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E-mail: {s.bluegel, g.bihlmayer}@fz-juelich.de

The full-potential linearized augmented planewave (FLAPW) method has emerged as a widely
used very robust and precise state-of-the-art ab initio electronic structure technique with rea-
sonable computational efficiency to simulate the electronic properties of materials on the basis
of density-functional theory (DFT). Due to the high precession it is widely accepted that it
provides the density-functional answer to the problem. The shape of the charge density, the
one-electron potential and the wavefunction is taken into account with high accuracy. The
FLAPW method is an all-electron algorithm which is universally applicable to all atoms of the
periodic table in particular to transition metals and rare-earths and to multi-atomic systems with
compact as well as open structures. Due to the all-electron nature of the method, magnetism is
included rigorously and nuclear quantities e.g. isomer shift, hyperfine field, electric field gradi-
ent (EFG), and core level shift are calculated routinely. Also open structures such as surfaces,
clusters, organic and inorganic molecules as well as wires can be treated without problems.
The capability of calculating atomic forces exerted on the atoms opens the path to structure
optimization. In this chapter, a short introduction to first-principles methodology is given, the
FLAPW-method is reviewed, modern extensions of the LAPW basis set are discussed, exten-
sions of the method to geometries suitable to applications in nanoscience such as the film and
wire geometries are presented. Details for the practical users e.g. important parameters control-
ling the accuracy of the results and an analysis of the CPU-time is given for the FLEUR-code, a
particular implementation of the FLAPW method.

1 Introduction

Societal requests for environment prediction and protection, the durability of chemicals,
the vision of new applications in information technology such as autonomous robots, bio-
diagnostic systems, or faster information processing, as well as demands on the sustainable
and efficient use of resources and energies translate in a huge demand on understand-
ing, predicting, modeling and simulating the properties, chemical reactions, synthesis and
growth processes of emergent quantum materials. Modern solid state materials have a mul-
tiplicity of novel properties exhibiting for example a rapid phase response to external stim-
uli such as light, pressure, magnetic field or electrical conductivity so that manifold uses are
possible even today or can be expected for the future. Materials of this sort are often mul-
ticomponent systems such as magnetic tunneljunctions (e.g. NiMnSb|MgO|Co2MnSn),
high-temperature superconductors (e.g. HgBa2Ca2Cu2O8), or perovskite-type materials
with complex magnetic structures. A particularly rich arsenal of assets for material design
and tailoring of material properties is provided when the surface of materials is provided as
templates for fabrication. Nanostructures down to the atomic scale made of single atoms or
of small molecules can be manufactured to form chains and clusters or structures with spe-
cific electronic properties by employing the tip of scanning tunneling microscope (STM) or
relying on the instruments of self-assembly. Nanostructured thin film systems are decisive
functional units in electronic devices, sensors and in biological systems. The existence of
particular surface and interface alloys and the complex interplay between morphological,
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structural, magnetic and electronic features in nanostructured systems stand as examples
for a wide field of phenomena which are largely not understood, while offering exceptional
technological opportunities at the same time.

During the past ten years, first-principles calculations based on the density-functional
theory (DFT)1 in the local (spin-) density approximation (LDA) or in the generalized gra-
dient approximation (GGA) (for a review see Ref.2–4) emerged as the most powerful
framework to respond to the demands mentioned above on a microscopic level. By first-
principles or ab initio, respectively, is meant, that the parameters of the theory are fixed
by the basic assumptions and equations of quantum mechanics and, for our discussion,
density-functional theory. The overwhelming success of the density-functional theory for
the description of the ground-state properties of large material classes including insulators,
semiconductors, semimetals, half-metals, simple metals, transition-metals and rare-earths
in bulk, at surfaces and as nanostructures makes it the unchallenged foundation of any
modern electronic structure theory. The wide applicability combined with the predictive
power of the approach turned it to the “standard model” in material science. In principle,
the only input needed for the theory are the atomic numbers of the constituent atoms of a
system, all other properties follow as a direct consequence of the density-functional equa-
tions. In practice, the definition has to be modified since one is always limited to some set
of model systems. These limitations might include system size, crystal structure, neglect of
disorder, low or zero temperature, or any number of other restrictions on the “phase space”
to probe. While some of these restrictions and limitations are burdensome, the goal of cal-
culations is not merely to obtain numbers, but rather insight. By focusing on well-defined,
but restricted models, by working on chemical trends rather than on isolated case studies,
by investigating systems in hypothetical non-equilibrium structures or follow simulations
in idealized environments, which may not be realized in experiments, one is able to de-
velop different levels of understanding of the system in question and may hopefully learn
which aspects of the problem are important. In the density-functional theory we work in
an effective one-particle picture: the wavefunctions are solutions of the Kohn-Sham equa-
tions and the interaction of the particles is taken into account by a self-consistent field,
which depends on the density of the particles. The adequacy and limitations of this ap-
proach have been extensively discussed in the literature and pioneered by5, 6. Successful
extensions of the theoretical framework treat quasiparticle excitations of weekly corre-
lated electron systems by many-body perturbation theory based on Green-function tech-
niques in the so-called GW approximation for the electronic self-energy (for details see
chapter “Many-Body Perturbation Theory: The GW Approximation” by C. Friedrich and
A. Schindlmayr) or by time-dependent density.functional theory (TDDFT)7, 8. The treat-
ment of strongly correlated electron systems is currently being explored investigating the
LDA+U approximation, the optimized potential method (OEP)9 and by combining the dy-
namical mean field theory (DMFT)10, 11 with the LDA.

