
Diplomarbeit in Physik

Atomistic Spin-Dynamics
in Confined Magnetic Nano-Structures

von

David Bauer

vorgelegt der

Fakultät für Mathematik, Informatik und Naturwissenschaften
der Rheinisch-Westfälischen Technischen Hochschule Aachen

im
Oktober 2008

angefertigt am

Institut für Festkörperforschung (IFF)
Forschungszentrum Jülich



2



Contents

1 Introduction 5

2 Landau-Lifschitz Dynamics 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Heisenberg Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Zeeman Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Magnetocrystalline Anisotropy . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Dipole-Dipole-Interaction . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Classical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Classical Equation of Motion . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Simulation of Damping . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Temperature Bath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Langevin-Like Approach . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Stochastic Differential Equation . . . . . . . . . . . . . . . . . . . 24

2.5 Parallelization of the Code . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Testing the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Analytical Solutions 35
3.1 Exact Spin-wave Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Linearized Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Multipole Methods 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Barnes-Hut Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Key Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Expansion of the Dipolar Field . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Translation of the Origin of a Multipole . . . . . . . . . . . . . . . . . . . 63
4.6 Timing and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Applications 67
5.1 Magnetization Curve of a 10x10x10 Cubic System . . . . . . . . . . . . . 67
5.2 Relaxation Times of One Dimensional Systems . . . . . . . . . . . . . . . 71
5.3 Switching Times of a Nano-Cluster on a Surface . . . . . . . . . . . . . . 76

A Appendix A 87
A.1 Stochastic Integration Algorithm . . . . . . . . . . . . . . . . . . . . . . 87

3



Contents Contents

A.1.1 Translation of the stochastic differential equation . . . . . . . . . 87
A.1.2 Runge-Kutta Integration Scheme . . . . . . . . . . . . . . . . . . 88
A.1.3 Pseudo-random number generator . . . . . . . . . . . . . . . . . . 89

A.2 Units Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.3 Amdahl’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4 Domain Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.5 Implementation of the Multipole Method . . . . . . . . . . . . . . . . . . 92
A.6 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.6.1 Two dimensional hexagonal lattice . . . . . . . . . . . . . . . . . 94
A.6.2 Two dimensional tetragonal lattice . . . . . . . . . . . . . . . . . 94

4



1 Introduction

One of the most important applications of magnetic properties of materials today is
on mass storage in high tech devices. Magnetic discs are used in hard drives to store
information by individually setting the magnetization direction of each block either ’up’
or ’down’. The storage capacity has been increased dramatically reducing the size in
each block which stores a bit. However, by reducing the size, its magnetization becomes
more sensitive to thermal fluctuations which can lead to a superparamagnetic behavior
and thus threaten the data integrity.

The technological developments and future challenges attract scientists to investigate
confined magnetic nanostructures. The formation of FePt [1] and FeCo [2] nanoparticles
(d ≈ 3-13nm) in a nanocrystal superlattice has been found. They might be used for fu-
ture storage applications in which higher data storage densities1 could be achievable. In
recent years several groups have been able to depose and study one dimensional chains
and clusters on surfaces. Gambardella et al [4] were able to investigate cobalt chains at
steps of a platinum surface. A huge increase of the magnetocrystalline anisotropy was
found compared to the bulk case. A similar behavior was observed by Brune et. al [5]
which reports a 20 times higher anisotropy for cobalt islands on platinum compared to
the bulk case. Other groups are investigating the switching process of hard magnetic
materials due to magnetic fields. They try to reach the ultimate speed limit [6, 7] of
magnetic switching by the use of a very short pulsed high magnetic field which is sup-
posed to momentary collapse the ferromagnetic order.

These recent scientific developments were a motivation to study the time-dependent
evaluation of magnetic properties of nano-structures on the atomic scale at finite temper-
ature. The approach is based on a model Hamiltonian of the spin system, the so-called
Heisenberg Hamiltonian. Thus, the aim of this thesis is a description of the time evolu-
tion of magnetic moments of nanostructures on the atomic scale at a finite temperature.
Model parameters, e.g. exchange and anisotropy constants can be calculated using den-
sity functional theory (DFT) methods. By this atomistic treatment different lattice
structures, anti-ferromagnets, interfaces or diluted magnetic semiconductors [8] can be
described. A quantum mechanical treatment of the atomic spins would lead to an expo-
nential2 increase of the complexity which will be prohibitive for the treatment of large
systems. A classical approximation is therefore used, where the quantum mechanical
1A data density several terabits/cm2 could be reached. As a comparison modern hard drives have
around 35 gigabits/cm2 [3].

2The complexity will be of the order of (2S + 1)N where N is the number of spins and S the spin
quantum number.
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Introduction

spin operators will be substituted by classical angular momentum vectors.

The scope of the atomistic method is different from the one of continuum micro-
magnetic methods. Micromagnetic simulations are widely used to study large-scale sys-
tems under the assumption of a continuous magnetization, which is numerically treated
by finite-difference or finite-element methods. However, the atomistic structure is not
explicitly taken into account and their use is restriced to ferromagnetic materials.

The description of magnetic properties using the Heisenberg Hamiltonian at first re-
quires a decoupling of the spin system to the lattice as well as the electronic system.
There are several ways to reintroduce this coupling in a phenomenological and computa-
tionally tractable way. The most commonly used approaches are Monté Carlo methods
which randomly distribute the states of each spin in such a way that a thermodynamical
distribution is formed. Equilibrium properties like magnetization curves can suitably be
described by using the Monté Carlo approach. However, the trajectory of each spin is
totally unphysical and non-equilibrium time dependent properties cannot be described.
There are methods known as kinetic Monté Carlo [9, 10], introducing a transition rate
which relates each Monté Carlo step to a physically interpretable time. However, these
methods assume a low propability of atomic spin switches in form of Poisson processes.
Thus, correlation effects between neighboring spins, like spin-waves cannot be described,
although in the limit of high switching times, good results can be achieved.

On the other hand, there exists the spin-dynamics approach, within which the exact
trajectory of each spin is followed in time using a classical equation of motion, known
as the Landau-Lifshitz equation. The spin system is coupled to an external system, the
heat bath, to simulate a constant predefined temperature. It is introduced by adding
a fluctuation field and a dissipative damping term to the classical equation of motion,
which is presented in Chapter 2. The fluctuating term leads to a stochastic differential
equation which is solved using a high order Runge-Kutta scheme for differential equa-
tions with weak noise.

A Zeeman term is also added to describe an external magnetic field acting on each
spin. Besides, a term simulating the magnetocrystalline anisotropy is added describing
the behavior of a spin to favor certain magnetization directions. This represents the
interaction between the spin of an electron with its orbital momentum and is, therefore,
called spin-orbit coupling. The energy scale is usually much smaller than the Heisenberg
exchange. But it plays an important role for the direction of the magnetic moment since
the Heisenberg model is isotropic.

In addition, the dipole-dipole interaction, which brings about the shape anisotropy,
must be taken into account. Each atomic magnetic moment creates a dipolar magnetic
field which couples to other atomic moments. The dipolar coupling between two mag-
netic moments is, for neighboring atoms, weak compared to the exchange coupling, but
is important for large scaled systems since it is a long range interaction. However, this
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Introduction

also leads to a computational burden, since every spin is interacting with every other
spin in the system. For N spins, this will lead to an increase of the computational time
proportional to N2. There are methods based on the evaluation of the multipole moment
of regions, known as the Fast Multipole method and the Barnes and Hut tree algorithm,
which can reduce the complexity to a O(N logN) behavior. The downside is a contro-
lable inaccuracy of the result. Based on the Barnes and Hut tree code, a program for
the rapid evaluation of the dipolar field for a spin system has been developed, which is
discussed in Chapter 4.

Apart from simulating the time evolution of the spin systems in an exact manner the
classical equation of motion was studied analytically. Some exact spinwave solutions
for an infinitely large system are presented in Chapter 4, which are used for testing the
spin-dynamics code. Our interest mainly focuses on finite clusters or nanoislands. Based
on the linearized equation of motion for the case of low excitations of ferromagnetic sys-
tems an eigenvalue equation was set up. The eigenmodes as well as the density of states
for nanoislands on a substrate have been investigated and samples of different shaped
nanoislands are discussed.

In Chapter 5, applications of the developed spin-dynamics code are presented. First
of all, to ensure the correctness of the algorithm for equilibrium properties, results of the
atomistic spin-dynamics code are compared to ones determined by a Monté-Carlo code.
The magnetization curve as well as the susceptibility are in perfect agreement. After-
wards the demagnetization of infinitely long chains is investigated. The Mermin-Wagner
theorem [11] predicts that there is no long range magnetic order in one-dimensional spin
chains with short-ranged interactions. This theorem could be verified and the time could
be determined in which the system loses its magnetic long-range order, depending on
different parameters like damping parameter and temperature. Finally, the thermally-
induced switching time of differently sized nanoislands deposed on a surface is studied.
Different types of switching behaviors depending on the strength of the coupling con-
stant are observed. For high values of the anisotropy constant, domains are propagating
through the nanoisland with sharp domain walls whereas for low anisotropies a more
collinear like switching is observed. It is also shown that the switching time follows the
Arrhenius-Néel-law.
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Introduction

Conventions

This work tries to stick to the following conventions for mathematical formulas. The
standard notation for vectors is to indicate them by bold face: S. Its components will
be given by a superscript index in Greek letters and if a set of vectors (i.e. spins) is
given then a subscript index will denote each element: Sα

i , α = (x, y, z), i = (1, 2, 3, ...)
Other definitions are given in the following table:

type style example exception
scalar standard s
vectors bold v
matrices calligraphic M H - Hamilton function

O(xn) - order of an expansion
units roman mRyd i - imaginary unit number
operators hat symbol Ŝi

position index Latin alphabet Si, i = 1, ..N
direction index Greek alphabet Sα, α = x, y, z
gradient bold denominator (∂/∂S)
set curly brace {S} = S1,S2, ...SN

8



2 Landau-Lifschitz Dynamics

2.1 Introduction

In this chapter the classical treatment of a quantum mechanical spin system based on
a model Hamiltonian is introduced. The underlying assumption of this model is the
formation of localized atomic moments, which are subject to an inter-atomic exchange
interaction. This approximation is appropriate for systems with localized magnetic mo-
ments (like 4f transition elements). The interaction of the individual atomic magnetic
moments is then described using a model Hamiltonian.

In analogy to the quantum mechanical equation of motion for the expectation value,
a classical equation of motion describing the time evolution of the spin model is intro-
duced. Also, a temperature bath is included by adding fluctuation and dissipation terms
which simulate relaxation and excitation of magnons in solids. A parallelization scheme
is presented which can be used for performing large scale calculations on supercomput-
ers like Jugene at the Forschungszentrum Jülich. Finally, results of test systems are
presented in order to verify the correctness and the accuracy of the code.

Length Scales

Magnetism plays a role on a wide range of length scales. Each electron carries a mag-
netic moment associated to its spin. The magnetic moment µ of the spin s is coupled
(µ = γs) to its spin by the gyromagnetic γ ratio which, for the electron, defined by the
product of the Bohr magneton µB and the Landé factor g: γ = −gµB. Each magnetic
moment produces a dipolar field which can interact with other magnetic moments. How-
ever, the influence of the dipolar interaction between neighboring atoms is neglectable.
The formation of the magnetic moments can be understood by the Coulomb interaction
and the Pauli principle,which states that two electrons are not allowed to occupy the
same state in an atom. An atomic moment can only be formed if the valence shell is
not fully occupied. The valence shell will first be filled up with spins of the same state
(i.e. up or down). This effect is expressed by the first Hund’s rule. Therefore, an atom
will have a maximum spin moment if the valence shell is half filled. The strength of an
interaction depends on the overlap of the wave functions of the electrons. Therefore,
the interaction among the electrons of an atom is orders of magnitude higher than the
interaction between electrons of different atoms. Thus, for the study of magnetic prop-
erties, it is a good approximation to treat the electrons of one atom as a single atomic
macrospin which is interacting with its surroundings.
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Landau-Lifschitz Dynamics 2.2 Hamiltonian

The inter-atomic exchange coupling between atomic moments also stems from an in-
terplay between the Coulomb interaction and the Pauli principle as well. This leads to
the well known Heisenberg exchange Hamiltonian which is governing the interaction of
nearby atoms. In addition, spin space and real space are coupled via the spin-orbit in-
teraction, which is partly responsible for the spatial directionality of the magnetization.
The emerging anisotropy is called magnetocrystalline anisotropy.

By increasing the system size above the nanometer scale the long range dipole-dipole
interaction becomes more and more important. The dipole-dipole interaction is the
second term which is responsible for the spatial orientation of the magnetic moments
and is competing with the magnetocrystalline anisotropy. Unlike the magnetocrystalline
anisotropy the energy minimum of the dipole-dipole interaction is mainly determined by
the shape of the sample. The energy minimum of the full Hamiltonian, consisting of the
Heisenberg, the magnetocrystalline Anisotropy and the dipolar interaction, and leads to
a formation of domains, while the competition between the Heisenberg exchange and
the magnetocrystalline anisotropy determines the thickness of domain walls.

2.2 Hamiltonian

2.2.1 Heisenberg Hamiltonian

The ordering of the magnetic moments in solids is mainly driven by the Heisenberg
exchange interaction. This interaction cannot be understood within the single-electron
approximation which is often used in solid state physics. Two effects have to be included
to understand the exchange interaction. The Pauli principle and the Coulomb interac-
tion between electrons.

According to the Pauli principle the many-body wave function must be anti-symmetric
for a permutation of two identical fermions. One consequence is that two identical
electrons cannot occupy the exact same position. Hence, the energy due to the Coulomb
interaction between them is lowered, compared to two electrons with a different spin
state in the same electronic state.
This phenomenon can quantitatively be understood studying a hydrogen molecule. The
two-electron wave function consists of a spatial and a spin part:

Ψ(r1, r2, s1, s2) = ψ(r1, r2) · χ(s1, s2),

r defines the position and s the spin of the electron. The single spin eigenfunctions
can be combined to eigenfunctions of the total spin operator, which is for two electrons
known as the anti-symmetric singlet state and the symmetric triplet state. Hence, the
spatial part needs to be symmetric for the singlet state and anti-symmetric for the triplet
state.
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2.2 Hamiltonian Landau-Lifschitz Dynamics

The Hamiltonian of an hydrogen molecule is given by:

H = H(r1) +H(r2) +He−e(r1, r2)

where H(r1) and H(r2) denote the single electron Hamiltonian of the hydrogen molecule
using r1 and r2 which defines the position of the electrons. He−e(r1, r2) denotes the
Coulomb exchange interaction between the electrons. A first approximation of the so-
lution of the Hamiltonian above is given by an ansatz of products of the one electron
wave functions. In the Heitler-London approximation the wave functions are given by:

ψ±(r1, r2) = φA(r1)φB(r2)± φB(r1)φA(r2)

Here, φA and φB denotes the atomic wave function of an electron around a nucleus A or
B with the coordinates rA, rB. The ’+’ wave function corresponds to the singlet, the
’−’ corresponds to the triplet spin solution. The energy of the two wave functions can
easily be determined [12]:

E =
〈ψ(r1, r2)|H|ψ(r1, r2)〉
〈ψ(r1, r2)|ψ(r1, r2)〉 = 2EI +

C ± A

1± S
(2.1)

where the following integrals appear and need to be evaluated:

EI =

∫
φ∗A(r1)(− h̄2

2m
∇2

1 −
e2

4πε0rA1

)φA(r1)dr1 (2.2)

C =
e2

4πε0

∫
(

1

rAB

+
1

r12

− 1

rA2

− 1

rB1

)|φA(r1)|2|φB(r2)|2dr1dr2 (2.3)

A =
e2

4πε0

∫
(

1

rAB

+
1

r12

− 1

rA1

− 1

rB2

)φ∗A(r1)φA(r2)φB(r1)φ
∗
B(r2)dr1dr2 (2.4)

S =

∫
φ∗A(r1)φA(r2)φB(r1)φ

∗
B(r2)dr1dr2 (2.5)

The symbol rA1 is denotes the distance between the coordinates rA and r1. The previous
integrals are known as the ionization energy of a hydrogen atom EI ,the Coulomb integral
C,the exchange integral A and the overlap integral of the wave functions S. The spatial
part of the singlet wave function needs to be symmetric (ψ+), the spatial part of the
triplet wave function anti-symmetric (ψ−), which leads to two different eigenenergies,
Es for the singlet and Et for the triplet state. Their difference will be denoted as the
coupling constant J :

J := Es − Et = −CS − A

1− S2

It can be either negative or positive which leads to a ferromagnetic or an anti-ferromagnetic
coupling. The splitting of the four degenerate spin states will be small compared to other
excitation energies. As the interest focuses on the spin properties, it is useful to work
with a Hilbert space consisting of the four spin states. The following Hamiltonian fulfills
these properties and can also reproduce the eigenvalues of the original Hamiltonian:

Hspin =
1

4
(Es + 3Et)− (Es − Et)Ŝ1 · Ŝ2
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Landau-Lifschitz Dynamics 2.2 Hamiltonian

The operator will have an eigenvalue of Et in the triplet and Es in the singlet state. The
first part of the sum is constant and, therefore, does not change the physical behavior.
Therefore, this part is neglected and one writes the spin Hamiltonian in the following
form:

H = −JŜ1 · Ŝ2

The previous term was first introduced by Heisenberg in 1920 and is called the Heisen-
berg Hamiltonian. In principle, coupling constants between every spin pair in the system
has to be considered. Nevertheless, since the overlap of the wave functions decays ex-
ponentially with the atomic distance only nearby atoms have a finite coupling constant.
Therefore, in the simulations presented in the next chapters, we restrict ourselves to
a nearest neighbor treatment. A positive coupling constant leads to a ferromagnetic
coupling, a negative one to an antiferromagnetic coupling. The Heisenberg model pro-
vides a good description for localized states i.e. 4f transition elements. It is a less good
approximation in the description of 3d transition elements where a model for itinerant
electrons will be more applicable.

