding magnetic data storage devices, nu-
merical experiments on a small nanotrack were performed and evaluated
quantitatively. The behaviour of such a system for different non-adiabatic
parameters was quantified with respect to the velocity of a single skyrmion
and additionally the case of no steady motion (β = 0) and destruction of
the skyrmion, at the edge of the nanotrack, for high velocity was ob-
served, however nucleation was not observed. Probably higher current
densities are needed. Additionally a comparison between motion induced
by in-plane and perpendicular spin current was made and higher velocitys
for smaller currents. skyrmion motion on an "infinite" nanotrack (closed
boundary conditions in current direction) was simulated to obtain precise
values for the velocity.

Henceforth other properties of skyrmion motion, for instance contact with
impurities or motion of multiple skyrmions on a single track, can be in-
vestigated. The gradient method can also be used to model spin currents
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in bulk material, this provides the capability to investigate the effect of
spin-polarised currents on 3D spin structures and probably leads to more
realistic results for a perpendicular current in thicker films. Furthermore
the implementation of the spin current can be extended to describe spin
currents on more complex lattices, which cover a wider range of materials.
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FIGURE .1 – Skyrmion motion with closed boundary conditions

Initial skyrmion position and position after 0.98ns. The applied
current was  = 0.04 and non-adiabatic constant β = 0.
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FIGURE .2 – Skyrmion motion with closed boundary conditions

Initial skyrmion position and position after 0.98ns. The applied
current was  = 0.04 and non-adiabatic constant β = 0.02.
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FIGURE .3 – Skyrmion motion with closed boundary conditions

Initial skyrmion position and position 0.98ns. The applied current
was  = 0.04 and non-adiabatic constant β = 0.04.
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