In this chapter, we review the full-potential linearized augmented planewave (FLAPW)
method12, 13, to solve the density-functional equations for a crystalline solid, ultrathin film
and one-dimensional system (a review is given by D. J. Singh14). The method originates
from the APW method proposed by Slater15–17. Great progress of the APW methodology
was achieved as the concept of linear methods18–22, was introduced by Andersen and first
applied by Koelling and Arbman using a model potential within the muffin-tin approxi-
mation. The linearized APW (LAPW) method reconciled the linear-algebra formulation
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of the variational problem with the convergence properties of the original formulation and
allowed a straight forward extension of the method to the treatment of crystal potentials of
general shape. The treatment of the potential and charge density without shape approxi-
mation23, 24 and the implementation of the total energy13 let to the development of FLAPW
bulk12, 24–30 film codes12, 30–32. It was during this time that the power and accuracy of the
method were demonstrated to the community, largely through a series of calculations of
surface and adsorbate electronic structures (for a review see Wimmer et al.33). These and
other demonstrations established the FLAPW method as the method of choice for accurate
electronic structure calculations for a broad spectrum of applications.

Constant conceptual and technical developments and refinements such as the proposal
and implementation of the scalar-relativistic approximation (SRA)34, the spin-orbit in-
teraction by second variation36, and the possibility to calculate forces37, 38 acting on the
ions to carry out structure optimizations, quasi-Newton methods39 to accelerate the self-
consistency iterations, the iterative diagonalization techniques40–42, the proposal of a new
efficient basis sets, the LAPW+LO43 and APW+lo44 basis, in which the APW basis is
amended by local orbitals (lo), the extension of the method to non-collinear magnetism45,
to the wire geometry46, to calculations of the quasiparticle self-energy in the GW ap-
proximation47, and the recent formulation and application of the scattering problem in
semi-infinite crystals48–50 has made APW-like methods, and for our discussion the FLAPW
method, a robust, versatile and flexible method, at reasonable computational expense. It is
an all-electron method, that means, one works with a true crystal potential, which diverges
as 1/r at the nucleus, as opposed to the pseudo-potential (for a review see Ref.51, 52), in
which the singularity is removed. Due to the all-electron nature of the method, magnetism
is included rigorously and nuclear quantities53 e.g. isomer shift, hyperfine field, electric
field gradient (EFG), and core level shift are calculated routinely. The method and the
breadth of applications has benefited from the large growth of available computing power
and parallelization strategies.

This chapter starts with a quick overview to the Kohn-Sham ansatz outlining the general
aspects of the first-principles methodology followed by an introduction of the APW-like
concepts to solve the Kohn-Sham equation for a periodic solid. Then, the FLAPW method
is described in detail for bulk solids followed by a short description of adaptations of the
FLAPW methods to systems of reduced dimensions, the film and wire geometry. Finally an
analysis of the CPU-time distribution across the different steps of an ab initio calculation
with an FLAPW progamm is presented. Strategies to speed-up the calculations in the light
of symmetry and parallelization concepts are described.