The classical Heisenberg Hamiltonian is given by a substitution of the spin operators
by c-numbers1. In the limit of high temperature and high spin quantum numbers the
difference between quantum and classical spins becomes less important leading to the
applicability of the classical model:

H = −JS1 · S2

The length of the classical spin correspond to |S| =
√
s(s+ 1) where s is the spin

quantum number.

2.2.2 Zeeman Term

A system of spins can interact with an external magnetic field HZeeman. This will lead to
a precession of the spin around the magnetic field. The spin motion of a single electron
can be described using the Zeeman Hamiltonian:

HZeeman = −µ ·HZeeman = gµBHZeeman · S (2.6)

At the energy minimum, the spin lies antiparallel to the magnetic field, as the electron
magnetic moment is antiparallel to the electron spin.

2.2.3 Magnetocrystalline Anisotropy

The Heisenberg model mentioned above depends only on the spin states in the system
and its coupling constants. Thus, the system is invariant to a collective rotation of the
spins. In real systems this behavior is not observable. Due to the shape of the sample
1Nomenclature introduced by Paul Dirac to distinguish between real or complex numbers (c-numbers)
and operators.
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2.2 Hamiltonian Landau-Lifschitz Dynamics

and its crystalline structure the spins in a system favor certain direction, which is called
the easy axis (or they can favor the alignment in a plane which is denoted as the easy
plane). In particular, in systems of reduced dimension and finite size2, there is a high
contribution of the magnetocrystalline anisotropy caused by the spin-orbit interaction
of the electrons .

Figure 2.1: Schematic description of the deformation of the atomic orbitals of two elec-
trons depending on the spin direction. The overlap between two orbitals
changes, leading to a change of the total energy. Hence, certain spin states
are energetically preferable.

Roughly speaking, the spin of the electron interacts with the angular momentum of
the atomic orbitals. Depending on the direction of the spin there is a small variation
of its atomic orbital (see 2.1), which changes the overlap of the wave function with its
neighbors.
Quantitatively, starting from the Dirac equation one can derive [13] an additional per-
turbation term in the Schrödinger equation. For a spherical potential one gets:


−

h̄2

2m
∇2 + V (r) +

µB

2mc

1

r

∂V (r)

∂r︸ ︷︷ ︸
ξ

(σ ·L)


 Ψ = EΨ (2.7)

Here, σ is a vector containing the Pauli matrices. The strength of the additional term
in equation (2.7) depends on the angular momentum L of each orbital and a prefactor
ξ, which is influenced by the nucleus potential V (r). Hence, one can expect a high
anisotropy constant for heavy atoms. But it also highly depends on the shape of each
orbital. Assuming a Coulomb potential, the factor ξ can be derived to ξ = 1

r
∂dV (r)

∂r
∼ 1

r3 .
Thus, the contribution to ξ is strong at r close to zero. The s-orbitals do not contribute
to the magnetocrystalline anisotropy because they do not carry an angular momentum.
As a rule of thumb, one can say that the contribution is decreasing from the p-orbitals
(most closely located around the nucleus) to the d- and f- orbitals.

2Clusters, chains and ad-atoms.
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Landau-Lifschitz Dynamics 2.2 Hamiltonian

A first-order perturbation term can be derived which is used in the classical spin-
dynamics simulation:

Hani = −K · (n · S)2

Here, n is a normalized vector pointing to the easy axis (or the orientation vector of
an easy plane) and K is known as the anisotropy constant. The anisotropy constant is
usually much smaller than the coupling constant (typically 10−3J−10−1J). For positive
values ofK the system tries to align the spins parallel or anti-parallel to the vector n. For
negative values, the spins align perpendicular to n. Such situations are often met in thin
films where the translational symmetry is broken. For symmetry reasons, in thin films,
the vector n is pointing perpendicular to the surface of the plane. Depending on the
sign of K the atomic moments align parallel (in- plane magnetization) or perpendicular
(out-of-plane magnetization) to the surface. In recent years hard disc manufacturers have
been able to use an out-of-plane magnetization instead of an in-plane magnetization to
further extend storage capacities in hard discs.

2.2.4 Dipole-Dipole-Interaction

The dipolar interaction between two atoms is about three magnitudes smaller than the
exchange coupling [14]. However, while the latter drops exponentially, the dipolar in-
teraction is of long range nature, decaying proportionally by 1/r3 with the distance r..
Hence, while it almost does not influence the behavior of the inter-atomic interaction be-
tween neighboring atoms, it crucially influences the magnetic properties of large clusters.
The dipolar interaction basically induces two effects: the magnetic shape anisotropy [15]
and the formation of domains. According to classical magnetostatics, the field induced
by a magnetic moment µ is given by:

B(r) =
3r(r · µ)− µ · r2

r5

Another magnetic moment, which is present in the system will couple to the magnetic
field produced by a µ. Using the Zeeman equation (2.6) the dipole-dipole energy of a
system of magnetic moments {µ} at position {r} is given by:

Hdip(r) =
1

2

∑

i6=j

µi · µj(ri − rj)
2 − 3(µi · (ri − rj))(µj · (ri − rj))

|ri − rj|5 ,

where i and j define the atoms between which the interaction is calculated. This equation
can be simplified [16] for ferromagnetic systems with a uniform distribution of magnetic
moments leading to the energy:

E =
1

2
|µ|2

∑

i6=j

1− 3 cos2 θij

R3
ij

where Rij is the distance between spin i and spin j and θij is the angle between the
joining vector of spin i and spin j and their magnetic moment. For a chain of mag-
netic moments, the angle θij will be independent of the atomic positions. Hence, it
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2.3 Classical Approach Landau-Lifschitz Dynamics

is easy to see that the dipolar energy is minimized if the magnetic moments align in
the direction of the chain (θij = 0). However, for an infinite anti-ferromagnetic coupled
chain of magnetic moments, the spins will align perpendicular to the chain direction [17].

The minimum of the dipolar energy for infinite systems depends on the dimension of
the system. For an ordered ferromagnetic two dimensional system the magnetization
direction will also be in plane. This is in contradiction to the easy axis of a magne-
tocrystalline anisotropy which in many cases points out of plane. Thus, a competition
between the two terms will determine the ground state. It is worth mentioning that the
dipole-dipole energy does not affect the ground state of an infinite three dimensional
bulk system. The dipolar energy is purely determined by the boundaries of the sample.
Therefore, in a finite system the ground state for the dipolar energy will be determined
by the shape of the sample. For this reason,the orientation of the ground state due to
the dipole-dipole interaction is often called shape anisotropy.

A ferromagnetic state for a finite particle is often very inefficient in terms of dipolar
interactions. Indeed, the dipolar energy is reduced by the creation of domains with dif-
ferent magnetic orientations These domains are separated by domain walls with different
thicknesses.

Such a magnetic subdivision is, of course, payed by the exchange energy which is low-
ered when all spins are pointing towards the same direction. However, since the exchange
interactions are short ranged, the exchange energy only increases at the boundaries be-
tween domains, the domain walls. In fact, the exchange interactions broaden the width
of the domain wall to make the transition between one magnetic domain to the closest
one as smooth as possible in contradiction to the magnetocrystalline anisotropy, which
tends to decrease the domain wall. Hence, a competition between the magnetocrystalline
anisotropy and the exchange energy will determine the domain wall width as derived in
Appendix A.4.

In calculations, the long range dipole-dipole interaction leads to a computational bur-
den. The exchange energy is a local interaction. Therefore, the number of interaction
partners does not increase with the number of atoms N , whereas the number of magnetic
dipolar interactions increases linearly. This leads to a increase of the computational time
which is proportional to the number of moments squared: N2. For the sake of compari-
son, a system with a local coupling leads to a linear computational increase. As discussed
in Chapter 5, strategies can be found facilitating the computational time to an (almost)
linear behavior.

2.3 Classical Approach

In this section, the quantum mechanical equation of motion for a Heisenberg spin system
is introduced. Then a classical analogon [18] will be derived, which is extended by
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Landau-Lifschitz Dynamics 2.3 Classical Approach

introducing a coupling to a heat bath. Therefore, a Langevin-like approach is used
introducing fluctuating and dissipating terms to the equation of motion.

2.3.1 Classical Equation of Motion

Motion of the Angular Momentum of a Charge Distribution

The spin of an electron can classically be interpreted as a rotation of a finite sized
particle around one of its symmetry axes. One considers that the electron charge is dis-
tributed in a finite volume according to a charge density distribution ρ(r). If one applies
a magnetic field B a Lorenz force will be induced on the particle, leading to a precession.

The derivative of the angular momentum is given by the torque, µ × B. Hence,
one ends up with the equation of motion ∂L/∂t = µ × B [19]. Here we recall once
more that for a spin of an electron, the angular momentum h̄S is connected to the
magnetic moment µ by the gyromagnetic ratio µe = −gµBS where µB = |e|h̄

2mc
is the

Bohr magneton and g refers to the Landé factor. The precession of a spin in a magnetic
field can be interpreted in a classical picture, where the spin is viewed as a classical
angular momentum:

∂S

∂t
= −gµB

h̄
S ×B

According to the equation of motion the spin will precess around the magnetic field as
seen in Fig. 2.2. Comparing the Heisenberg Hamiltonian (H = −JS · S′) with the
Zeeman Hamiltonian (HZeeman = gµBS ·HZeeman) one can identify the neighboring spin
S′ with an effective magnetic field which acts on the spin S:

gµBH ≡ −JS′

Hence, the equation of motion for two atomic spins coupled by an Heisenberg Hamilto-
nian is defined as :

∂S

∂t
= −J

h̄
S′ × S

An analogous equation of motion is also valid for spin S′, which leads to a system
of coupled ordinary differential equations. This derivation is up to now just a rough
estimation of the motion of a classical spin. A more general equation of motion can be
motivated by finding an analogon for the quantum mechanical commutator relation.

Quantum Mechanical Spin Dynamics

The quantum-mechanical spin operators at atoms i,j obey the following commutator
relations:

[Ŝα
i , Ŝ

β
j ] = ih̄δijεαβγŜ

γ
i , α, β, γ = (x, y, z) i, j = 1, ..N (2.8)

where εαβγ denotes the fully antisymmetric Levi-Civita-tensor and δij is the Kronecker’s
delta. The commutator bracket is defined as [A,B] = AB − BA. For an arbitrary
observable Ô the quantum equation of motion in the Heisenberg picture is determined
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2.3 Classical Approach Landau-Lifschitz Dynamics

Figure 2.2: Motion of a spin (green) around an effective magnetic field (red). The tra-
jectory (blue) shows the precession around the magnetic field.

by ih̄∂ bO
∂t

= [Ô,H]. Hence, for the spin operators the quantum mechanical equation of
motion is given by:

ih̄
∂Ŝα

i

∂t
= [Ŝα

i ,H({Ŝ})], α, β = (x, y, z) i, j = 1, ..N (2.9)

Classical Spindynamics

In the classical approximation the quantum mechanical operators are substituted by
c-numbers:

Ŝ → S

An analogon to the quantum mechanical commutator in classical mechanics for spin
systems is given by the Lie-Poisson bracket [20], which for spin systems reads:

{F ({S}), G({S})} =
N∑

i=1

εαβγ
∂F

∂Sα
i

∂G

∂Sβ
i

Sγ
i (2.10)

where F ({S}) and G({S}) are functions of the set of vectors {S}. Using F ({S}) = Sα
i

and G({S}) = Sβ
j in function (2.10) the following relation can be derived:

{Sα
i , S

β
j } = εαβγδijS

γ
i (2.11)

This equation can be interpreted as the classical analogon to the quantum mechanical
spin commutator relationship (2.8). Thus, for an observable, the time evolution is given
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by the Lie-Poisson bracket (in analogy to equation (2.9)):

h̄
∂O

∂t
= {O,H({S})} (2.12)

For the spin component α of the spin S at position i the equation of motion is given by

h̄
∂Sα

i

∂t
= {Sα

i ,H({S})}

=
N∑

j=1

εαβγδij
∂H
∂Sβ

j

Sγ
j

= (
∂H
∂Si

× Si)
α ,

which leads to

h̄
∂Si

∂t
= (

∂H
∂Si

× Si) (2.13)

Equation (2.13) is the classical equation of motion for the spin Hamiltonian used in this
work. It is a first-order differential equation for which the spin directions in space are
sufficient as an initial condition for solving the equation of motion. The derivative of
the Hamiltonian ∂H/∂Si will be denoted as the local field splitting or the effective field:

Heff = ∂H/∂Si

It can be interpreted as a local, effective magnetic field which consists of the sum of all
interactions acting on the particular spin. The cross product in the equation of motion
leads to a precession of the spin around its local field (see Fig. 2.2).

Using relation (2.12) one can easily show that the energy is conserved using the equa-
tion of motion (2.13) by a calculation of ∂H

∂t
= {H(S),H(S)} = 0 as well as the conver-

sation of the length of each single spin Si by determining ∂S2
i /∂t = {(Sα

i )2 + (Sβ
i )2 +

(Sγ
i )2,H(S)} = 0. The conservation of the length of each spin will be used later on to

determine the numerical error of the integration scheme.

2.3.2 Simulation of Damping

A solution of the equation of motion (2.13) which was derived before would lead, in the
case of a single spin in an external field, to a periodic precession of the spin around a
magnetic field at a constant energy because the spin system is totally decoupled from
the real space. This behavior would be unphysical, especially for systems at low tem-
perature. Here, one would expect a tendency of the spin to lose its energy (for zero
temperature), which would lead to a relaxation of the spin to the ground state. This
phenomenon is mainly driven by interactions with the crystal lattice or the electronic
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Figure 2.3: (left) Trajectory of the magnetic moment of a spin precessing around a
magnetic field which is pointing in the z-direction. The system is damped
(λ, α = 0.1) with the Landau-Lifschitz or the Gilbert damping. The trajec-
tory is exactly the same. Just the timescale of the process is different. (right)
Spin (green) processing around a local field (red) by a force (blue) driven
by the Hamiltonian. The system is slowly damped by Landau-Lifschitz or
Gilbert damping (orange).

structure. By decoupling the spin system these interactions (when assuming the Zee-
man or Heisenberg Hamiltonian) have been excluded. However, the relaxations can be
simulated introducing a coupling of the spin system by using model damping terms. In
1935 Landau and Lifschitz first introduced an additional term to the equation of motion
to describe damping [21]:

∂Si

∂t
=

1

h̄
Heff × Si − λ

1

h̄
(Heff × Si)× Si (2.14)

The strength of the damping is described by a positive damping constant λ. The damping
force is by construction always directed toward the local energy minimum which can be
seen in Fig 2.3.
Later Gilbert [22] proposed a different damping term which is proportional to the ’speed’
of the spin, i.e. to the precession frequency:

∂Si

∂t
=

1

h̄
Heff × Si + αS × ∂S

∂t
(2.15)

At first sight these two equations look different. But it can be shown that they are
mathematically equivalent by taking the cross product of equation (2.15) with S:

S × ∂S

∂t
= −1

h̄
(Heff × S)× S + αS × (S × ∂S

∂t
)

= −1

h̄
(Heff × S)× S + α(S(S

∂S

∂t︸ ︷︷ ︸
=0

)− ∂S

∂t
S2)

= −1

h̄
(Heff × S)× S − αS2∂S

∂t
(2.16)
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This term can now be inserted into equation (2.15). A straight-forward calculation leads
to:

(1 + S2α2)
∂S

∂t
=

1

h̄
Heff × S − α

h̄
(Heff × S)× S (2.17)

By introducing a rescaling of time of the form τ = (1 + S2α2)t the damping terms of
equation 2.14 and equation 2.15 are mathematically equivalent. The trajectories are the
same, however, the timescale on which the spin is ’moving’ is different. As a result, this
renormalization of the time leads to a crucial difference between the damping types in
the high damping limit:

λ→∞ =⇒ ∂S

∂t
→∞ (Landau− Lifschitz)

α→∞ =⇒ ∂S

∂t
→ 0 (Gilbert)

It is often argued that due to this behavior the Gilbert damping is preferable to use
in simulations. Indeed, the Gilbert damping term is, as it is proportional to the spin
velocity ∂S/∂t, similar to common damping terms known in classical mechanics. Hence,
one would expect the spin to slow down with increasing damping parameter which is
described by equation (2.18).

One could also interpret the damping term as an energy loss term which seems, in
some cases, more reasonable for a system of atomic spins interacting with each other.
Hence, the prefactors would be proportional to the energy loss of the system in time.
Increasing it should lead to a faster relaxation of the spins towards its groundstate.
Therefore, the Landau-Lifschitz interpretation could in some cases also be preferable.

In the low-damping limit both damping terms converge to the same result. Since
mostly low-damped systems will be studied, the choice between Landau-Lifschitz and
Gilbert damping is arbitrary. For higher damping values (λ > 0.1) it will explicitly be
mentioned which damping term is used. The damping term is an important parame-
ter in the simulations. For micromagnetic simulations, values around 0.01 [23, 24] are
used in the literature which are often extracted from ferromagnetic resonance (FMR)
experiments. In this thesis, several values have been used ranging from λ = 0.001 to 0.1.

2.4 Temperature Bath

As discussed, by introducing the Heisenberg model Hamiltonian, the spin system was
decoupled from the lattice and the electronic system. Hence, no interaction between
them will be described using the Landau-Lifshitz model. There are several approaches
to reintroduce a coupling to simulate a temperature bath. The most prominent approach
is the Monte Carlo method, which is suitable to describe equilibrium properties. How-
ever, time dependent non-equilibrium properties can hardly be determined. There are
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approaches known as Kinetic Monte Carlo methods [9] which introduce a time leading
to good results in the distribution but fail in the regime of ultrashort timescales. Other
methods introduce the coupling of the spin and the lattice system via the exchange
constant which then will depend on the oscillating distance between the lattice atoms
[25, 26].

2.4.1 Langevin-Like Approach

In this thesis a Langevin-Like approach similar to molecular dynamics is used in which
a thermal heat bath is acting on the system via stochastic forces. For an easy under-
standing it will first be introduced in the molecular dynamics context.

Brownian Motion

Figure 2.4: Motion of a particle (blue) in a liquid (red). The arrows show the direction
of motion for the particles.

The motion of a particle in a liquid was first studied by Robert Brown and is, therefore,
called a Brownian motion. Einstein [27] related the motion of a particle in a liquid to a
stochastic model in which the liquid atoms are rapidly interacting with the particle (see
Fig. 2.4). The motion is described by the Langevin equation which consists of Newton’s
second law including two additional terms:

m · ∂
2x

∂t2
= Fdet(x, t)− λ · ∂x

∂t
+ Fsto(x, t) (2.18)

The first part on the right-hand side corresponds to deterministic forces which are known
(or can be calculated) from the state of the system. The second term is a damping term
which is proportional to the velocity of the particle acting as a friction term which
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tends to bring the particle to stillstand. The last term, Fsto, is a stochastic force which
accelerates the particle, mimicking the random, temperature-induced collisions of the
particle with molecules of the liquid.

Stochastic Landau-Lifschitz equation

The previous method can also be applied to a system of classical spins. The classical spin
will fluctuate due to excitations caused by interaction with i.e. phonons or electrons.
Friction-driven energy loss will be described by the damping term introduced earlier.
The equilibrium state is determined by an interplay between both mechanisms.

We will now focus on the description of thermal excitations of the spin system. These
effects are simulated by including the following term in the equation of motion:

f i × S (2.19)

Here f i denotes a fluctuating term simulated by a stochastic distribution which can
also be interpreted as an effective fluctuating magnetic field. The resulting motion vec-
tor is perpendicular to the spin, which thus conserves its length.

A large number of processes is responsible for spin excitations. These excitations can
have different stochastic distributions. Using the central limit theorem, the sum of the
different distributions will lead to a Gaussian distribution. It is also plausible that a
thermal heat bath should be rotationally invariant and should not favoring any direction.
In other words the thermal heat bath should not lead to a drift of the system. Hence,
the mean value of the distribution must vanish:

〈fα
i 〉 = 0

It will also be assumed that the fluctuations are uncorrelated for each spin as well as
for each component of the spin. The fluctuating force should also be uncorrelated in
time for each spin. This assumption is valid if the time interval (t − t′) between two
subsequent stochastic collisions is short compared to the timescale of the spin motion
and can mathematically be formulated as:

〈fα
i (t), fβ

j (t′)〉 = δijδαβδ(t− t′)ε2

The Fourier transformation of this expression reads:

F (ω) =

∫ ∞

−∞
dt〈fα

i (0), fα
i (t)〉 exp(−iωt) = ε2 (2.20)

Hence, the spectral density is independent of ω. The distribution will therefore be called
white noise. The strength of the fluctuating force and the damping parameter should be
chosen in a way that the distribution of the energy of a single particle in an equilibrium
state follows a Boltzmann distribution:

P (E) ∼ exp(− E/kBT )
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2.4 Temperature Bath Landau-Lifschitz Dynamics

This can be guaranteed by the following relation (Fluctuation-Dissipation-Theorem)
between the temperature T , the damping constant λ and the standard deviation of the
fluctuating force distribution:

ε2 = 2λkBT

A combination of motion, damping and fluctuation term leads to the final equation of

Figure 2.5: Visualization of the forces acting on a spin (green) precessing (blue) around
a local field (red). The damping vector is colored in orange and one example
for a fluctuating force vector is colored in yellow. All three vectors are
perpendicular to the spin vector (green).

motion which is used for simulations in this work:

∂Si

∂t
=
∂H
∂Si

× Si − λ(
∂H
∂Si

× Si)× Si + f(t)× S (2.21)

The three parts of the right-hand side of the equation are depicted in Fig. 2.5. By using
a scalar product of equation (2.21) with Si on both sides it is easy to show that the spin
length is still conserved. However, as expected, the total energy of the system will not
be conserved any more.

White and colored noise

As precised earlier, the limiting case of infinitely small correlation lengths is used. This
formalism leads to a distribution which is independent of the frequency. Therefore, it
is called white noise. Nevertheless, it also leads to unphysical phenomena because a
distribution of white noise would lead to diverging power. A colored noise distribution
g(t) with a correlation length τ according to:

〈g(t)g(t+ t′)〉 ∼ exp(−t′/τ)
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would be more reasonable. Such an approach would lead to a mathematically more
complicated description of the problem. It can be shown [28] that for τ → 0 the noise
g(t) converges to the white noise. Therefore, for very short correlation times the white
noise is a reasonable approximation.

2.4.2 Stochastic Differential Equation

In the previous section a thermal heat bath was introduced using a fluctuating term. The
fluctuations were chosen to obey a white noise distribution for which every frequency
contributes equally. Now the question arises how to mathematically treat differential
equations with stochastic perturbations.

Stochastic Differential Equation

The general expression for a stochastic differential equation, such as equation (2.21) or
equation (2.18) is typically written as:

dX(t)

dt
= a(X(t), t) + b (X(t), t) f(t) (2.22)

For simplicity, a one dimensional system is considered. The fluctuating term needs to
fulfill the following properties to describe white noise :

〈f(t)〉 = 0 (2.23)
〈f(t)f(t′)〉 = ε2δ(t− t′) (2.24)

The equation of motion (2.22) is often denoted as the Langevin equation with a de-
terministic drift term and a stochastic diffusive term. Integration of equation (2.22)
over a small time interval dt leads to the standard stochastic differential equation with
multiplicative noise used in stochastic calculus:

dX =

∫ t+dt

t

a(X(t′), t′)dt′ +
∫ t+dt

t

b(X(t′), t′)f(t′)dt′

= a(X(t), t)dt+ b(X(t), t)dW (t), (2.25)

The term dW describes an infinitely small element of a Brownian motion which is defined
as:

dW (t) =

∫ t+dt

t

f(t′)dt′ (2.26)

W is, by mathematicians, often called Wiener process in honor of Norbert Wiener.
Example paths of Wiener processes are given in Fig. 2.6. One can interpret equation
(2.26) as a sum of Gaussian random variables. Thus, the mean value of dW (t) will also
be equal to zero:

〈dW (t)〉 = 0 (2.27)
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The variance of a Wiener process is given by:

〈dW (t)dW (t)〉 =

∫ t+dt

t

dt1

∫ t+dt

t

dt2〈f(t1)f(t2)〉 (2.28)

=

∫ t+dt

t

dt1

∫ t+dt

t

dt2 ε
2 δ(t1 − t2) (2.29)

= ε2dt (2.30)

whose variance is proportional to ε2 and linear in dt. If there is no overlap between the
intervals [t, t+ dt] and [t′, t′ + dt] (which is true for successive timesteps), one gets:

〈dW (t)dW (t′)〉 = 0 (2.31)

0 2000 4000 6000
Time [a.u]
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-50

0
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100

W

One dimensional Wiener process
three different example paths

Figure 2.6: Three example paths (black,red, green) of a Wiener process with ε = 1, the
standard deviation (blue) is increasing with the square root of t.

Thus, there is no correlation in time between t and t′. The order of dW (t) corresponds
to the square root of the order of dt:

dW (t) = εf(t)
√
dt (2.32)

This leads to crucial results for the integration of stochastic differential equations and
is the origin of the Ito-Stratonovich controversy which will be discussed below.
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Integration

The first term in equation (2.25) can be integrated straight-forwardly by using the
Riemann integral. It is defined by a discretization of the time interval in N time steps
ti where the time step is given by ∆t.

N∑
j=1

a(·, δ tj + (1− δ)tj−1) · (tj − tj−1)

It is well known that the Riemann integral converges for any choice of the value of the
function a(·) between tj−1 and tj in the limit of ∆t → 0. Therefore, δ can be chosen
arbitrarily in the range δ ∈ [0, 1]. In the limit ∆x → 0 the integral values converge to
the same result.

A similar definition can be used for the stochastic part of equation (2.25) which is
known as the Riemann-Stieltjes integral:

N∑
j=1

b

(
δX(tj)− (1− δ)X(tj−1), tj

)
· (W (tj)−W (tj−1)) (2.33)

As already mentioned, the choice of δ is arbitrary for an ordinary integral in the limit
of ∆t → 0 and all results converge to the same result. However, this is not the case
for the stochastic integral. It is even not guaranteed that such an integral converges.
Although one can show that for the choice δ = 0 and δ = 1/2 the integral converges,
it is not ensured that both choices lead to the same result. This problem is called the
Ito-Stratonovich controversy [29, 30, 31].

The second part of equation (2.33) can be approximated for small values ∆t → dt
by:

b

(
δ X(t+ dt) + (1− δ)X(t), t

)
dW (t)

The deviation in dt can be rewritten as a deviation in dX:

δ X(t+ dt) + (1− δ)X(t) = δ (X(t) + dX(t)) + (1− δ)X(t)

= X(t) + δ dX(t)

Thus, the differential equation can be rewritten as follows:

dX(t) = a(X(t), t)dt+ b (X(t) + δ dX(t), t) dW (t) (2.34)

Performing a Taylor expansion and summing up all contributions up to the second order
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in dW (t) one ends up with:

b(X(t) + δdX(t), t)dW (t) = b(X(t), t)dW (t) +
∂b(X(t), t)

∂X(t)
dW (t) (δ dX(t)) + ...

= b(X(t), t)dW (t) + δ
∂b(X(t), t)

∂X(t)
a(X(t), t)dt dW (t)

+ δ
∂b(X(t), t)

∂X(t)
b(X(t) + δX(t), t)(dW (t))2 + ...

= b(X(t), t)dW (t) + δ
∂b(X(t), t)

∂X(t)
b(X(t), t)(dW (t))2

+ O(dW (t)3) (2.35)

In the derivation, dX(t) has once been substituted by a tailor expansion of equation
(2.34) and dt has been substituted by equation (2.32). Inserting this term into equation
(2.34) one gets:

dX(t) = a(X(t), t)dt+ δ
∂b(X(t), t)

∂X(t)
b(X(t), t)(dW (t))2 (2.36)

+b(X(t), t)dW (t) (2.37)

=

[
a(X(t), t) + δ

∂b(X(t), t)

∂X(t)
b(X(t), t)ε2

]
dt+ b(X(t), t)dW (t) (2.38)

dW (t)2 was replaced by ε2 dt. This can be justified by evaluating the quadratic mean
of the difference between the increment dx of equation (2.36) and the increment dx̄ of
equation (2.38), which is given by:

〈(dx− dx̄)2〉 = O(dt2)

The difference of the quadratic mean decreases with an at least quadratic order towards
zero, for dt→ 0 and can, thus, be neglected for an integration over a finite time.

Ito interpretation

Setting δ = 0 results in the so-called Ito interpretation of the integral. It will be denoted
as:

dX = a(X(t), t)dt+ b(X(t), t)dW (t)

Stratonovich interpretation

Setting δ = 1/2 yields to the so-called Stratonovich interpretation of the integral. To
distinguish the two types of integral one uses the ’◦’ symbol in the Stratonovich inter-
pretation:

dX = a(X(t), t)dt+ b(X(t), t) ◦ dW (t)
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The Ito and the Stratonovich interpretation of the integral can easily transformed into
each other by introducing an additional term. The Stratonovich interpretation of the
integral can be written in the Ito form as follows:

dX =

[
a(X, t) +

1

2

∂b(X, t)

∂X
b(X, t)ε2

]
dt+ b(X, t)dW (t)

Vice versa, the Ito interpretation of the integral can also be written in the Stratonovich
form:

dX =

[
a(X, t)− 1

2

∂b(X, t)

∂X
b(X, t)ε2

]
dt+ b(X, t) ◦ dW (t)

Depending on the interpretation, one needs to make a choice on the integral to use.
Unfortunately, there is no general unique solution. In the literature dedicated to math-
ematical proofs and considerations, the Ito interpretation is often used because it fulfills
important relations [32, 33], which are, for example, used in theoretical proofs. For
practical purposes, it can be shown that the Stratonovich interpretation better describes
dynamical spin systems [34].

Numerical Techniques

In the simulation code developed in this thesis, a weak Runge-Kutta (4th order) method
for stochastic differential equations with small noise is used for solving the differential
equation numerically. This method has been introduced by Milstein and Tretyakov [35].
Details are presented in the Appendix A.

2.5 Parallelization of the Code

Large scale simulations require significant computational resources. For studying the
long time behavior for thousands of atoms it is useful to parallize the code to be able to
make use of massively parallel supercomputers, which drastically speed up calculations.
In the Forschungszentrum Jülich there are two supercomputer architectures available:

JUMP

The parallel supercomputer JUMP is an IBM p690 Cluster. It consists of 41 nodes
with 32 processors each. Each node shares its memory of 128 GB among its processors.
Therefore, such architectures are called shared memory systems. Every processor can
basically access the memory of the whole node. However, accessing memory which
belongs to a different node will suffer from big latency loss because the memory cannot
be accessed directly. For simulations which use up to 32 processors JUMP can be used
efficiently. For more then 32 processors each processor cannot access the shared memory
directly. The information has to be sent over the network leading to an increase of
computational time. A parallel code for shared memory systems is mostly written using
OpenMP directives which can often be easily adapted to a code which is running on
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Figure 2.7: Distribution of work using domain decomposition, particles with the same
color correspond to one processor, arrows between particles denote commu-
nication between processors.

a single CPU. The master thread will split the work to the N slave threads until the
calculation of the loop has finished. After that the program will continue in a serial mode
using the master thread. However, for a massively parallel code the use of JUGENE
would be a better alternative.

JUGENE

JUGENE is a massively parallel supercomputer based on IBM’s BlueGene and uses
65,536 PowerPC cores, which are clocked at 850 Mhz. Each CPU (which consists of
4 cores) has its own dedicated memory, which leads to a distributed memory system.
Distribution and communication between each core has to be explicitly programed. This
is done using the ’Message Passing Interface’ (MPI).

Domain Decomposition

The parallelization of the spin-dynamics program has been performed using a domain
decomposition (see Fig. 2.7), which works as follows:

• Information on simulation parameters, like temperature or particle positions is
read by the master thread.

• The spin system is separated into as many domains as available cores. This is done
in a way that the borders of each domain are minimized to reduce communication.
The domains are assigned to the available cores and the particle positions as well
as the spin positions are transmitted.
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• Spins at the boundary of each domain which are called helos will need information
on the neighboring domains. This item of information will be distributed to the
demanding domain.

• Each thread calculates the change of the spin position in one Runge-Kutta step in
its domain using the transmitted information of the neighboring domains.

A simple implementation is given by the following code:

--- Once ----
Do i=1,npp ! loop over all particles

If (particle has neighbors outside domain )
then ( Remember particle as a halo )

END DO

--- Every Runge Kutta Time Step ---
Do i=1,neighbors

MPI_IRecv(’Helos of Neighbor Domain i’)
MPI_ISend(’Helos to Domain i’)
CALL RungeKutta()

END DO

This scheme has currently been implemented for systems of spin chains. Future imple-
mentation will work for any kind of structures.

Scaling

In the ideal case a simulation run which is distributed among N threads should be
N times faster compared to a calculation by a single thread. However, the practical
simulation will never reach the theoretical estimations:

• Communication between processors costs time. The time for receiving information
from another processor is orders of magnitude longer than a direct access to the
local memory.

• Most parallel programs also contain serial parts. Therefore, just the parallel part
can be distributed to each processor. The amount of serial code limits the amount
of processors which can be efficiently used for a parallel run. This behavior refers
to Amdahl’s law which is explained in the Appendix A.3.

The efficiency of a parallel program is defined as:

E =
t1

tN ·N
Here, t1 denotes the simulation time on a single processor and tN refers to the simula-
tion time using N processors. A program with no performance loss would lead to an
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Figure 2.8: Efficiency of a parallel version of the spin-dynamics code running on JuGene
at the Forschungszentrum Jülich for different number of processors.

efficiency of E(N) = 1. In Fig 2.8 the efficiency values for a chain with 131072 atoms
is plotted versus the number of threads. For a moderate number of processors (less
than 100), the efficiency exceeds the value for a perfect scaling( E(N) > 1). This is
due to cache-memory effects. The amount of spins each thread has to calculate will be
reduced by increasing the number of processors. Therefore, the data does not need to
be transferred to the cache as often which leads to a further decrease of computational
time. It is observable in the figure that for parallel runs up to 128 processors there is
almost no efficiency loss.

This is true for systems with a lot of atoms. If one decreases the number of atoms the
amount of work of each processor will also decrease. Thus, communication is required
more frequently which leads to an efficiency loss.

2.6 Testing the Algorithm

In this section a number of tests performed on the correctness and accuracy of the im-
plemented spin-dynamics algorithm is described.