2 Solving the Kohn-Sham Equations in a Nutshell

2.1 Total Energy and Force

In the density-functional theory, the total energy E[{R}, {ψi}] of a system of interacting
atoms and electrons is a functional of the atomic positions {R} and the electron density
n(r). The electron density can be expressed in terms ofM occupied single-particle orbitals
ψi(r):

n(r) =

M
∑

i(occ)

| ψi(r) |2, (1)
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Figure 1. Example: structural optimization of Mn and Cu surface atoms in a Cu(100)c(2 × 2)Mn surface alloy.
Right figure: Schematic representation of the substitutional surface alloy film of one monolayer thickness (•
indicates the Mn atoms) grown as overlayer on a fcc (001) substrate (◦). Left figure: Total energy per Mn atom
vs. the buckling relaxation ∆zMn of Mn in relative units with respect to the theoretical interlayer spacing of Cu,
dCu = 1.76 Å. The open squares represent the nonmagnetic and the solid diamonds the ferromagnetic results.
The solid lines (for Cu atoms fixed at the ideally terminated positions ∆zCu = 0) and dashed line (the top Cu
atom is always at its optimally relaxed position) are the fitting polynomials. The upper (lower) inset shows the
contour plot of the nonmagnetic (ferromagnetic) total energy with respect to the buckling of Mn and Cu. The
minimum, which determines the optimal structure is found in the inner circle. The contour interval is 1 meV.
The energy of the nonmagnetic solution at 0% relaxation was chosen as the origin of the total energy scale (taken
from Ref.54).

where i labels the states. If the total energy functionalE[{R}, {ψi}] is minimized with re-
spect to the electronic degrees of freedom {ψi}, we recover the Born-Oppenheimer surface
Φ[{R}]:

Φ[{R}] = min
{ψi}

E[{R}, {ψi}], (2)

on which the atoms move. The derivative of Φ[{R}] with respect to the atomic position
R
µ gives the force F

µ,

F
µ = −∇RµΦ[{R}] (3)

exerted on the atom µ, which ties electronic structure to structural optimization and molec-
ular dynamics calculations. The energy functional is divided into several terms:

E[{R}, {ψi}] = Ekin[{ψi}]+EH[{ψi}]+Exc[{ψi}]+Eext[{R}, {ψi}]+Eion[{R}], (4)

whereEkin is the kinetic energy of non-interacting electrons,EH is the Hartree energy, i.e.
the classical Coulomb energy of the electrons, and Exc is the exchange-correlation energy
which contains terms coming from the Pauli principle (exchange hole), from correlations
due to the repulsive Coulombic electron-electron interaction and from the contribution to
the kinetic energy of interacting electrons3. E.g. In the local density approximationExc[n]
is written in the form Exc[n] =

∫

drn(r) εxc(n(r)). Then, Eext is the interaction energy
of the electrons with the ions, e.g. described by the 1/r potential as in all-electron methods
or by pseudo-potentials, and Eion is the classical Coulomb energy of the ions.
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2.2 The Kohn-Sham Equations

The single-particle wavefunctions ψi(r) are obtained by minimization of the total energy
with respect to the wavefunctions subject to the normalization constraint

∫

dr | ψi(r) |2= 1. (5)

This leads to the Kohn-Sham equations55, an eigenvalue problem for the eigenfunctions
ψi(r) and the eigenvalues εi:

Ĥ [n]ψi[n] = εi[n]ψi[n], (6)

where all quantities depend on the electron density n. According to the form of the total
energy Eq.(4), the Hamiltonian Ĥ is a sum of corresponding terms and the eigenvalue
problem is written in the form:

(T̂0 + V̂ext + V̂H + V̂xc)ψi(r) = εi ψi(r) (7)

In the real space representation the individual terms are the following:

kinetic energy : T̂0 = − ~2

2m
∆r (8)

external-potential : Vext({R}, r) =
∑

µ

e2Zµ

| r −Rµ | (9)

Hartree potential : ∆rVH(r) = 4πe2n(r) (10)

xc-potential (LDA) : Vxc(r) =
δ

δn(r)

∫

drn(r) εxc(n(r)) (11)

In a pseudo-potential approach V̂ext is replaced for each atom µ by a pseudo-potential V̂ps.
The terms V̂H [n] and V̂xc[n] are local potentials and explicitly density dependent. Thus,
the Hamiltonian Ĥ [n] and the wavefunctions ψi([n], r) are also dependent on the electron
density n(r). Together with the expression Eq.(1) a self-consistency problem to obtain the
charge density n(r) is established, which is solved iteratively until the input density (used
to define the potential terms in the Hamiltonian) is equal to the output density within the
required accuracy. The number of self-consistency iterationsNiter is considerably reduced
applying quasi-Newton methods56.