First of all the trajectory of spin systems has been followed to ensure that the preces-
sion of the spin is achieved as expected. Therefore, the precession trajectories of a single
spin in a magnetic field for various temperatures is plotted. Fig. 2.3 (section 2.3.2)
the trajectory of a single spin in a damped system without temperature was shown. It
presents a smooth curve around the ground state which converges to the equilibrium
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Figure 2.9: Trajectory for single spins in a magnetic field with damping and a tempera-
ture (starting from the upper left) of T1 = 0.02, T2 = 0.1, T3 = 0.5.

position. Adding temperature to the model leads to a perturbation of the path. The
spin will not converge to the ground state but move around it in a zone which depends
on the temperature. On increasing the temperature this zone gets bigger and the per-
turbation due to the relaxation path is getting stronger. At one point, the trajectory
followed by the spin will be independent, or uncorrelated in time, to the initial state.
The correlation for a spin Si in time can be described by the autocorrelation function:

C0(t0, t) = 〈Si(t0) · Si(t0 + t)〉 = lim
T→∞

1

T

∫ T

t0

Si(t
′) · Si(t

′ + t)dt′

where the brackets 〈·〉 denote averaging over time. The integral in the autocorrelation
function is approximated by a summation over a finite time. It converges exponentially
to zero and the exponential factor is called the correlation time τc. One can show that the
correlation time is inversely proportional to the temperature and inversely proportional
to the damping parameter [36]. When averaging a physical quantity over time one should
ensure that the time interval between subsequent samples is at least of the order of the
correlation time.

A further test relies on the demand that, for an equilibrium state, the energy per
spin should obey a Boltzmann distribution. This has been tested for various atomic
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Figure 2.10: Histogram (red) of the energy distribution of a single spin in a magnetic
field for an input temperature Tin = 2gµBH/kB and a fit (black) of the
numerical with an Boltzmann distribution which leads to a temperature of
Tsim = 1.988 gµBH/kB.

configurations. After letting the previous system converge to equilibrium, the energy
values of the spin have been written out at each predefined time step. If enough sta-
tistical data is gathered and if the total collection time is sufficiently higher than the
correlation length of the system the data can be plotted in a histogram and compared
to a Boltzmann equation. Fig. 2.10 shows the distribution with an input parameter
for the temperature of Tin = 2gµBH/kB. The fitting procedure calculated an exponen-
tial prefactor of Tsim = 1.988 gµBH/kB. Hence, if one accounts for fitting errors due
to finite histogram sizes and input data, the two values are in good agreement and one
can say that the simulation code is able to describe the equilibrium states of spin systems.

The numerical errors in the model need to be kept small. After a simulation run it is, in
general, hard to estimate the numerical errors. It depends mostly on the timestep used in
the program, but it is also highly influenced by the simulation parameters (e.g. coupling
constants, temperature, number of nearest neighbors). To estimate the numerical error
in our simulations physical conservation laws are used. After every simulation run, the
length of a single spin in the system is checked. Fig (2.11) shows the length of a spin
in a cubic 10× 10× 10 lattice with periodic boundary conditions over time. The length
of the spin fluctuates due to numerical errors around the initial length. For high values
of time steps, one can observe either a convergence of the total spin towards zero or a
divergence to infinity. Otherwise, variations of the spin length can lead to systematical
errors of the precession time of the spin. Thus, the length of each single spin is fixed to
its initial value every at a time, which leads to a controllable numerical error.
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Figure 2.11: Length of a single spin during a simulation run of a 10×10×10 cubic system.
The deviation of the spin length from its initial length is an indicator for
the accuracy of the numerical simulation.
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3 Analytical Solutions
Beside performing atomistic spin-dynamic simulations we examine analytical solutions
of the Landau-Lifschitz-Gilbert equation to get a better understanding of the physics
behind it. The simulation of a temperature bath in a classical model leads to a sys-
tem of coupled stochastic differential equations with multiplicative noise. An analytical
solutions will lead to a Fokker-Planck equation which can describe the time evolution
of a non-equilibrium probability distribution. However, we are first interested to find
spin-wave solutions of the simplest form. Therefore, we used an undamped model with
periodic boundary conditions and a nearest neighbor Heisenberg coupling. For this case,
exact spin-wave solutions can be found but their superposition, unfortunately, does not
solve the equation of motion. Therefore, as often done in physics, a further simplifica-
tion is performed which relies on a linearization of the equation of motion. We were
especially interested in the spin-mode solutions of a finite particle. Thus, a solver of the
linearized equation of motion has been coded for an arbitrary finite clustered spin-mode
system. In order to verify the correctness of the spin-dynamics simulation code, the
obtained output has been compared to the analytical solutions and found to be in very
good agreement.

3.1 Exact Spin-wave Solution

Although the Landau-Lifschitz equation is non linear spin-wave solutions exist. However,
as mentioned previously, superpositions of two spin-wave solutions do not solve the
equation of motion. Let us assume an equation of motion of the following form

h̄
∂Si

∂t
=
∂H
∂Si

× Si

H =
∑

i

∑
j∈NN

−1

2
JSi · Sj −

N∑
i=1

K(ez · Si)
2 − gµBHZeeman · Si (3.1)

Figure 3.1: Spin-wave mode of an infinitely long chain.
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Analytical Solutions 3.1 Exact Spin-wave Solution

where j runs over the nearest neighbors (NN) of spin i. To find spin-wave solutions [37],
it is useful to use the following ansatz:

S = Szz + Au, u = Re(




1
i
0


 ei(kr−ωt)), z = ez

Here, the z-component of the spin is fixed to a constant value Sz and the radial part in
the xy-plane with the amplitude A, described by the vector u, is rotating around the
z-component. A visualization of a spin-wave obeying this ansatz can be seen in Fig.
3.1. Using this notation, the effective field corresponding to the previous Hamiltonian,
assuming an external field along the z-direction, can be written as:

Heff =
∂H
∂Si

= (−gµBH
z
Zeeman −KSz − nJSz

︸ ︷︷ ︸
H′

)z + (−JAD(k)︸ ︷︷ ︸
J ′

)u

where n is the number of nearest neighbors. The function D(k) is given by the sum of
exponential functions of the nearest neighbor displacement vectors δ.

D(k) =
∑

δ∈NN

eiδ·k

This sum leads to cosine functions. Thus, for a one dimensional chain the function is
given by D(k) = 2 cos(ka). The derivation of the terms for a simple cubic and a close-
packed two dimensional structure can be seen in the appendix A.6.
It can easily be shown that the time derivative of the vector u is given by ∂u/∂t = ω ·v
where the introduced vector v is given by v = z×u. Inserting this into the equation of
motion leads to the dispersion relation ω(k):

h̄
∂S

∂t
= (H ′z + J ′u)× (Szz + Au)

Ah̄ω · v = (SzJ ′ − AH ′)v

= (AgµBH
z
Zeeman + AKSz + AJSz(n−D(k)))v

h̄ω = gµBH
z
Zeeman +KSz + JSz(n−D(k)) (3.2)

For an infinitely long chain the dispersion relation is shown in Fig. 3.2. It is easy to see
that increasing the anisotropy constant or the external magnetic field leads to a shift
of the dispersion relation to higher or lower frequencies. Increasing the length of the
z-component of the spin or the coupling constant leads to a broadening of the dispersion.

It is interesting to note that beside the ferromagnetic ground state in which all spins
are pointing in the z-direction, other stationary solutions can be found. For example,
in a one dimensional system without a magnetic field, stationary state with Sz = 0
exists, where all spins are oriented in the xy-plane, with neighboring spins rotated by a
constant angle. Nevertheless, this solution is unstable; small fluctuations will lead to a
relaxation.
After a comparison to the analytical solutions, a perfect agreement was found with the
trajectories provided by the simulation program.
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Figure 3.2: Dispersion of an infinite chain with (black) a ferromagnetic coupling and
(red) including a magnetic field and an anisotropy.

3.2 Linearized Equation of Motion

We already found analytical solutions of the classical equation of motion, which are,
however, restricted to periodic systems. To be able to solve the equation of motion an-
alytically, we use an approximation for the limit of an almost ferromagnetic state. The
equation of motion is linearized for perturbations around the ground state of a ferro-
magnetic Heisenberg system including an anisotropy term and a Zeeman term pointing
towards the z-direction. The same procedure can be performed for an antiferromagnetic
system which will lead to a different dispersion relation. Let us assume that for a fer-
romagnetic system the spins at the ground state are pointing towards the z-direction
and no anisotropy or external fields are present. For small deviations around the ground
state the z-component of the spin almost does not change. The effective magnetic field
acting in spin Si is given by

Heff i =
∂H
∂Si

=
∑

j=NNi

−JijSj + gµBH
z
Zeeman ,

where the sum runs over the nearest neighbors (NNi) of spin Si. The equation of motion
for a spin system (2.13) can be transformed as follows:

h̄
∂Si

∂t
=
∂H
∂Si

× Si =
∑

j=NNi

−Jij



Sy

j S
z
i − Sz

jS
y
i

Sz
jS

x
i − Sx

j S
z
i

Sx
j S

y
i − Sy

j S
x
i


 + gµBH

z
Zeeman



−1
1
0


 (3.3)
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One can linearize the equation of motion for small derivations around the ferromagnetic
ground state (Jij > 0) in which all spins align collinear. In the limit where Sx, Sy ¿ |S|
one can assume that Sz ≈ |S| and products of Sx and Sy vanish:

h̄
∂Si

∂t
=

∑
j=NNi

−JijS



Sy

j − Sy
i

Sx
i − Sx

j

0


 + gµBH

z
Zeeman



−1
1
0


 (3.4)

Linear Chain

For an infinite linear chain with spins at positions xi = a · i the linearized equation of
motion (3.4) can be simplified to:

∂Sx
i

∂t
= (JS/h̄)(2Sy

i − Sy
i−1 − Sy

i+1)

∂Sy
i

∂t
= −(JS/h̄)(2Sx

i − Sx
i−1 − Sx

i+1)

∂Sz
i

∂t
= 0

It can be analytically solved using the ansatz:

Sx = Re (exp(ik · xi)) , Sy = Im (exp(ik · xi)) , Sz = const (3.5)

The dispersion relation [19] has the same structure as the dispersion relation of the exact
solution:

h̄ω = 2JS(1− cos(ka))

If one identifies the z-component of the spin with the magnitude of the total spin vector
(which is done in the limit of the linearized model) then the two dispersions agree.

Finite Clusters

In the case of finite clusters with nearest-neighbor coupling the general form of the
linearized equation of motion including a magnetic field Hz

Zeeman in z-direction can be
determined by solving an eigenvalue problem. Therefore, for a finite system of N spins,
it is useful to rewrite equation 3.4 in a matrix form :

∂s

∂t
= M· s, s = (Sx

1 , . . . S
x
N , S

y
1 , . . . S

y
N)T (3.6)

HereM is a 2N×2N matrix, playing the role of a time evolution operator, and s is a 2N -
dimensional vector containing the x- and y- components of {S}. The vector s is defined
in a way that the resulting matrix M is a skew symmetric matrix ((M)ij = −(M)ji).
This will prove convenient in further analysis. Equation (3.6) represents a system of
coupled differential equations since the matrixM has off-diagonal elements. For a chain
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of 5 atoms, which are coupled using periodic boundary conditions without external mag-
netic fields the matrix M is, for instance, given by :

M =




0 0 0 0 0 −2 1 0 0 1
0 0 0 0 0 1 −2 1 0 0
0 0 0 0 0 0 1 −2 1 0
0 0 0 0 0 1 0 1 −2 1
0 0 0 0 0 1 0 0 1 −2
2 −1 0 0 −1 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0
−1 0 0 −1 2 0 0 0 0 0




It is possible to decouple the system of differential equations by decomposition of the
matrix M. Therefore, one needs to find a matrix P which satisfies M = P · D · P−1

where D is a diagonal matrix. By using a coordinate transformation (s → q) one can
decouple the system of differential equations and each can then be simply solved:

∂s

∂t
= (P · D · P−1) · s

∂(P−1 · s)

∂t
= D · (P−1 · s), q = P−1 · s

∂q

∂t
= D · q

The matrix P is constructed by the eigenvectors vi of M and the diagonal elements of
D are given by its eigenvalues. As mentioned above, the matrix,M is a skew symmetric
matrix, which then has only purely imaginary eigenvalues:

Ms = λs =⇒ s†Ms = λ|s|2

The absolute value of s is obviously real. By adjunction († =complex conjugate and
transpose) we obtain:

λ∗|s|2 = (s†Ms)† = s†M†(s†)† = −s†Ms = −λ|s|2

=⇒ λ∗ = λ

Therefore, the eigenvalue λ = iω has to be purely imaginary. The solution of the 2N
differential equations is thus given by:

qi(t) = ai · eiωi·t
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where ωi is the imaginary part of the diagonal element at position i of the matrix D.
The variables ai denote complex numbers representing the initial condition of the sys-
tem. A back-transformation of q leads to the complex solution s = P · q, which gives a
superposition of the eigenstates:

s(t) =
∑

i

ai · vi · eiωi t (3.7)

Equation (3.7) is the general solution of the differential equation (3.6). It is useful to
further investigate solutions which belong to just one eigenfrequency, the spin-modes.
We are interested in purely real solutions corresponding to spin-waves. Therefore, we
need to find eigenmodes which can be combined to a real solution. Let us assume that
a real matrix A has a complex eigenvector v corresponding to an eigenvalue w; then the
complex conjugated v∗,w∗ are also eigenvector and eigenvalue of the matrix A:

A · v = wv ⇒ (A · v)∗ = (wv)∗ ⇔ A · v∗ = w∗v∗

Therefore, one can combine both to a purely real and a purely imaginary solution. These
are linearly independent from each other and have the same eigenfrequency. One of the
eigenvectors is simply a collective rotation of the spin vectors by 90 degrees around the
z-axis. Hence, a linear combination of both leads to a rotational invariance of the eigen-
vectors towards the ground state as one would physically expect.

Thus, one can leave out half of the eigenvalues since they simply represent a rotation
of an already given solution. Finally, one ends up with N eigenvectors for a system of
N particles.

Spin-modes of Clusters

To visualize the eigenmodes of a cluster we use a top-view aspect in such a way that the
constant z-component of the spin is pointing out of plane towards the viewer. In other
words the three dimensional space of the spin system is projected onto the xy-plane,
which then shows the (small) deviations from the ground state can be visualized.

A first application is done on linear chains. Motivated by spin-polarized scanning tun-
neling microscopy experiments [38, 39] on triangular-shaped Co nano-islands on Cu(111)
(Fig. 3.3), we also focus on the eigenmodes of triangular-shaped clusters. We, further-
more, investigate disc-shaped clusters on a (001) surface.

First of all, it is important to note that for a model without a magnetic field the eigen-
modes do not depend on the strength of the coupling constant. As already discussed in
the appendix A.2, a change in the coupling constant can be compensated by a rescaling
of time which would then lead to a simple linear change of the eigen-frequency. In the
following section, the eigenfrequency will be given in terms of energy E = h̄ω in units
of JS and for simplicity external magnetic fields are not considered.
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Figure 3.3: Spin-resolved scanning tunneling microscope picture of Co nano-islands on
Cu(111) [38].

Figure 3.4: Two degenerated spin-modes of a chain with 20 atoms with periodic bound-
ary conditions (first and second) which can be linearly combined to a spin-
wave solution (bottom).

For testing purpose the solution of a linear infinite chain model have been compared to
the analytical solution and found to lead to the same dispersion relation. Each eigen-
frequency corresponds, for a periodic chain, to an at least two dimensional eigenspace.
Hence a linear combination of two eigenmodes with the same eigenfrequency will still be
an eigenmode. The linear combination can be done in a way that a traveling spin-wave
solution with a constant amplitude in the xy-plane can be created. An example in which
two eigenvectors are combined to a spin-wave is given in Fig. 3.4.

Here, however, we are interested in the behavior of finite systems. For finite chains
all solutions that can be found are standing wave solutions. Each spin in an eigenmode
has a xy-component of constant magnitude and precesses with its eigenfrequency mode
around the z-axis. The finite length of the chains plays an important role since it deter-
mines the boundary conditions. Removing the periodic boundary conditions leads to a
break of the translational symmetry and one is then not able to visualize the solutions
in a dispersion picture. But the density-of-states is still a meaningful concept. In the
limit of large chains a periodic and finite chain will have the same density-of-states.
As discussed in the previous paragraph the degeneracy of eigenvectors can be used to
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Figure 3.5: Projection of the spin positions into the xy-plane of one dimensional spin
chains with open boundary conditions. The top four are the eigenmodes to
the lowest the last four eigenmodes are the energetically highest eigenmodes.
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construct spin-waves. However, for a finite chain, an energy gap between the degenerate
eigenvectors is created. Therefore, they cannot be combined to a propagating solution
anymore.

The density-of-states of a finite particle consists of sharp peaks in form of delta distri-
butions. For a better visualization we used a Lorenzian broadening of the delta functions.
The density-of-states plots have been calculated by using the following formula:

D(ω) =
N∑

i=1

Γ

Γ2 + (ω − ωi)2

The broadening factor Γ needs to be carefully chosen to get a meaningful figure. The
eigenfrequencies, N in total, are given by the variables ωi.

Two important aspects have to be considered while analyzing the eigenmodes (in the
absence of a magnetic field). First of all, since the sum of all spins is conserved and we
are investigating stationary solutions, the xy-components of the spins need to be zero
for all eigenmodes with a non-zero eigenfrequency. Secondly, the normalized difference
between the spins needs to be constant since all spins will have the same precession
frequency in an eigenmode. Starting from equation (3.4), it can easily be shown that
the precession frequency is proportional to the normalized difference between each spin
and the average of its n neighboring spins which is defined as S̄i =

∑
j∈NN(i) Sj/n:

ω ∝ ∆Si =
|Si − S̄i|
|Sxy

i |
∆Si represents the difference of the spin Si to the average of its neighboring spins

normalized to the length of its xy-projection (Sxy
i = (Sx

i , S
y
i , 0)T ). Thus, the lowest

eigenmode with a normalized difference ∆S of zero corresponds to a vanishing eigenfre-
quency. The second lowest eigenfrequency can be determined in the following way. A
boundary spin will be deviated from the ground state and the other spins will be changed
in a way that the normalized difference is kept constant. This leads to a solution seen
in Fig. 3.5. The resulting spin state will have a node in the center of the chain since
the sum of all spins needs to be collinear to the z-axis. Other solutions with higher
normalized differences can be formed by an increase of the number of nodes (which
leads to an increase in the normalized difference). For high eigenvalues this leads to a
"more anitferromagnetic" alignment of the spins (in the xy-plane) which are separated
by nodes. This situation can be compared to the optical eigenmodes of harmonically
coupled atoms in a chain in which the neighboring spins oscillate in antiphase. The
highest mode is characterized by just two nodes at the boundaries of the chain. For
the highest eigenvalue all neighboring spins are aligned antiparallel to each other in the
xy-plane. It is important to note that in this case the deviation from the ground state
in the xy-plane vanishes at the boundaries. This phenomenon is observed for all finite
structures.
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Figure 3.6: The xy-components of the spin eigenstates of a nano-disc. The first eigen-
modes are the lowest and the last eigenmodes correspond to the highest
eigenfrequency in the system.
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Figure 3.7: The xy-components of the spin eigenstates of a triangular two dimensional
nanostructure. The first eigenmodes are the lowest and the last eigenmodes
correspond to the highest eigenfrequency in the system.