The external potential V̂ext[{R}] depends explicitly on the positions {R} of all atoms,
which change at certain steps to optimize the atomic structure or every time-step of a
molecular dynamics algorithm. Thus, the Hamiltonian Ĥ[{R}] and the wavefunctions
ψi({R}, r) are also dependent on the atomic positions {R}. After the self-consistency
condition for the electron density has been fulfilled, the atom positions are moved by a
molecular static or molecular dynamics time-step, {R(t)} → {R(t+∆t)}. Thus, forNMD

molecular time steps the eigenvalue problem has to be solved NMDNiter times. These
arguments suggest a particular loop structure of a typical first-principles method and a
particular sequence how the different elements are calculated. This is summarized in Fig. 2.

Typical codes use LDA exchange correlation potentials and energies of Hedin and
Lundqvist57 or Vosko, Wilk, and Nusair58, or GGA functionals of Perdew et al.59, 60 are
given as analytical expressions of the density and their derivatives in case of the GGA.
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Figure 2. Right: Typical loop structure of a first-principles code based on density functional theory as applied
solid state materials. Left: Schematic flow-chart for self-consistent density-functional calculations e.g. as realized
by a FLAPW calculation.

2.3 Magnetism

If magnetism occurs, the ground state has a broken symmetry and the ground-state en-
ergy is described by functionals which depend on the vector-magnetization density m(r)
as an additional field to the ordinary charge density n(r), discussed so far. An additional
term µBσ · Bxc(r) appears in the Kohn-Sham equations Eq.(7), where µB = e~

2mc is the
Bohr magneton, Bxc is the magnetic xc-field an electron experiences, and σ are the Pauli
spinors. Thus, calculating magnetic systems, one works in a two-dimensional spin-space
and the basis functions ψiσ carry an additional spin label σ = ±1. The Hamiltonian is
a 2 × 2 matrix in spin-space and is now hermitian and not symmetric. Complex mag-
netic structures lower frequently the symmetry of the problem and more states have to
be calculated or a much larger fraction of the BZ (see Sect.2.6) has to be sampled, re-
spectively, pushing the computational effort to the limits of modern supercomputers. In
case of collinear magnetism, e.g. ferro-, ferri-, or antiferromagnetism, σ · Bxc reduces
to σz · Bxc, the Hamiltonian is diagonal in spin space, the magnetization density mz is
then given by spin-up and -down densities, mz(r) = n↑(r) − n↓(r), and the effort of a
magnetic calculation is just twice that of a nonmagnetic one. In general, the magnetic mo-
ment M =

∫

drm(r) is a vector quantity, and the search of the magnetic structure can be
done dynamically bearing similarities to the dynamical structure optimization combining
molecular dynamics and simulated annealing. Therefore, everything said in this chapter on
structural optimization applies to both, the atomic and the magnetic structure. Throughout
the paper, the spin label is dropped for convenience. More information on the treatment
of magnetism can be found in the chapter “Non-collinear magnetism: exchange parameter
and TC” by G. Bihlmayer.
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Figure 3. Schematic representation of the energy position of valence, semi-core and core electrons in periodic
potential.

2.4 The Eigenvalue Problem

In all-electron methods eigenvalue problem Eq.(7) is solved for all occupied states i but
typically subject to different boundary conditions. As shown schematically in Fig. 3 we
distinguish core electrons from valence electrons. The former have eigenenergies which
are at least a couple of Rydbergs below the Fermi energy, the potential they experience is to
an excellent approximation spherically symmetry and the wavefunctions have no overlap
to neighboring atoms. The eigenvalue problem of these states are solved applying the
boundary conditions of isolated atoms, which is numerically tackled by a shooting method.
Valence electrons in a crystalline solid form electron bands and the eigenvalue problem
of is solved subject to the Bloch boundary conditions. The eigenstate is classified by
the band index ν and a three-dimensional Bloch vector k within the first Brillouin zone,
(i ∈ {kν}). Some materials contain chemical elements with states (e.g. 5p states of 4f
elements or W, p states of early transition metals) intermediate between band and core
states and those are coined semi-core states. These are high-lying and extended core states
and particular care has to be taken on their treatment since their treatment as core states
can cause significant errors in total energy, force and phonon calculations. According to
the different treatment of the electrons, we decompose the charge density in the valence,
semi-core and core densities

n(r) = nval(r) + nsc(r) + ncore(r), (12)

the latter being spherically symmetric. The charge densities are calculated according to
Eq.(1). Wavefunctions and energies of core states give access to hyperfine quantities such
as isomer shifts, hyperfine fields and electric field gradient as well as chemical shifts of
core levels.

There are many possible ways to solve the Kohn-Sham equations for valence electrons.
Frequently, a variational method is chosen by which a wavefunction ψkν(r) of Bloch vec-
tor k and band index ν is sought as a linear combination of basis functions ϕn(k, r)

ψkν(r) =

N
∑

n=1

cnkνϕn(k, r) (13)
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satisfying the Bloch boundary conditions. cn
kν are the expansion coefficients of the wave-

function (coefficient vector), and N is the number of basis functions taken into account.
By this expansion, the eigenvalue problem

Ĥψkν(r) = εkνψkν(r) (14)

is translated in into an algebraic eigenvalue problem of dimension N

(H(k) − εkνS(k))ckν = 0 ∀k ∈ BZ (15)

for the coefficient vector cn
kν corresponding to the eigenvalues εkν . The Hamilton

Hn,n′

(k) and overlap matrices Sn,n
′

(k) are hermitian or real symmetric, depending on
the point symmetry of the atomic structure. If the basis functions are orthonormal, i.e.
〈ϕn|ϕn′〉 = δn,n

′

, as for example in case of simple planewaves, then the overlap matrix S,
defined as

Sn,n
′

(k) =

∫

Ω

ϕ∗
n(k, r)ϕn′ (k, r)d3r (16)

becomes diagonal, Sn,n
′

(k) = δn,n
′

, and the generalized eigenvalue problem Eq.(15)
becomes of standard type. Ω is the volume of the unit cell.

In general, the general eigenvalue problem is reduced to a standard one using the
Cholesky decomposition. It can be shown (e.g. Stoer61), that any hermitian and positive
definite matrix can be decomposed into a matrix product of a lower triangular with only
positive diagonal elements matrix and its transposed. Clearly, the overlap matrix satisfies
these conditions and can be written S = LLtr. Therefore, Eq.(15) becomes

Hci = εiLLtrci, (17)

multiplying from the left with L−1 and introducing a unit matrix we finally find

Pxi = εixi, (18)

after we have P defined as P = L−1H(L−1)tr and xi = Ltrci. Thus, the generalized
eigenvalue problem has been reduced to a simple one. The eigenvectors ci can be obtained
by the back-transformation, ci = (Ltr)−1

xi.
The choice of the most efficient numerical algorithm to solve Eq.(15) depends on

the number of basis functions N and the number M of states ν taken into account. If
M/N >∼ 0.1, direct numerical diagonalization schemes are employed, for example par-
allelized eigenvalue solver taken from the ScaLAPACK library package. If M/N <∼ 0.1
or if N is too large to fit the eigenvalue problem into the memory of a computer the eigen-
value problem is solved iteratively. Any iterative solution of an eigenvalue problem can be
divided into two parts: (i) the determination of the iterative improvement of the state vector
c
n,[m]
kν at iteration stepm by multiplying the Hamiltonian with the state vector to obtain the

update cn,[m+1]
kν :

c
n,[m+1]
kν =

∑

n′

Hn,n′

(k)c
n′ ,[m]
kν , (19)

and (ii) the orthonormalization of the wave functions
∑

n

c
n,[m+1]
kν c

n,[m+1]
kν′ = δν,ν′ . (20)
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Figure 4. Test of convergence carried out by the FLAPW method of (absolute) total energy and magnetic moment
as function (i) of the number of the LAPW basis functions (see two left figures) for a 7 layer Fe(100) film and (ii)
number of special k-points in the IBZ (see two right figures) for an 11 layer Fe(110) film. The calculations of (i)
were carried out for the rkm-parameters rkm = 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 corresponding to N = 67, 80, 96,
114, 137, 158 basis functions.

(iii) Frequently, each iteration step is accompanied by a direct sub-space diagonalization of
a dimension proportional toM , on which Hamiltonian Ĥ is projected. If the multiplication
of H · c can be made fast by expressing the Hamiltonian in terms of dyadic products or
convolutions as in norm-conserving or ultra-soft pseudo-potentials minimizing thereby the
number of multiplications, iterative methods become particular beneficial.