45



Analytical Solutions 3.2 Linearized Equation of Motion

Similar structures can be observed in two dimensional finite systems. Depending on
the shape of the sample, nodes appear in different kind of directions. In Fig 3.6 a choice
of the eigenmodes are given for a nano-disc. The first three are the lowest eigenmodes
of the system whereas the last three are the eigenmodes corresponding to the highest
eigenvalues. The formation of nodes for spin-modes of a two dimensional system can
be understood by analyzing the node dimensional chain (seen in Fig. 3.5). Due to the
quasi-rotational symmetry of the nano-disc one can observe nodes in the radial as well
as in the angular part. For the lowest eigenfrequencies it is energetically favorable to
first create nodes in the angular part(Fig. 3.6, E = 0.0085, E = 0.0226). For higher
frequencies also structures with radial nodes appear(Fig. 3.6, E = 0.0373). At high
frequencies optical eigenmodes appear, in which the xy-projection of neighboring spins
is antiparallel. The number of nodes for the optical like modes again decrease with
increasing eigenfrequency. One can observe a similarity between the three lowest and
the three highest eigenmodes of the system. Both have the same structure of the node
formation. The major difference is that the deviation of the spins from the ground state
vanishes at the boundaries for high frequencies whereas the spins for low frequencies
have their maximum at the boundary.

The triangular structured nanoisland (Fig. 3.7) has a rotational symmetry 120◦. This
is reflected in the structure of the eigenmodes. Eigenmodes belonging to a one dimen-
sional eigenspace also have a rotational symmetry of 120◦. Solutions whose dimension
of the eigenspace is higher than one do not need to be rotationally symmetric. But one
is always able to find combinations of eigenvectors in the eigenspace which correspond
to a rotation by 120◦.

A major difference between the nano-disc and the triangular structure is observable
in the density-of-states plot (Fig 3.8). One can see that most of the eigenmodes for the
nano-disc are located centrally between the lowest and the highest eigenmode whereas
the peak of the triangular structure is shifted towards higher eigenfrequencies. This
effect is, however, not related to the different shape of the sample, but to the lattice
structure. Using equation (3.2) one can evaluate the dispersion relation for an infinite two
dimensional close-packed and a simple tetragonal lattice structure and plot the density-
of-states as shown in Fig. 3.9. One can clearly observe similarities especially for the
location of the peak. For the cubic lattice structure the peak is located centrally, whereas
the peak for the close-packed structure is shifted to the right as it was observed for the
finite model in Fig. 3.8. This phenomenon can be explained using the Brillouin zone of
the two structures. Indeed, the density-of-states can be determined by an integration
over isolines which correspond to a constant energy:

D(E) ∼
∫

E(k)=E

dk

|∇E(k)|
Here E(k) corresponds to the dispersion relation (in terms of energy). The approximate
position of the peak can be estimated by using the following two assumptions:
First, it is assumed that the length of the isoline plays the dominant role and the gradient

46



3.2 Linearized Equation of Motion Analytical Solutions

0 0.5 1 1.5 2 2.5
Energy

0

20

40

60

80

100

D
O

S
 [a

.u
.]

finite chain
periodic chain

0 1 2 3 4
Energy

0

100

200

300

400

500

600

D
O

S
 [a

.u
.]

0 1 2 3 4 5
Energy

0

100

200

300

400

D
O

S
 [a

.u
.]

Figure 3.8: Density of states for a chain with 20 atoms (left), a nano-disc with a cu-
bic structure and diameter of 20 atoms (middle), a close-packed triangular
shaped nanoisland with a sidelength of 20 atoms.
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Figure 3.9: Density of states for a two dimensional infinite square lattice (left) and a
two dimensional infinite lattice in a close-packed structure. The irreducible
wedge of the Brillouin of both structures is plotted between both figures.

of the energy is not important. Thus, the number of states just depends on the length
of the isoline. The second assumption is that the isoline can be approximated by a circle
around the origin. By taking a close look at the Brillouin zones in Fig. 3.9 one can see
that the longest isoline will, for the tetragonal lattice structure appear approximately
half-way to the BZ boundary, centered between the highest and the lowest energy, while
for the close-packed structure, the longest isoline will appear closer to the periphery of
the BZ, i.e. closer to higher energies.
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4 Multipole Methods

4.1 Introduction

While in small atomic clusters the exchange interaction plays the dominant role, the
dipole-dipole interaction becomes more and more important with increasing number of
spins. The dipole-dipole interaction serves to explain several physical properties such
as shape anisotropies and the formation of domains. In this chapter we will focus on
methods for the reduction of computational effort for the evaluation of the dipolar field.

The dipole-dipole interaction between two magnetic moments µ1 and µ2 is

Hdip = µ2 ·B(r) ,

where

B(r) =
3r(r · µ1)− µ1 · r2

r5
(4.1)

is the magnetic field of a magnetic moment µ1 in the origin evaluated at a position r. The
dipole-dipole interaction Hdip between the magnetic moments µ1, µ2 of two neighboring
atoms is orders of magnitude smaller than the exchange interaction. However, it is a
long-range interaction which decays proportional to 1/r3 where r is the distance between
two atoms. Therefore, it is important to include the dipolar interaction in large systems.

Unless specially treated, the long-range behavior leads to a huge computational bur-
den compared to the exchange interaction. In a nearest neighbor Heisenberg model the
number of interactions per atom is independent of the total number of atoms, which
leads to an almost linear increase of computational complexity with respect to the num-
ber of atoms. For a dipole-dipole coupling, due to its long-range behavior, all magnetic
moments contribute to the local magnetic field acting on each spin. For a system of N
atoms each spin is interacting with N − 1 spins and, thus, a naive calculation would
lead to a complexity proportional to N(N − 1). This quadratic increase of the compu-
tational time becomes crucial for large systems. However, as we shall see below, special
treatments allow for considerable decrease of the computational effort with only a small
and controlled expense in accuracy.

Quite a few problems in physics include a pairwise interaction between many particles.
A well-known example is the evaluation of a 1/r potential like the gravitational N -body
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problem which can be represented in the following way potential

φ(rj) ∼ mj

∑

i6=j

1

|ri − rj| ·mi ,

where mi, mj denote the masses of particle i and particle j and ri, rj represent
their positions. This formula can be rewritten as a matrix-vector multiplication of the
following form:

uj =
N∑

i=1

K(xi, yj)ωi, j = 1, ..M (4.2)

For a coulomb potential, M and N will be the number of particles and ωi is given by
their mass. The matrix (K)ij = K(xi, yj) is called the kernel. A brute force calculation
would lead to a complexity of O(N · M). Such matrix-vector multiplications can be
found in many different fields of physics like Coulomb interactions in condensed matter
and plasma physics as well as in astronomy.

Example

The key issue is to find a way to separate the variables inside the kernel. The principle
for reducing the complexity of the matrix vector product can easily be understood by
the following example :

K(xi, yj) = (xi + yj)
2, i = 1, ..N j = 1, ..M

Brute force evaluation of the matrix vector product, equation (4.2), would lead to a
complexity of O(N · M). By using an algebraic transformation the product can be
rewritten as follows:

uj =
N∑

i=1

(xi + yj)
2ωi =

N∑
i=1

x2
iωi

︸ ︷︷ ︸
A

+yj

N∑
i=1

2xiωi

︸ ︷︷ ︸
B

+y2
j

N∑
i=1

ωi

︸ ︷︷ ︸
C

= A+ yjB + y2
jC (4.3)

The sums A, B and C do not depend on j. Hence, they just need to be evaluated
once. This trick leads to a complexity of O(N +M). Such separated kernels are called
degenerated kernels or kernels of finite rank:

K(xi, yj) =

p∑

k=1

φk(xi) · ψk(yj)
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Once an expansion up to the order p is found the reduction of complexity is straight-
forward:

uj =
N∑

i=1

K(xi, yj)ωi =
N∑

i=1

(

p∑

k=1

φk(xi) · ψk(yj))ωi

=

p∑

k=1

ψk(yj)
N∑

i=1

φk(xi)ωi

︸ ︷︷ ︸
Ak

=

p∑

k=1

ψk(yj)Ak

The moments Ak just need to be evaluated once and the amount of work is then reduced
to O (p(N +M)). Although most of the kernels used in N -body problems are not de-
generate, there are ways to find good approximations for the separation of the kernel.
Two expansions which are used are the Taylor expansion and the expansion in spherical
harmonics. However, these expansions are infinite sums which are commonly treated
computationally by using cut-off parameters for the summation. This inaccuracy leads
to an approximation of the matrix-vector product.

There are different methods which are based on finding approximations for evaluation
of the matrix vector products (4.2). The most prominent ones are the Barnes-Hut (BH)
tree algorithm and the Fast Multipole Method (FMM).

In 1968 Barnes and Hut [40] developed a so-called oct-tree algorithm in which the
physical space is divided into 8 equally sized subcells. Each subcell is then again divided
into 8 subcells until just one particle remains per cell. An expansion of the dipolar field
is then formed for each cell at each level of refinement. The multipole moments of the
different cells are calculated and then used to calculate the far field contribution of the
magnetic field. The complexity of the problem can be reduced by this algorithm from
O(N2) to order O(N logN).

Greengard and Rohklin [41, 42, 43] later on developed independently an algorithm
similar to the BH tree-code which has some further refinements and is called the Fast
Multipole Method. They used high order cluster-cluster interactions to transfer multi-
pole moments for the far field as well as for the near field between separated regions
of space. Greengard and Rohklin could show that the complexity can be reduced to
O(N). However, the prefactor due to the high order expansions is much larger than the
prefactor of the BH algorithm.

4.2 Barnes-Hut Algorithm

The algorithm used in this work is based on the Barnes and Hut algorithm combined
with some elements of the Fast Multipole Method (FMM). There is no general rule which
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algorithm to use. The choice depends on the application. For high precision calculations
the FMM is the preferred method. But for applications where low precision calculations
are sufficient and the particle distribution may be random the BH tree-code is compet-
itive.

The basic idea of the Barnes and Hut tree-algorithm is to use coefficients of a far field
expansion, the multipole moments, instead of evaluating the dipolar field arising from
every single magnetic moment. The whole simulation region is subdivided into a fine
grid of cells, to a level of refinement which is needed for an accurate calculation of the
interaction between nearby cells. Nevertheless, for far away regions it is sufficient to use
larger cells to obtain accurate results. Therefore, parent cells are formed by successively
joining 2d smaller neighboring subcells. Here, d denotes the dimension of the system.
This way, an hierarchical cell structure with different levels is formed which is used to
evaluate the dipolar field. The cells of different size correspond to different hierarchy
levels, but cells within a level are all equally sized. The multipole moments of the parent
cells can be evaluated by joining the multipole moments of its subcells. The magnetic
field acting on each spin can then be determined by making use of different sized cells.
There are different ways, based on ’multipole acceptance criteria’ (MAC), on deciding
the size of each cells which is used for the evaluation of the magnetic field
We proceed by explaining the algorithm used in our multipole code. It basically consists
of the following steps:

Tree Build

First of all, a multilevel refinement of the simulation region is formed by subsequently
dividing the d-dimensional space into 2d subcells. Fig. 4.1 shows the separation of a two-
dimensional simulation region in three levels. A subsequent separation of the simulation
cell into four equally sized subcells can be seen in the figure. The separation of space
can be visualized by a tree structure in which every node corresponds to a simulation
cell. Its four subcells are called child nodes (see Fig. 4.1 middle) whereas the nodes
from which child nodes are derived are called parent nodes. In fact, the tree structure is
also used as a data structure in the multipole code. Each element in the data tree struc-
ture and the term ’node’ will be interchangeably used for an element of the tree data
structure and the visualization of the cell refinement. The case of a three dimensional
space works in an analogous way, by refining each cell into eight subcells corresponding
to an oct-tree structure. The tree starts with a root cell which represents the whole
simulation region. It is refined into eight child nodes which contain information1 on
the subcells. The sub-tree structure will then be further refined if a child cell contains
particles. Hence, a partly filled oct-tree is created which leads to a flexible algorithm for
the calculation of one-, two- or three-dimensional structures. If the number of particles
per subcell is below a predefined value the refinement of the sub-tree stops. Nodes which

1like for instance physical information such as coordinates of the particle center or multipole moment
coefficients and technical data like keys of each node
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Figure 4.1: A tree structure (left) corresponding to a space separation (middle) of a two
dimensional system into four subcells. The multipole moments of the cells
are then used to evaluate the dipolar field of a particle system (right).

do not contain any child nodes are called leave nodes.

There are different ways to store a tree structure in memory. One can think about
a tree data type in which every entry contains a pointer which states to the memory
address of its children. This data type would lead to a very efficient use of the memory
available. However, the access time will scale with O(logN) since for every access of
an element the code needs to walk through the pointer tree structure. The code will
also be difficult to parallelize. Therefore, a powerful numbering scheme with excellent
properties for a future parallelization is used, as explained in section 4.3.

Multipole Expansion

The multipole moments of the cells are first calculated at the leaves. Then the multi-
pole moments of their parents are determined by joining multipole moments of the leave
nodes. This procedure can successively be performed up the root and will be explained
in detail in section 4.4. This algorithm leads to an efficient evaluation of the multipole
moments.

Different basis functions can be used to expand the magnetic field. The most com-
monly used expansions are the Cartesian Taylor expansion and an expansion in spher-
ical harmonics. The expansion in spherical harmonics is analytically known and are,
therefore, often used in FMM codes. It is often argued that an expansion in spherical
harmonics has less basis functions to a given expansion order l. This is true for highly
accurate calculations (l = 20). We, however, use low-order (l < 5) expansions for which
the number of basis functions is at the same order of magnitude (see section 4.4) as
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the expansion in spherical harmonics. The basis functions are purely polynomial which
leads to rapid evaluations of the fields. Other simulations [44] show that a Cartesian
expansion can be faster comparing the simulation wall clock time at a constant accuracy
level. Thus, an expansion in Cartesian coordinates has been chosen. Details on the
expansion method which is used are presented in section 4.4.

Interaction List

Once the tree is built up and the multipole moments of each cell in the tree structure
are calculated one needs to determine which cells and cell sizes to use for the evaluation
of the magnetic field. This is done by creating a so-called interaction list for each atom
containing the labels of all nodes which will be used to determine the magnetic field. As
already mentioned before it will be sufficient to use the expansion of a low level node
(which corresponds to a large region) for regions which are far away from the evaluation
point. For nearby regions one needs to use small cells which correspond to high level
nodes to keep the required accuracy.

The choice on which node to include in the interaction list is based on a ’multipole
acceptance criterion’ (MAC). The interaction list for a given point is constructed in the
following way: Starting from the root each node will be tested for fulfilling the MAC. If
the MAC is fulfilled then the node will be included into the interaction list. If not, then
the refinement of the node will be used and the child nodes will be tested for fulfilling
the MAC. If a leave node is reached and the MAC is not yet fulfilled, then the leave
node will be included into a direct evaluation list in which, later on, the magnetic field
will be calculated for each particle.

There are different formulations of the multipole acceptance criterion. In this work
we use the original criterion of Barnes and Hut, which reads

ε > θ = s/d

where ε denotes the accuracy parameter and θ the opening angle which is defined as
the fraction of the size of the cell s and the distance d to the evaluation point. If the
fraction is smaller than ε the node is accepted, otherwise it is rejected. An interaction
list for different values of the optimal opening angle can be seen in Fig. 4.2. One needs
to find a good trade-off between accuracy and simulation time. A small opening angle
leads to higher accuracy but also higher computational time. Reasonable values which
are commonly used are around ε = 0.5.

Fig. 4.3 shows the interaction list of the bold particle in the upper left corner of a
40 × 40 two dimensional system. Red boxes correspond to a direct evaluation while
for blue boxes multipole expansion is used for evaluating the magnetic field. Similarly,
in Fig. 4.4 the interaction list of a particle (red) is plotted for the case of a three
dimensional space. The red and the green boxes correspond to a direct evaluation, while
the multipole moments are used in the gray boxes.
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Figure 4.2: Visualization of three interaction lists of a particle comparing three different
opening angles. White boxes fulfill the MAC, gray boxes do not.

Figure 4.3: Visualization of the interaction list of a 40 × 40 × 1 system for the bold
atom. Blue boxes indicate regions which use a multipole expansion, red in-
dicates regions which will use direct calculation for the magnetic field (direct
simulation output picture).
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Figure 4.4: Representation of the interaction list for the red particle. Red and green
boxes correspond to direct evaluation of the dipolar field of the particles.
Gray boxes use the dipolar moments for the evaluation of the field.

Force Summation

The magnetic field acting on each particle is calculated. First of all, a direct calculation
of the magnetic field by particles of cells in the direct evaluation list is performed. Then
the magnetic field of all cells in the multipole interaction list is calculated using their
multipole moments. This is the most time consuming part of the program.