2.5 The CPU Time Requirement

The number of basis functions N is determined by the required precision P of a calcu-
lation and by the volume Ω of the unit cell or the number of atoms in the unit cell, NA,
respectively. The precision P is controlled by the finest real-space resolution the basis
functions can resolve. For three-dimensional unit cells N scales as N ∝ P 3. In general,
the triple (Nk,M,N ), the number of k-vectors in the BZ used, the number M of states
ν considered, and the number of basis functions N are determined by the required pre-
cision of the calculation and by the volume of the unit cell. These parameters determine
the CPU-time and memory requirements of the calculations. Keeping the loop-structure in
mind exhibited in Fig. 2, typically the calculational CPU time scales as

CPU ∝ NMD ·Niter ·Nk

{

N3 direct diagonalization
Miter(MN lnN +NM2) iterative diagonalization

(21)

where Miter gives the number of eigenvalue iterations. This gives just a gross estimate
as for iterative methods based on the Car-Parrinello idea where self-consistency iterations
and eigenvalue iterations can be combined to directly minimize total energy functional
NMD ·Niter ·Miter depends on many details. The scaling relation for precision scaling is:

the number of k-points: Nk ∝ P 3
k

(22)
the number of basis functions N : N ∝ P 3, (23)

where Pk is the precision controlling the k-point summation, e.g. of the force, the total
energy or the electron density. Assuming that the volume Ω of the unit cell is proportional
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to the number of atoms NA, the scaling relation for volume scaling is:

the number of k-points: Nk ∝ 1/NA, (24)
the number of states ν: M ∝ NA, (25)

the number of basis functions N : N ∝ NA, (26)

From these considerations it is argued to develop electronic structure methods (see
Sect. 2.8) with efficient basis sets to reduce their number N , to develop algorithms to
accelerate the convergence (see Sect. 2.7) and to employ an efficient k-point integration
scheme (see Sect. 2.6).

2.6 Brillouin-Zone Integration and Fermi Energy

The calculation of the electron density, total energy, force or stress tensor for infinite peri-
odic solids require the integration of functions over the Brillouin zone that depend on the
Bloch vector and the energy band. These integrations stretch only over the occupied part
of the band, i.e. over the region of the Brillouin zone where the band energy εν(k) (ν is the
band index) is lower than the Fermi energy. Hence, the integrals are of the form

1

VBZ

∫

BZ

∑

ν,εν(k)<EF

fν(k) d3k, (27)

where f is the function to be integrated, e.g. f = 1 for the total number of electrons,
f = ε for the eigenvalue sum and so on. Numerically, these integrations are performed on
a discrete mesh in the Brillouin zone. In fact the effort of the BZ integration is in practice
significantly reduced by employing the point group symmetry, where the integration is
reduced to the irreducible wedge of the BZ (IBZ). There are different methods, that can
be used to perform the integration, e.g. the special points method62, 63 and the tetrahedron
method64–66. The special points method is a method to integrate smoothly varying periodic
functions of k. The function to be integrated has to be calculated at a set of special points
in the IBZ, each of which is assigned a weight. Thus, the BZ integration is transformed
into a sum over a set of k-points. At each k-point a sharp energy cut-off is introduced to
include only those state in the summation whose energy is below the Fermi energy. Thus,
the integrals become:

1

VBZ

∫

BZ

∑

ν,εν(k)<EF

fν(k) d3k −→
∑

k∈IBZ

∑

ν,εν(k)<EF

fν(k) w(k) (28)

Alternatively, this integration can be viewed as an integration over the whole Brillouin
zone, where the function to be integrated is given by a product of the function f with
a step function that cuts out the region of the Brillouin zone, where the band energy is
above the Fermi energy. Clearly, the resulting function does not satisfy the condition of
being smoothly varying. Therefore, the special k-points method does not converge very
quickly, and rather many k-points are needed to obtain accurate results. On the other
hand this method is simple to implement, because the weights depend only on k and the
band energy (via the step function) at each k-point. Another problem arises from this
“sharp” differentiation between occupied and empty bands (parts of bands). Let’s consider
a band that is very close to the Fermi energy at a certain k-point. During the iterations the
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energy of this band might rise above or drop below the Fermi energy. This leads to sudden
changes in the charge density, which can slow down or even prevent the convergence of
the density. These sudden changes are clearly a result of the discretization in momentum
space. To avoid this problem, the sharp edges of the step function are smoothened, e.g.
by introducing a so-called temperature broadening in the context of a the Fermi function
(e(ε−EF )/kBT + 1)−1 rather than the step function. The temperature T or energy TkB are
an additional external parameters adjusted to obtain the best convergence.

2.7 Achieving Self-Consistency

According to Sect. 2.2 the Kohn-Sham equation Eq.(7) are Schrödinger-like independent-
particle equations which must be solved subject to the condition that the effective potential
field Veff(r) = Vext(r) + VH(r) + Vxc(r) and the density field n(r) are consistent. The
electron density n0(r) that minimizes the energy functional is a fix-point of the mapping

n′(r) = F{n(r)}. (29)

i.e. it solves

F{n0(r)} = 0, with F{n(r)} = F{n(r)} − n(r). (30)

(The same can be formulated for the potential.) Typically, the density is expanded into a
large set of basis functions. Thus, in actual calculations, the charge density is a coefficient
vector of dimensionNQ ∼ 8∗N (N defined as in Eq.(13) and Eq.(30) constitutes a system
of NQ nonlinear equations, which can be solved by iteration:

nm+1(r) = F{nm(r)}. (31)

A starting density n(0)(r) can be constructed by a superposition of atomic densities. A
straight mapping as is suggested in Eq.(31) is in general divergent. Convergence can be
achieved if the output density F{nm(r)} is mixed with the input density nm(r).

The simplest and slowest of such mixing schemes is the so-called “simple mixing”,
which converges only linearly. The density for the next iteration is constructed as a linear
combination of n(m) and F{nm} according to:

n(m+1) = (1 − α)n(m) + αF{nm} = n(m) + αF{n(m)}, (32)

where α is the so-called mixing parameter. If it is chosen small enough, the iteration
converges and is very stable. However, for the type of systems one is interested in, α is
very small, requiring many hundreds of iterations. In spin-polarized calculations different
mixing parameters can be used for the charge and the magnetization density. Usually, the
spin mixing parameter can be chosen far larger than the parameter for the charge density.

In the Newton-Raphson method, the functional F{n} is linearized around the approx-
imate solution n(m).

F{n} ≈ F{n(m)}+J {n(m)}(n−n(m)), J {n(m)(r)} =
∂F{n(r)}
∂n(r′)

∣

∣

∣

∣

n(m)(r)
. (33)

In actual calculations the Jacobian J is a NQ × NQ matrix. Similar to the well-known
Newton method to find zeros of one-dimensional functions, the next approximation to
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Figure 5. Comparison of the convergence of charge density calculated by different methods for a non-magnetic
bcc Fe crystal using the FLAPW method. Calculations are carried out for mixing parameter α = 0.04. +
corresponds to simple mixing, and different quasi-Newton methods: ∗ Broyden’s 1st method, � Broyden’s 2nd
method, � generalized Anderson method. The distance of the residual vector vs. number of iterations is plotted
semi-logarithmically67 .

n0, n(m+1), is determined from the requirement, that the linearized functional in Eq.(33)
vanishes at n(m+1). Thus, n(m+1) is given by:

n(m+1) = n(m) −
[

J {n(m)}
]−1

F{n(m)}. (34)

In opposite to the simple mixing, the Newton-Raphson method converges quadratically.
The major drawback of this method is the difficulty to evaluate the Jacobian. Even if the
functional F{n} were known, the evaluation would be cumbersome due to the enormous
size of J {n}. In addition, the Jacobian has to be inverted where the amount of calculation
scales with cube of the dimension. A further problem is that the convergence radius is
rather small so that the method can only be used if n(m) is already very close to n0.

The development of the Quasi-Newton methods made it possible to exploit the advan-
tages of the Newton-Raphson method, i.e. to make use of the information that is contained
in the Jacobian, for problems where the Jacobian cannot be calculated or its determina-
tion is too demanding. Rather than computing the Jacobian each iteration, an approximate
Jacobian is set up and improved iteration by iteration. From the linearization of F{n} in
Eq.(33) we find the following condition for the Jacobian, which is usually called Quasi-
Newton condition:

∆n(m) =
[

J (m)
]−1

∆F (m) (35)

∆n(m) = n(m) − n(m−1), ∆F (m) = F{n(m)} − F{n(m−1)}
Quasi-Newton methods converge super-linearly and have a larger convergence radius than
the Newton-Raphson method. Since the Jacobian is build up iteration by iteration, the “his-
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Figure 6. Very rough and schematic overview of electronic structure methods indicating a rich spectrum of meth-
ods developed for different purposes, applications, geometries and symmetries, chemical elements and materials
requiring different approximations.