4.3 Key Mapping

The aim of this section is to present a suitable scheme to label each node in the tree
structure. An indexing scheme is used which maps the three dimensional space to a
one dimensional array (or a one dimensional path) for every level of refinement. Every
particle in the system is labeled with a (not necessarily unique) key which is computed
using its coordinates.

The indexing scheme is easy to understand in a one dimensional example in which
particles at the position xi are distributed in the range [0, 1]. Each node of the tree
structure is labeled using binary numbers, starting with the root key which is labeled
with ’1’. The keys of the two children nodes are then determined as follows: First the
root key is shifted by one bit to the left. Secondly a ’0’ is added for the left child and a
’1’ for the right child. Thus, the left child will be labeled with ’10’ and the right child
with ’11’. This procedure can be seen in Fig. 4.5 and can successively be applied up to
an arbitrary level. This algorithm can also be used to determine the parent of a node
by reversing the algorithm by performing a bitshift to the right.
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Figure 4.5: Indexing of a one dimensional tree refinement using binary numbers.

The advantage of this labeling structure is that one does not need to perform this
algorithm to obtain the nodes which a particle belongs to. One can easily determine the
nodes at each level l which contains the particle at position xi by using the following
equation:

key = int(xi · 2l) + 2l+1 (4.4)

The function int(·) returns the integer value of the variable given. A particle at position
x = 0.4 will, for example, according to the previous equation, be labeled with ’10’ at
level l = 1 and with ’101’ at level l = 2. Furthermore, one can determine the parent node
of node ’101’ by using a bitshift to the right and taking the integer value (’101’→’10’).

This procedure can be generalized to a three dimensional distribution of particles in
a unit cube. The key of each node can be created by joining the keys of each spacial
direction calculated using equation (4.4) (excluding the leading ’1’) which can be seen
in Fig. 4.6. The key will then be stored in a 64-bit integer. Thus, the maximum number
of integers for each spacial direction is given by lmax = 21 which is the maximum level
which can be used by this formalism. The key joining can mathematically be described
by the following equation:

key = 8lmax +

lmax−1∑
j=0

8j(4 · bit(z · 2j, j) + 2 · bit(y · 2j, j) + 1 · bit(x · 2j, j))

The function bit(k, j) simply pics out the jth bit of k starting with j = 0. The key for
the maximum number of levels will be called particle key and will first be calculated and
assigned to the particle in the code.

Sorting the keys leads to a path for the particles in the simulation region, which can
be seen in Fig. 4.7. The path leads to an optimal separation of the three dimensional
space into most compact regions which is called Morton ordering or Z-ordering. The
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Figure 4.6: Procedure for the generation of the keys assigned to each particle.

Morton path is important for a future parallelization of the multipole code.

As discussed before, by knowing a key of a particle one already has the information
of all its ancestor nodes. The keys of parent nodes of each particle are for an oct-tree
simply created by performing three bit shift to the right instead of one. This procedure
can again be used until the root node which is label with 1 is reached.

parentkey = rightshift( key,3)

The same procedure can be used to find child nodes of a particle. One just needs to
perform a left bitshift by three and then add a three bit integer number (0− 7):

childkey = leftshift( key,3) + child , child = 0, ..7

Up to a certain level the keys can also be used as addresses for storing information on
the cells into a one dimensional array. This procedure leads to an access time of O(1)
while a tree data structure would lead to an access time of O(logN).

However, for big systems or just partly filled trees one would waste a lot of memory
by using the particle key as the origin in the storage array, especially for one or two
dimensional systems. A concept known as hash function can be used to save storing
memory. Further information can be found in [45]. If one knows the particle positions
of the system in advance special optimized hash functions can be employed.

4.4 Expansion of the Dipolar Field

The kernel of the matrix-vector multiplication can be expanded in different basis func-
tions. Two expansions are commonly used. One is an expansion in spherical harmonics

58



4.4 Expansion of the Dipolar Field Multipole Methods

Figure 4.7: Key mapping path through a system of 80 random distributed particles. The
colors indicate different domains which are calculated by different processors
in parallel.

Figure 4.8: Scheme used for labeling each simulation region with unique keys. Parent
and child keys can easily be found by performing two bitshift operations.
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Ylm which is often used in Fast Multipole Methods and has the advantage that the
expansion functions are analytically known [46]:

1

|r − r′| =
∞∑

l=0

l∑

m=−l

4π

2l + 1

r′l

rl+1
Y ∗

lm(θ′, φ′)Ylm(θ, φ)

Here, Ylm(θ, φ) and Y ∗
lm(θ′, φ′) express the spherical harmonics as a function of the spher-

ical coordinates r(r, θ, φ) and r′(r′, θ′, φ′) for the case r > r′. The Taylor expansion in
comparison is given by :

1

|r − r′| =
∞∑

l=0

∞∑

lx,ly,lz=0
lx+ly+lz=l

1

lx!

1

ly!

1

lz!

(
(−1)lx+ly+lz

∂lx

∂xlx

∂ly

∂yly

∂lz

∂zlz

1

|r|
)
x′lxy′lyz′lz

It is often argued that it is more sufficient to use an expansion in spherical harmonics
for high values for the cut-off parameter (l = 20) because less basis function have to be
used compared to a Cartesian expansion. Both expansions should lead to an almost equal
accuracy for a given value of l. However, for spin-dynamics simulations an evaluation
of the magnetic field with a low precision (l < 5) is sufficient. Therefore, a Cartesian
Taylor expansion is used. In the low precision regime the increase of the number of basis
functions [47] of the Cartesian expansion compared to the spherical harmonics expansion
is fairly small, as we can see in the following table:

order of l 0 1 2 3 4 5 6 7 8
number of spherical harmonics 1 3 5 7 9 11 13 15 17
number of Cartesian expansion functions 1 3 6 10 15 21 28 36 45

The advantage of the Cartesian expansion is that the basis functions are purely polyno-
mial which leads to a rapid computational evaluation of the magnetic field.

The magnetic field at a point r induced by a point dipole µ at the origin is given by
equation (4.1). Our aim is now to separate the variables using a Taylor expansion. It
is useful to rewrite the magnetic field in terms of 1/r to make use of the well-known
expansion of a Coulomb potential.

Equation (4.1) can be written in terms of the vector potential A:

A(r) =
µ× r

|r|3 , B = ∇×A

The vector potential can be transformed such that it depends on an 1/r potential:

A(r) = µ× r

|r|3 = −µ×∇ · 1

|r| = ∇× µ · 1

|r| = ∇× φ (4.5)

φ =
µ

|r| (4.6)
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The vector field φ defines a magnetic potential. It has a similar form as the Coulomb
potential with the difference that the electric charge is a scalar and the magnetic ’charge’
is a three dimensional vector.

One can easily derive the magnetic field to:

B = ∇× (∇× µ

|r|)

= ∇(∇ µ

|r|)−∇2 µ

|r|
= ∇(∇ µ

|r|) (4.7)

The term ∇2 µ
|r| vanishes for r 6= 0. Using equation (4.7) it is possible to write the

dipolar field in terms of 1/r potentials, the handling of which is well-known from the
literature. One just needs to apply the differential operators to every term of the ex-
pansion. In dipolar field FMM codes which make use of spherical harmonics the basis
functions of the dipolar field can be expressed as derivatives of the spherical coordinates.
As these form a complete set of basis functions the derivatives can again be expressed
as spherical harmonics, which leads to an easy analytical expression for the expansion.
Here, we focus on expanding a scalar Coulomb potential φ in Cartesian coordinates.
Later on we show how this can be generalized to the vector magnetic potential φ.

To expand the Coulomb potential the vector R which points from the evaluation point
to the particle will be separated into two vectors r and r′ (see Fig. 4.9). The vector r
is identified with the center of charge of a particle distribution.

Figure 4.9: Distribution of particles around its center of charge at r.

φ =
1

|r + r′| =
1√

(x1 + x′1)2 + (x2 + x′2)2 + (x3 + x′3)2

Assuming that r′ = (x′1, x
′
2, x

′
3) is small compared to r = (x1, x2, x3), a Taylor expansion
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around r can be used:

φ =

(
1 +

3∑
α=1

x′α
∂

∂x′α
+

1

2

3∑

α,β=1

x′αx
′
β

∂2

∂x′αx
′
β

...

)

|r′=0

1

|r + r′|

=
1

|r| +
3∑

α=1

x′α
∂

∂xα

1

|r| +
1

2

3∑

α,β=1

x′αx
′
β

∂2

∂xαxj

1

|r|

One can now introduce a system of charges qi which are located around the vector r.
Expanding the system of charges around r leads to:

N∑
n=1

φn =

(
N∑

n=1

qn

)
1

|r| +
3∑

α=1

(
N∑

n=1

qnxnα

)
∂

∂xα

1

|r| +
1

2

3∑

α,β=1

(
N∑

n=1

qnx
′
nαx

′
nβ

)
∂2

∂xαxβ

1

|r| + ...

= Qa0 +
3∑

α=1

Dαaα +
1

2

3∑

α,β=1

Qαβaαβ + ...

For derivatives of the 1/r potential we use the following notation:

a0 =
1

|r| , aα =
∂

∂xα

1

|r| aαβ =
∂2

∂xαxβ

1

|r|

The moments of the expansion up to the third order are listed below. The number of
values increases by 3l where l is the order of the expansion. This number can be reduced
due to symmetry arguments.

Q =
N∑

n=1

qn Dα =
N∑

n=1

qnx
′
nα Qαβ =

N∑
n=1

qnx
′
nαx

′
nβ

The same procedure can be used for expanding every component of the vector φ in
equation (4.6). A straight-forward calculation finally leads to:

∇φ = ∇(Q′a0 +
3∑

α=1

D′
αaα +

1

2

3∑

α,β=1

Q′
αβaαβ)

= Q′∇a0 +
3∑

α=1

D′
α∇aα +

1

2

3∑

α,β=1

Q′
αβ∇aαβ

where the multipole moments are given by:

Q′ =
N∑

n=1

µn D′
α =

N∑
n=1

µnx
′
nα Q′

αβ =
N∑

n=1

µnx
′
nαx

′
nβ
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These are marked with primes to distinguish them from the expansion of the Coulomb
potential. The scalar values have now changed to vectors in which each component cor-
responds to the component of the magnetic moment µn = (µx, µy, µz).

The magnetic potential can now be transformed into a magnetic field using equation
(4.7):

Bγ = ∂γ(Q
′∇a0 +

3∑
α=1

D′
α∇aα +

1

2

3∑

α,β=1

Q′
αβ∇aαβ)

= Q′∇aγ +
3∑

α=1

D′
α∇aαγ +

1

2

3∑

α,β=1

Q′
αβ∇aαβγ (4.8)

This equation forms the basic expansion for the dipolar field used in the multipole
method. The implementation has been done up to the order given in equation (4.8). As
mentioned above some entries of the multipole tensor depend on each other by symmetry
and, thus, not all need to be calculated.

4.5 Translation of the Origin of a Multipole

Figure 4.10: Subcells (Region 1 and 2) of a parent cell. Vectors r1 and r2 are pointing
from the center of the parent cell to the center of the subcells. Vectors r′1k

and r′2k are pointing from the centers of the subcells to each particle.

The origin of each multipole moments Q′
1 = Q′α1 , D′β

1 = Dαβ
1 are given by the center

of the corresponding subcell. Hence, in order to combine subcells to a parent cell one
needs to shift the origin to the center of the parent cell (which will than be called Q̄

′
1,

D̄
′β
1 ). The procedure will be explained for these moments:

Q′α1 =
N∑

k=1

µα
1k D′αβ

1 =
N∑

k=1

µα
1kr

′β
1k (4.9)
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The first multipole moment is independent of the origin. Therefore, no shift of the origin
is needed. The shifting vector from the center of the subcell to the center of the parent
cell is given by r1. Hence, the second multipole moment of the subcell with a shifted
origin will be given by:

D̂′αβ
1 =

N∑

k=1

µα
1k(r

′β
1k + rβ

1 )

=
N∑

k=1

µα
1kr

′β
1k +

N∑

k=1

µα
1kr

β
1

= D′αβ
1 + rβ

1 ·Q′α1
The sums that appear correspond to the non-shifted first and second moment of the
subcell and are, thus, already calculated. Therefore, the shifted multipole moments can
easily be determined by a combination of non-shifted moments of the subcells.
The same method also works for the higher multipole moments. The values of the
quadrupole moments at a shifted origin can be calculated as follows:

Q̂′αβγ
1 = Q′αβγ

1 +D′αβ
1 · rγ

1 +D′αγ
1 · rβ

1 + rβ
1 · rγ

1 ·Q′α1
The multipole moment of the parent cell is simply given by adding up the shifted mul-
tipole moments of the child cell. The correctness of this method has been verified by
comparing the multipole moment of the root node with a direct evaluation

4.6 Timing and Accuracy

First of all we investigated the accuracy properties of the algorithm. The accuracy of a
calculation was determined using a relative error of the form:

εα =

√∑N
i=1(B

α
i tree −Bα

i acc)
2

∑N
i=1(B

α
i tree)

2
, α = x, y, z

Here Bα
i tree represents the component α of the magnetic field calculated by the multipole

method and Bα
i acc is the result of exact brute force calculation. Different parameters can

be varied for optimizing the accuracy. First of all the opening angle can be changed,
which has a strong influence on the accuracy. The following table shows the cubic lattice
calculation for different values of the opening angle θ = s/d:

θ accuracy ε
0.3 8.61 · 10−4

0.4 2.73 · 10−3

0.5 5.62 · 10−3

0.6 1.18 · 10−2

0.7 2.33 · 10−2
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Low values of the opening angle lead to more a accurate calculations. However, they
also lead to a dramatic increase in computational time and can break down the N logN
scaling. The second parameter is the maximum number of particles in the leave box.

For a system of 10000 spins randomly distributed in a square with a maximum num-
ber of 20 spins per leave box and an opening angle of θ = 0.5, an accuracy of 10−6 can
be reached. For particles ordered on a two dimensional cubic lattice the accuracy is,
however, lower. Accuracy values of 10−3 are achieved which is sufficiently for any kind
of spin-dynamics simulation, since the statistical error of the perturbations due to the
temperature bath will still be higher.

Besides, the evaluation of the global error, it is interesting to know how the accuracy
is distributed among each individual spin. Therefore, the relative error per spin has been
investigated, which is defined as:

ri =
Bα

i tree −Bα
i acc

Bα
i tree

The relative error has been determined for each individual single spin, which have been
randomly distributed in a unit square. Fig. 4.11 shows the relative error in form of a
histogram. A formation of a peak around zero can be observed. One can see that the
statistical error (width of the peak) dominates the systematical error (peak position).
A more detailed analysis shows that accurate calculations correspond an evaluation of a
high magnetic field and inaccurate calculations to low magnetic field. Since the influence
of low magnetic fields is negligible (compared to the influence of the exchange constant),
the inaccuracy in the calculation of low magnetic field does not influence the correctness
of a spin-dynamic simulation run.

As discussed above the computational time of a brute force calculation increases pro-
portional to N2 where N is the number of spins. For the Barnes and Hut tree algorithm
we expect an increase proportional to N logN . A comparison between the brute force
calculation and the Barnes and Hut algorithm is shown in Fig. 4.12.

In the spin-dynamics approach the spin positions are fixed. Therefore, the tree and the
interaction list only need to be built up once whereas the multipole moment calculation
and the force summation have to be executed every time the spin direction will change.
Therefore, for the determination of the simulation time, we neglected the tree built-up
and interaction list routines that are only called once. The accuracy of the calculation
is in the range of ε = 10−4 and the measurement points are linearly fitted (Fig. 4.12)
in a log-log plot. The increase of the computational time for the brute force calculation
has been determined to be proportional to N1.9 which is close to expected N2 law. For
the multipole code an increase proportional to N1.2 could be determined. For 128 spins
the plot shows that the multipole code is already faster than a brute force calculation.
Hence, the multipole code is for almost any practical application faster than a direct
evaluation.
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Figure 4.11: Relative accuracy of a multipole calculation of a randomly distributed cubic
two dimensional spin system in a histogram.
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Figure 4.12: Log-log plot of timings for the evaluation of the magnetic field as a function
of the number of particles in the system: (black) Brute force evaluation ∼
n1.9, (red) Multipole Method ∼ n1.2 using an Intel Core 2 CPU (2.13GHz).
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5 Applications

5.1 Magnetization Curve of a 10x10x10 Cubic
System

Figure 5.1: System of 10× 10× 10 cubic lattice of atomic magnetic moments.

Introduction

The main purpose of the classical spin-dynamics approach is to investigate non-equilibrium
magnetization dynamics. However, for a further testing of the method and for verifying
the correctness of the code, we first study equilibrium properties. A lot of methods are
commonly used for the determination of magnetization curves, which show the ampli-
tude of the total magnetization M with respect to different temperatures. The most
common are classical Monte Carlo methods which are here used for a comparison. There
are also quantum mechanical methods, such as the random phase approximation (RPA)
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[48], which determines magnetization curves in reasonable time.

Procedure

An infinite bulk system is simulated by 10×10×10 atoms in a cubic lattice with periodic
boundary conditions. The exchange constant for nearest neighbor atoms was chosen to
be J = 1mRyd which is a typical value for a bulk ferromagnet. The damping parameter
for studying equilibrium quantities is arbitrary, which means different values will result
in the same equilibrium properties. Nevertheless, it can be tuned to reduce computa-
tional time, as will be shown in this chapter.

For different values of temperature the initial state of the spin system is set to a
ferromagnetic configuration. The simulation is then started and the normalized magne-
tization

M(t) =
1

N
|M (t)| = 1

N
|
∑

i

mi(t)| (5.1)

is plotted as a function of time for N = 1000 atoms:
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Figure 5.2: Magnetization of a 10×10×10 atoms cubic lattice at different temperatures.

The normalized magnetization will, in time, converge towards a constant value, the
equilibrium state. Then, it will fluctuate around the equilibrium state due to the in-
fluence of the temperature bath. The normalized magnetization values as a function of
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Figure 5.3: Magnetization of a 10 × 10 × 10 atoms cubic lattice for different damping
parameters at a 1.5 times the Curie temperature.

time can be seen in Fig. 5.2 for different temperatures. The magnetization values are
determined by averaging in time after an equilibrium state is reached. Averaging is also
used over different simulation runs with different sets of random numbers to reduce the
statistical error. In this simulation run, an average over 15000 time units and 20 different
sets of random numbers was used, which proved to be sufficient for the determination
of the magnetization with a acceptable error.

As previously mentioned, the damping parameter does not influence the equilibrium
properties. However, there is a dependence on the converging time, the time which is
needed to reach an equilibrium magnetization. Figure 5.3 shows the normalized mag-
netization in time using a 1.5 times the Curie temperature for different values of the
damping parameter. One can observe an antiproportional relation between the damping
time and the converging time. The plot is shown in timescale of simulation units. The
conversion factors are explained in the Appendix. A.2. The same behavior was also
observed for temperatures below the Curie temperature. Thus, by increasing the damp-
ing parameter, the simulation time can remarkably be lowered. However, the numerical
accuracy (see Appendix A) also decreases with the increase of the damping constant,
which, therefore, needs to be carefully chosen.

Beside the magnetization the susceptibility has been analyzed for the bulk system. It
determines the response of a system to an applied magnetic field HZeeman and is defined
as:

χµν =
∂Mµ

∂Hν
Zeeman

|HZeeman=0, µ, ν = (x, y, z) (5.2)

By virtue of the linear response theorem, this quantity can be determined without ap-
plying an external magnetic field.
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Starting from a Hamiltonian of the form H = H′ +
∑

i mi · HZeeman where H′ are
contributions which are independent of the external magnetic field and mi is the mag-
netic moment at site i, one can determine the average magnetization per atom using the
Boltzmann statistics,

〈M〉 =
1∑

{m} e
−βH({m})

∑

{m}
Me−βH({m}), β = kBT (5.3)

where the sums run over all the possible ’microstates’ {m} = {m1,m2, ..mN} and M
is simply the magnitude of the total magnetic moment (equation (5.1)).

By inserting equation (5.3) into equation (5.2) one can derive a simple formula to
determine the longitudinal susceptibility, which is, for the isotropic case, given by:

χ =
1

kBT
(〈M2〉 − 〈M〉2)

Similar to the normalized magnetization the function χ will, in the equilibrium regime,
fluctuate over time around a constant value. Hence, averaging will again be needed.
Since the average runs over the second moments of the magnetization values, it leads to
a higher statistical error compared to the normalized magnetization.

Analysis

The magnetization and susceptibility have been simulated for different temperatures
leading to the magnetization curve in plot 5.4. The results have been compared to
Monte Carlo simulations. One can see that the magnetization almost agrees perfectly.
The susceptibility which depends on the magnetization fluctuations is slightly smaller
than the results obtained by the Monte Carlo simulation. One reason is the higher sta-
tistical error for determining the susceptibility compared to the statistical error of the
magnetization curve, as discussed previously. Nevertheless, the position of the peak of
the susceptibility, signalling the Curie temperature, is in a very good agreement with
the one obtained by the Monte Carlo method.

There are some limitations in the classical approximation, reflecting in both the Monte
Carlo and the Spindynamics solutions. One can see that for small temperatures the
magnetization decreases linearly in contradiction to the T 3/2 law of Bloch [49], which is
related to the break-down of the classical approximation in the low temperature regime.
One would also expect the magnetization to exactly drop to zero above the Curie tem-
perature. However, the magnetization smoothly approaches zero for higher temperatures
which can be explained by the finite size of the simulation supercell.
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Figure 5.4: (left) Magnetization curve of a 10×10×10 simple cube with periodic bound-
ary conditions and (right) the susceptibility of the simple cube obtained by
a spin-dynamics simulation (red) and compared to a Monte Carlo simulation
(black).

Figure 5.5: One dimensional chain of atomic moments on a surface.

5.2 Relaxation Times of One Dimensional Systems

Experimentalists were recently able to produce and study one dimensional chains on
substrates. Gambarella et al [4] were able to grow and investigate the electronic proper-
ties and the ferromagnetism of Cobalt chains on Platinum. A picture of Cobalt chains
deposed on Platinum can be seen in Figure 5.6. This gave us the motivation to study
the spin behavior of finite but long chains considering periodic boundary conditions.

An important issue in one-dimensional systems is the stability of the ferromagnetic
state.

In 1968, Mermin and Wagner [11] have proven that there is no spontaneous long-range
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Figure 5.6: STM image of Cobalt chains which align on the step edges of a Platinum
surface, picture taken from [4].

ferromagnetic order at T > 0 for isotropic one and two-dimensional Heisenberg models
with short-range interaction. For a two-dimensional model, there can be a long-range
order if magnetocrystalline anisotropies are present.

The difference between a one, two and three dimensional system can be understood
by [50] analyzing the density of states of magnetic excitations. In the low energy ap-
proximation (E ∼ q2) the density of states for a d-dimensional system is:

D(E) ∼





E1/2, d = 3

const, d = 2

E−1/2, d = 1

Thus, one can determine the change of the ground state magnetization at a finite tem-
perature:

∆m ∼
∫ ∞

0

dE
D(E)

eE/kBT − 1
→

{
∞ d = 1, 2

finite d = 3

For any non-zero temperature the change of the ground state magnetization diverges in
one and two-dimensions, which is a strong argument towards a loss of long range order.
A detailed derivation of the Mermin-Wagner theorem can be found in [51, 52].

However, it is important to know what is the time scale in which an initially imposed
ferromagnetic order is lost. This can be studied with the developed spin-dynamics
simulation code. Figure (5.7) shows the total magnetization of chains with different
length as a function of temperature. One can clearly observe a drop of the magnetization
towards zero. This indeed happens for any finite temperature. Nevertheless, finite size
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Figure 5.7: Magnetization of spin chains with different length as a function of
temperature.

effects are observable. First, the drop of the magnetization is not smooth. Fluctuations
are present as already observed for the magnetization of a bulk system. Their amplitude
is proportional to 1√

n
where n is the number of spins in the chain. Thus, smoother

results can be obtained for systems of large chains.
For the simulation of an infinite chain, one needs to find a tradeoff between accurate

calculations (low fluctuations) and saving computational time. The following calcula-
tions were done with chain length between 5000 and 10000 spins, where the error is
acceptably small. An exponential drop of the magnetization with respect to the time is
expected. This behavior could be proven in the simulation by using a logarithmic plot
(Fig. 5.8). One can see that the exponential behavior ceases for the 1000 spins system
in the time range above 7500 simulation time units. The crucial point in accuracy is
reached as soon as the fluctuations of the magnetization dominate its total value. For
huge spins systems the exponential regime is much broader than for small systems.

Next we investigate the demagnetization time, i.e. the time in which the magnetization
drops to zero, as a function of the temperature. Considering a system with 5000 spins
with a nearest neighbor coupling of J = 1mRyd, a damping parameter λ = 0.001
and different temperature values, the magnetization curves are fitted to an exponential
function:

m(t) = m0 · e−t/τ
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Figure 5.8: Logarithm of the magnetization of spin chains with different length as a
function of temperature.
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Figure 5.9: Demagnetization time τ of a 5000 spins chain as a function of temperature.

The factor in the exponent τ will futher on be referred to as the demagnetization time.
The different values are shown as a log-log plot in Fig. 5.9 in the regime where the
exponential behavior is valid. The linear behavior which can be observed in the plot
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represents a power law with a negative exponent, which is reasonable since it is expected
that the demagnetization time diverges at low T and is practically instantaneous at high
T .
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Figure 5.10: Demagnetization time τ of a 5000 spins chain as a function of the damping
parameter λ.

After investigating the behavior of the demagnetization with respect to the tempera-
ture, the dependence on the damping parameter λ is investigated. Figure 5.2 shows the
dependence of the inverse demagnetization time as a function of the damping parameter.
A linear behavior can be observed. Thus, there is an antiproportional behavior between
the demagnetization time and the damping parameter, which is in agreement with the
results obtained for the bulk system in Chapter 5.1 (Fig. 5.3).
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Figure 5.11: Formation of a FeCo nano-particle on a superlattice, picture taken from
[53].

5.3 Switching Times of a Nano-Cluster on a Surface

Figure 5.12: Nano-cluster of atomic moments on a surface.

Introduction

A key issue in future magnetic data storage is the magnetization reversal dynamics of
finite magnetic particles. Magnetic discs are used to store information in form of bits by
individually setting the magnetization of each block either ’up’ or ’down’. In the past
years there has been a huge increase of data capacity by reducing the size of each block.

However, blocks of reduced size soon become more sensitive to thermal fluctuations.
Future promising candidates are magnetic nano-particles, in which a data density of
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several terabits per square centimeter could be reached [1, 54]. As a comparison modern
hard drives have data density of about 35 gigabit per square centimeter. As the mag-
netic anisotropy energy of each block approaches the thermal energy, the thermal effects
will flip the magnetization randomly, a situation known as the superparamagnetic limit
[55, 56]. Thus, the understanding of thermal stability of ferromagnetic nanostructures
becomes important. The time until a thermally activated switch occurs varies over many
orders of magnitude. It can be observed in the picoseconds regime up to the order of
years. Therefore, different techniques need to be used to study different timescales. With
spin-dynamics methods one is able to study ultra fast switching of nano-particles. Other
techniques like the kinetic Monte Carlo [9] method are able to study switching behavior
up to the time of seconds accurately, but fail in the description of ultra fast switching.
Our interest mainly focuses on the thermal switching behavior of two-dimensional nano-
clusters deposed on surfaces.
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Figure 5.13: Projection of the magnetization of a 4 × 4 particle on the easy axis vs
simulation time at J = 1, K = 0.1J ,T = 0.1J .

We investigate the short-timescale magnetization dynamics of small nanoislands on a
substrate due to thermal fluctuations. The presence of a substrate in the xy-plane is sim-
ulated by including an anisotropy term which has an easy axis towards the z-direction.
Hence, two energy minima, one for all spins pointing parallel (spin-up state) and one
for all spins pointing anti-parallel (spin-down state) to the unit vector z, are obtained.
Both states are energetically equivalent and, thus, have the same probability of being
occupied. The spin system is expected to switch spontaneously between the spin-up
state and the spin-down state, spending on the average an equal amount of time in each
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state. Therefore, at non-zero temperature the average magnetization in the z-direction
will be zero. We now proceed to investigate the switching behavior between the spin-up
state and the spin-down state.
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Figure 5.14: Magnetization switching of a 4 × 4 cluster with low anisotropy (K=0.04).
The graph shows the projection of the magnetization on the easy axis for
T = 0.18J (left) and T = 0.3J(right). On the left hand sight one can see
that the spin-up and the spin-down states almost not distinguishable, on
the right hand sight one is not able to separate the two states.
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Figure 5.15: Magnetization switching of a 4 × 4 cluster during a switching event with
low anisotropy (K = 0.04J ,left) and high anisotropy (K = 1.00J , right).
The red graph shows the total magnetization along the easy axis and the
blue graph shows the length of the total magnetic moment.

A typical switching behavior of a particle can be seen in Fig. 5.13. At low tempera-
tures, the z-component of the total spin stays almost constant around the ferromagnetic
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ground state. If one increases the temperature the magnetization in the z-direction is
lowered compared to the ground state but will still stay around a constant level. At
a certain point a switching process occurs and the magnetization changes sign. Such
switching processes occur continually over time. The average time between two switches
is called the switching time.

The switching time is very sensitive to the parameters like temperature and anisotropy
constant. For very high temperatures the thermal energy is of the order of the anisotropy
energy or higher. Hence, the system does not remain at a particular up- or down-state
for any appreciable amount of time. In Fig. 5.14 (left) the switching events are shown
at a temperature for which one can hardly separate between the different states. For
higher temperatures (Fig. 5.14 right) no spin-up or spin-down state can be formed. On
the other hand, at sufficiently low temperatures the switching time increases to a point
where no switching events can be observed for reasonable simulation times.

Types of Switching Mechanism

We first focus on the kind of switching behavior, which highly depends on the ratio
between the exchange constant and the anisotropy constant (J/K-ratio). There are two
limit cases: Systems with very low anisotropy and systems with high anisotropy.
A system with low anisotropy can be understood in terms of the Stoner-Wohlfarth model
which describes the magnetization behavior of a finite particle in a single-domain state.
For a system with a very low anisotropy, the Hamiltonian is, as an approximation, al-
most isotropic since the anisotropy energy is small compared to the exchange energy.
Hence, one does not expect a different behavior for the magnitude of the total macro
spin1 in a spin-up, a spin-down or an in-between state. The individual spins will almost
collinearly rotate around the anisotropy vector, which can be described by the Stoner
single macro-spin model. The Stoner-Wohlfarth model gives reasonable results for low
but fails for high anisotropy. The limiting case for high anisotropy leads to the well
known Ising model in which just the spin-up or the spin-down state of a single spin can
be occupied. For finite anisotropy, domains will be formed with a domain wall thickness
proportional to

√
J/K (see Appendix A.4). For very high anisotropies there will be a

sharp separation between domains: In the Ising model one expects that at one instant
in the switching event, there will be as many spins pointing up as down. Thus, at this
particular instant the total moment will drop to zero.

The change in the magnitude of the total moment in a switching event can be moni-
tored in simulations. Figure 5.15 shows in blue the length of the total moment switching
for K/J = 0.1 (left) and K/J = 1.0 (right). On the left hand side the spins are strongly
coupled. As discussed there is no drop down of the length of the total moment. On
the right hand side a system with a high anisotropy is shown. One can observe a clear

1Sum of all single spins.
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decrease of the magnitude of the macro spin during the switching process.

An anisotropy constant of the order of J is already a high value which is not found
in bulk systems. But there are ways to design this property. It is, for example, possible
to produce a system of magnetic atoms on surfaces in which the atoms are separated
from each other by several Ångstrom [57, 58, 59]. The coupling constant will, thus, be
reduced leading to a decrease of the J/K ratio.

For further analysis of the physics within a switching event the data of each individual
spin has been written out for a 16 × 16 cluster. Snapshots of the spin state during a
switching event of a 16× 16 cluster system can be seen in Fig 5.16 and Fig 5.17.

Figure 5.16 shows the switching event of a cluster with high anisotropy (J/K = 0.9).
The time is normalized to the switching time of the particle. Time 0 corresponds to the
starting point of a switching event and time 1 corresponds to the end. The spin vectors
are visualized by two spheres touching each other. Blue spheres represent the tails of
arrows and red spheres the heads. The first and the last figure correspond to the spin-up
(red sphere up) and spin-down (blue sphere up) states. In-between, a clear formation
of a domain wall in the upper right corner can be seen, which propagates through the
system until the whole cluster is in a spin down state. Sharp domains are visible, in
which neighboring spins are aligned almost antiparallel.
Figure 5.17 on the other hand shows a cluster with a small anisotropy. It can be seen
that neighboring spins are almost aligned in parallel. This again supports the argument
that of a collinear rotation during a switch for low anisotropy which has been made in
the discussion of Fig. 5.15. Nevertheless, a tendency to a formation of a domain wall
is observable. In the figures (for t = 0.49, t = 0.62) one can observe a formation of
a domain wall from the upper left to the lower right corner with a large domain wall,
spread over the whole cluster.
The simulations show a clear trend to the limits previously discussed.

Switching times

In the simulations the system is defined to be in a spin-up state if the z-component of
the total spin is bigger than 2/3 of its max. possible length, while it is considered to be
in a spin-down state if the z-component of the total spin is less than −2/3 of its max.
length:

1

N

∑
i

Sz
i > +2/3 · |S| (spin− up)

1

N

∑
i

Sz
i < −2/3 · |S| (spin− down)

Let us assume that a cluster reaches a spin-up state at time t1 and then reaches a spin-
down state at time t2. Then the switching time of a single event is defined as tsw = t2−t1.
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Figure 5.16: Snapshots of the spin state in a switching event for different relative switch-
ing times (t = 0 switching starts, t = 1 switching event ends) in a high
anisotropy model.
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Figure 5.17: Snapshots of the spin state in a switching event for different relative switch-
ing times (t = 0 switching starts, t = 1 switching event ends) in a low
anisotropy model.
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Over long simulation time many switching events will take place with different switching
times in form of a stochastic distribution. The distribution will depend on the parameters
in the Hamiltonian, but its shape is always the same.
Switching events should have the following properties:

• the time between two switches is larger than the correlation time

• the probability of a spin switch should be invariant in time

This leads to a probability P of a switching event at time tsw with an exponential
distribution:

P (tsw) =
1

τs
exp (−tsw

τs
) (5.4)

Here, τs is called the mean switching time (or for simplicity called the switching time)
and denotes the mean value, as well as the standard deviation of the stochastic distri-
bution. Quantitatively one can say that the probability of a switching event in a time
frame of τs occurres with the probability of 63%. Numerically the switching time is de-
termined by evaluation of the mean value of all switching times that occurred, which is
a good approximation if one observes a large number of switching events. The numerical
calculation of the standard deviation should lead to the same value as the mean value
and can be used as a criterion to check if the amount of statistical data is enough.
The distribution (5.4) has been numerically verified for switching times above the cor-
relation time. A histogram of the distribution of the switching time in a 4 × 4 cluster
which supports our expectations can be seen in Fig. (5.18). The number of switching
events are plotted in a logarithmic scale versus the switching times and a linear behavior
is observable.
We expect a behavior for the switching time as follows:

τs = τ0 exp (
∆E

kBT
) (5.5)

where 1/τ0 is often interpreted as an attempt frequency and ∆E corresponds to an
energy barrier between degenerate spin-up and spin-down states. Equation (5.5) is also
known as the Arrhenius Néel law [60].

To verify equation (5.5) we plotted the switching times of 4×4 particles with different
anisotropy constants versus the inverse temperature. The linear behavior in the log-plot
5.19 shows that the model is applicable in the range of temperature and anisotropy con-
stants used. The slope of each line corresponds to ∆E and the intersection between the
exponential regression line with the y-axis corresponds to τ0. Thus, one would expect
the switching time to decrease toward τ0 with increasing the temperature. However, this
is not observed. Instead, there is, above some temperature, a breakdown of the spin-up
spin-down picture. In this regime one is not able to determine a constant magnetization
neither in the up nor in the down state as it is shown in Fig. 5.14(left). The spin will
just fluctuate randomly between the two states (Fig. 5.14 right).
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Figure 5.18: Histogram of the switching time of a 4× 4 cluster with an anisotropy con-
stant of K = 0.1 · J .

As mentioned above, the behavior of the switching time follows equation (5.5) and
the factor ∆E corresponds to the energy barrier between the spin-up and the spin-down
state. In our case the energy barrier is given by the anisotropy at its highest value

EK = S2 ·N ·K

where S is the length of a single spin, N the number of spins and K is the anisotropy
constant. A proportionality between ∆E and the anisotropy energy barrier EK is ex-
pected. Hence, ∆E should be proportional to the number of atoms N and the anisotropy
constant K.

To show this behavior calculations on different sized clusters (2× 2, 3× 3 and a 4× 4)
were performed. The slope of the curves of Fig. 5.19 is plotted versus the anisotropy
constant as well as versus the number of atoms. Fig. 5.20 (left) supports our expecta-
tions and shows an almost linear behavior with respect to the anisotropy constant K.
The error bars are given by the error due to the fit of the linear regression.

In Fig. 5.20 (right) one can also see a linear trend of ∆E for different particle sizes.
In the regime of single domain particles the linear trend should be valid.

Concerning the behavior of bigger clusters, the computational time increases with
increasing number of spins. Another problem is that the exponential factor in equation
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an exchange constant of J = 1mRyd versus the inverse temperature.
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Figure 5.20: ∆E as a function of the anisotropy constant K (left) and the number of
atoms N (right).

(5.5) will as well increase with the number of spins which leads to an exponential increase
of the switching time. If one would like to scan the same temperature range used
previously one would need to increase the simulation time exponentially with increasing
number of spins. A future parallelization of the code could overcome this difficulty.
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A Appendix A

A.1 Stochastic Integration Algorithm

A.1.1 Translation of the stochastic differential equation

In the following section the numerical algorithm used in this thesis for solving the fol-
lowing stochastic differential equation with multiplicative white noise will be discussed.

∂Si

∂t
= hi × Si − λ(hi × Si)× Si + fi(t)× S, hi =

∂H
∂Si

(A.1)

The Hamiltonian H depends on the N different spin vectors {S} = {S1,S2,...SN} and
the random variables fi(t) are given by a distribution of white noise. First, it is useful to
rewrite the stochastic differential equation to an expression (see equation (A.2)), which
is commonly used for the numerical analysis of stochastic differential equations. The
differential equation is in the Ito interpretation of the integral and, therefore, needs to
be transformed into the Stratonovich type, which is explained in section 2.4.2:

dS = a({S}) + ε

3N∑
r=1

σr({S}) ◦ dWr (A.2)

= a({S}) + ε2b({S})dt+ ε

3N∑
r=1

σr({S})dWr (A.3)

For a, b and σr the following expressions will be used:

aα
i = −Aα

i − λCα
i , Ai = si × hi, Ci = si × (si × hi)

bαi (s) =
1

2

3N∑
r=1

N∑
j=1

∑

β=x,y,z

∂σ
(i,α)
r (s)

∂sβ
j

σ(i,β)
r (s)

σ
(i,x)
3i−1 = sz

i , σ
(i,x)
3i = −sy

i , σ
(i,y)
3i = sx

i

σ
(i,y)
3i−2 = −sz

i , σ
(i,z)
3i−2 = sy

i , σ
(i,z)
3i−1 = −sx

i

The term a represents the driving force of the Hamiltonian, b is an expression which
appears by transforming the Ito interpretation of the integral to the Stratonovich and σr

is a sparse matrix which represents the crossproduct of the fluctuating term in equation
(A.1).
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A.1.2 Runge-Kutta Integration Scheme

Equation (A.3) is numerically solved by a weak Runge-Kutta (4th order) method for
stochastic differential equations with small noise developed by Milstein and Tretyakov
[35]. The method has a weak global error of O(h4 + ε2h2) where h = ti − ti−1 denotes
the timestep. By applying the Runge-Kutta algorithm to the equation of motion (A.3)
one ends up with [18]:

S(tk+1) = Sk + εh1/2

3N∑
r=1

ωrξr + ε2h

3N∑
j,r=1

cj,rξj,r

+
εh3/2

2

3N∑
r=1

drξr +
1

6
[k1 + 2k2 + 2k3 + k4]

+
ε2h

2

[
b · S(tk) + b

(
S(tk) + εh1/2

3N∑
r=1

ωrξr

+h[a(S(tk)) + ε2b(S(tk))]

)]
(A.4)

The function b(s) is in our case simply given by b(s) = −s and the none zero components
of cjr and dr are given by:

c
(i,x)
3i−2,3i−1 = Sy

i (tk) , c
(i,x)
3i−2,3i = Sz

i (tk)

c
(i,x)
3i−1,3i−1 = −Sx

i (tk) , c
(i,x)
3i,3i = −Sx

i (tk)

c
(i,y)
3i−1,3i−2 = Sx

i (tk) , c
(i,y)
3i−1,3i = Sz

i (tk)

c
(i,y)
3i−2,3i−2 = −Sy

i (tk) , c
(i,y)
3i,3i = −Sy

i (tk)

c
(i,z)
3i,3i−2 = Sx

i (tk) , c
(i,z)
3i,3i−1 = Sy

i (tk)

c
(i,z)
3i−2,3i−2 = −Sz

i (tk) , c
(i,z)
3i−1,3i−1 = −Sz

i (tk) (A.5)

d
(i,x)
3i−1 = az

i (S(tk)) + ε2bzi (S(tk))

d
(i,x)
3i = ay

i (S(tk)) + ε2byi (S(tk))

d
(i,y)
3i = ax

i (S(tk)) + ε2bxi (S(tk))

d
(i,y)
3i−2 = az

i (S(tk)) + ε2bzi (S(tk))

d
(i,z)
3i−2 = ay

i (S(tk)) + ε2byi (S(tk))

d
(i,z)
3i−1 = ax

i (S(tk)) + ε2bxi (S(tk)), (A.6)

The random variables ξr and ζr are generated at each timestep according to the following
stochastic distribution:

P (ξ = 0) = 2/3, P (ξ =
√

3) = 1/6, P (ξ = −
√

3) = 1/6 (A.7)
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P (ζ = −1) = 1/2, P (ζ = 1) = 1/2

ξjr = 1/2(ξjξr − γjrζjζr), γjr =

{
−1, j < r

+1, j ≥ r

P (ξ = a) describes the probability of an event ξ = a. The stochastic distribution is (i.e.
(A.7)) formed as follows: Three partitions are created which are assigned to a random
event ([0, 1/6] → 1, [1/6, 1/3] → −1, [1/3, 1] → 0). A random number generator which
creates a uniform distribution in the range [0, 1] is used. Depending on in which parti-
tion the random number occurs the different random events are assigned.

A.1.3 Pseudo-random number generator

The random number generator [61] uses the ’Mersenne Twister’ algorithm [62], which
was introduced by Makoto Matsumoto and Takuji Nishimura in 1997. It is important
that random numbers are uncorrelated to each other and the period length in which the
random numbers will be repeated is higher than the amount of random numbers used in
a simulation run. The period length for the ’Mersenne Twister’ algorithm is extremely
long (219937 − 1 ≈ 4 · 106001) and the typical amount of random numbers used can easily
be estimated. A system of 100, 000 spins over 1012 timesteps will use ∼ 1017 random
numbers which is far below the limit of ∼ 106001.

A.2 Units Conversion

Time

The exchange constant J mostly governs the precession frequencies of each spin, which
can be used to roughly estimate the precision of the numerical integration scheme with
a constant timestep h. To keep an (almost) equal accuracy of the numerical integration
scheme independent of the parameters in the Hamiltonian, the equation of motion is
normalized to a system with a constant coupling parameter around 1. This leads to a
rescaling of time, temperature and other parameters in the Hamiltonian. Let us assume
an equation of motion without temperature of the following kind:

h̄
∂S

∂t
= S × ∂H

∂S
, H =

N∑
i=1

−gµBHZeeman −K(ez · S)2 +
∑

i6=j

−1

2
JijSi · Sj

Dividing this equation by the highest exchange constant which is used during the calcu-
lation (J = max(Jij)) will lead to:

∂S

∂ (
J · t
h̄

)
︸ ︷︷ ︸

t′

= S× ∂H

∂S
, H =

N∑
i=1

−gµB
HZeeman

J︸ ︷︷ ︸
H′

Zeeman

− K

J︸︷︷︸
K′

(ez ·S)2 +
∑

i6=j

−1

2

Jij

J
Si ·Sj (A.8)

89



Appendix A A.3 Amdahl’s law

This expression can be simplified by introducing rescaled parameters, which are indicated
by primed variables. They are used in each simulation run and will afterwards be
transformed back. The fictive time t′ can, for example, be transformed to the real time
t according to:

t = h̄ · 1

J
· t′ = 1.054 · 10−34 · 4.587 · 1017 1

J
[Ry] · t′sec

= (4.837 · 10−17 1

J [Ry]
· t′)sec

= (4.837 · 10−14 1

J [mRy]
· t′)sec

Here, J [Ry] indicates unit-less numerical value of the exchange constant in Rydberg.

Temperature

In a heat bath model the temperature can be transformed in an analogous way to
equation (A.8):

T ′ = kB · T/J
The primed parameters are in general dimensionless and are sometimes used in figures (if
the exact values is of minor importance), which are indicated as arbitrary units ([a.u.]).
The temperature conversion in terms of the exchange constant in units of Rydberg is
given by the following expression:

T =
J

kB

· T ′ = 157.2463K · J [mRyd] · T ′

A.3 Amdahl’s law

The behavior of the computational time depending on the number of processors is often
shown using the speedup of the parallel code which is defined as:

SN = t1/tN

In the ideal case, while using N processors, a decrease of the computational time tN by a
factor N is expected. Hence, a perfect parallelization would lead to a speedup SN = N .
But even if there is no communication between processors there can be substantial
speedup loss if the code cannot fully be parallelized. A single-processor code in which a
part f · t1 (t1 is the total time on a single processor) can be parallelized and (1− f) · t1
cannot, will have a running time on N processors of at least:

tN = f · t1 + (1− f) · t1/N
Hence, the speedup of the code will result in :

SN = t1/tN =
1

f + (1− f)/N
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Figure A.1: Speedup of a code in which (1− f) percent is parallelizable as a function of
the number of processors (prediction by Amdahl’s law).

A plot for different values of f in given in Fig. A.1. It is observeable that the speedup
curves are substantially lowered for an increased non-parallelizable part of the code
which converge to 1/f for high processor numbers. Thus, independent on the number of
processors which are used the speed-up is limited by one over the non-parallelizable part
of the program. In the following table typical values for f and the maximum speed-up
are shown:

f limit of the speedup
0.1% SN < 1000
1% SN < 100
5% SN < 20
10% SN < 100

A.4 Domain Walls formed by the Magnetocrystalline
Anisotropy

Here, we examine the influence of the magnetocrystalline anisotropy and the exchange
interaction on the width of magnetic domain walls.

The exchange interaction favors collinarity of neighboring spins leading to an increase
of the domain wall width, whereas the anisotropy favors an alignment of the spins
towards the easy axis leading to a decrease of the domain wall width. To explain [16]
quantitatively the behavior of the domain wall thickness it is useful to transform the
discrete atomistic model to a continuous one. The difference of angles of neighboring
spins θi (compared to a reference vector) can then be approximated by the derivative
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Figure A.2: Formation of a domain wall due to a magnetocrystalline anisotropy and the
exchange coupling according to equation (A.9).

of the continuous function θ(x). Thus, the energy of an infinite chain can be written as
follows:

E ∼
∫ ∞

−∞
dx

(
Aθ̇(x)2 +K cos2 θ(x)

)

Here, A is known as the spin-stiffness and is related to the exchange coupling J . Mini-
mization of the function θ(x) with fixed boundary conditions at the borders leads to the
following equation:

θ(x) = 2 arctan
(
exp (

x

ω
)
)
− π

2
, ω = 2

√
A

K
(A.9)

Hence, the domain wall width is given by ω = 2
√

A
K

which is in agreement with the pre-
vious qualitative argumentation. The domain wall will, especially in reduced dimension1
(less nearest neighbors), be much smaller compared to a bulk system. For a layer of iron
on W(110) a domain wall width of 0.6nm was measured, whereas already a double layer
of iron increases the domain wall to 3.8nm. Domain walls in bulk are of the order of a
hundred nanometers.

A.5 Implementation of the Multipole Method

The dipolar field is given by:

B(r) =
3r(r · µ1)− µ1 · r2

r5
,

One can define a magnetic potential which is similar to a Coulomb potential. The only
difference is a substitution of the scalar charge with a magnetic moment vector. The
dipolar field can then be written as:

B = ∇(∇µ

r
), φ =

µ

r
(A.10)

1small A (less nearest neighbors), large K (low dimension)
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An expansion of the magnetic potential up to the second order including the divergence
operator results in:

∇φ = Q′∇a0 +
3∑

α=1

D′
α∇aα +

1

2

3∑

α,β=1

Q′
αβ∇aαβ

where the expansion coefficients are defined as:

Q′ =
N∑

n=1

µn D′
α =

N∑
n=1

µnx
′
nα Qαβ =

N∑
n=1

µnx
′
nαx

′
nβ

However, not all of the coefficients have to be calculated, because some are not indepen-
dent from each other. The tensor Qαβ = (Qxαβ, Qyαβ, Qzαβ) is, for example, symmetric
in the sense that Qαβ = Qβα. Thus, just the upper triangle of the tensor has to be
calculated.

The expansion of the dipolar field used in the multipole code is given by the follow-
ing equation:

B = ∇(∇φ) = ∇U, U = ∇φ = U1 + U2 + 0.5 · U3 + ...

Here, the potentials U1, U2, U3 for each expansion order are given by a straight forward
calculation

U1 = qx · ax + qy · ay + qz · az

U2 = D′
x1 · axx +D′

y2 · ayy +D′
z3 · azz

+(D′
x2 +D′

y1) · axy + (D′
y3 +D′

z2) · ayz + (D′
x3 +D′

z1) · axz

U3 = Q′x11 · axxx +Q′y22 · ayyy +Q′z33 · azzz

+(Q′y11 + 2Q′x12) · axxy + (Q′z11 + 2Q′x13) · axxz

+(Q′x22 + 2Q′y12) · axyy + (Q′z22 + 2Q′y23) · ayyz

+(Q′x33 + 2Q′z13) · axzz + (Q′y33 + 2Q′z23) · ayzz

+(2 ·Q′x23 + 2 ·Q′y13 + 2 ·Q′z12) · axyz

where the notation for derivatives of 1/r potential is given by:

a0 =
1

|r| , aα =
∂

∂xα

1

|r| aαβ =
∂2

∂xαxβ

1

|r|

The expressions in the brackets (like D̄xy = Dx2 + Dy1 or Q̄xxy = Qy11 + 2Qx12) are
combined to a single expansion coefficients leading to in total 3, 6 and 10 multipole
moments for the first three expansion orders.
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A.6 Dispersion relation

A.6.1 Two dimensional hexagonal lattice

The exact analytical solution for a spinwave in an infinite system with an arbitrary
Bravais lattice structure is presented in chapter 3:

h̄ω = gµBHZeeman +KSz + JSz(n−D(k))

It depends on a quantity D(k) which is defined as:

D(k) =
∑

δ

eikδ (A.11)

where δ runs over all the displacement vectors to the nearest neighbor atoms. The
dispersion relation of a two dimensional hexagonal lattice structure is used to evaluate
its density of states and, therefore, needs to be calculated. In this case, there are 6
displacement vectors with a nearest neighbor distance of a

δ1,2 = (±a, 0), δ3−6 = (±0.5 a,±
√

3/2 a)

which are inserted in equation (A.11):

D(k) = eikxa + e−ikxa + ei( 1
2
kxa+

√
3

2
kya) (A.12)

+ei(
1
2
kxa−

√
3

2
kya) + ei(−

1
2
kxa+

√
3

2
kya) + ei(−

1
2
kxa−

√
3

2
kya)

= 2 cos(kxa) + 4 cos(

√
3

2
kya) cos(

1

2
kxa) (A.13)

Thus, the dispersion relation for a hexagonal two dimensional lattice is given by:

h̄ω = gµBHZeeman +KSz + JSz

(
6− 2 cos(kxa)− 4 cos(

√
3

2
kya) cos(

1

2
kxa)

)

A.6.2 Two dimensional tetragonal lattice

The dispersion for a two dimensional cubic lattice can be calculated analog to the hexag-
onal case lattice using the four displacement vectors δ1,2 = (±a, 0), δ3,4 = (0,±a) and
results in :

h̄ω = gµBHZeeman +KSz + JSz (4− 2 cos(kxa)− 2 cos(kya))
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