tory” of the previous iterations is memorized in J , whereas the Jacobian of the Newton-
Raphson method depends only on the previous iteration. In this sense the Newton-Raphson
method is self-corrective39, it “forgets” inadequately chosen corrections. The Quasi-
Newton methods sometimes need to be restarted, if the iteration converges only slowly.
This can happen if the starting density is very far from n0 or when physical or numerical
parameters that affect the calculations are changed during the iteration. Eq.(35) does not
determine the Jacobian uniquely, instead Eq.(35) constitutes a system of NQ equations for
N2

Q unknowns. The various Quasi-Newton schemes differ by the ansatz how the new in-
formation is used to build the inverse Jacobian. The quality of the convergence is measured
by the distance of the residual vector:

dn(m) = ||F{n(m)}|| = ||F{n(m)} − n(m)||. (36)

2.8 The Electronic Structure Methods

The quest to solve the Kohn-Sham equation (7) efficiently for periodic solids, solids with
surfaces and interfaces, clusters and molecules has lead to a wide spectrum of very suc-
cessful and efficient electronic structure methods. Treating isolated clusters or molecules,
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methods based on localized orbitals are frequently selected going hand in hand with the
chemical intuition of system in question. Considering methods applicable to periodic
solids, frequently algorithms are chosen where the Bloch boundary condition can be in-
cluded in the basis set. Guiding principles to develop electronic structure methods are
by obtained by having a closer look at the mathematical nature of the Schrödinger-like
Kohn-Sham equation Eq.(7) with the kinetic energy operator ∆ and the 1/r singularity at
the nucleus with the simultaneous necessity to calculate the xc-potential Vxc[n](r) and the
Hartree potential VH[n](r).

The planewave basis is obviously a very good choice, as the planewave is diagonal to
the Laplace operator ∆ appearing in both the the kinetic energy operator and in the Pois-
son equation to calculate the Hartree potential (see Eq.(8)), and for a function expanded
in planewaves, its power is also completely expressible by a planewave expansion. This
property is needed for calculating the charge density from the wave function. Thus, using
a planewave basis set the calculation of the kinetic energy, charge density and the Hartree
potential are obtained by simple algebraic expressions. The calculation of the Vxc(r) best
performed if the charge density is expressed in real-space. The discrete fast Fourier trans-
formation (FFT) provides a fast algorithm to communicate between both spaces. How-
ever, planewave basis sets do not converge at the presence of the 1/r singularity. Thus,
planewave basis-sets can only be used in the context of a pseudopotential approximation
to the true potential where the 1/r potential has been replaced by an appropriate smooth
potential.

All-electron methods have to cope with the 1/r singularity. Since this singularity can-
not be dealt with variationally, one typically, works here with basis functions, which are the
numerical solution of (−∆+Veff −El)ϕ = 0 of the effective (spherical) potential contain-
ing the 1/r singularity, computed in a sphere around the atom at a given energy parameter
El. These basis functions treat the singularity exactly. The matching of this wavefunc-
tion in such a sphere to the rest of the crystal outside the sphere divides the all-electron
methods with regard to the eigenvalue dependence of the basis set into two groups: The
nonlinear methods as for example the Korringa-Kohn-Rostocker (KKR) method (see chap-
ter on KKR-Green-function method by Ph. Mavropoulos) and the APW method, and the
linear methods, of which the most commonly used are the linear muffin-tin orbital method
(LMTO)19, the augmented spherical68 and the APW-based schemes, e.g. FLAPW method.

3 APW-like Concepts to solve the Kohn-Sham Equations

3.1 The APW Concept

There are many possible ways to solve the Kohn-Sham equations. Frequently, a variational
method is chosen by which a wavefunction ψk,ν(r) of Bloch vector k and band index ν
is sought as a linear combination of basis functions ϕ(r) satisfying the Bloch boundary
conditions. The most straightforward choice would be to expand the wavefunction into
planewaves or Fourier series, respectively,

ψ(k, ν) =
∑

|k+G|≤Kmax

cGk,νexp[i(k + G)r]. (37)

Here G are all reciprocal lattice vectors up to the largest value of Kmax and cG
k,ν

are variational coefficients. The planewave basis set has some important advantages:
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Figure 7. Left figure: Volume of unit cell partitioned into muffin-tin spheres of two different types of atoms
and the interstitial region. Right figure: Actual self-consistent effective potential as obtained from an FLAPW
calculation.

Planewaves are orthogonal, they are diagonal in momentum space and the implementation
of planewave based methods is rather straightforward due to their simplicity. The credit
goes to Slater15 having realized that owing to the singularity of the crystal potential at the
nucleus, electron wavefunctions are varying very quickly near it, the planewave expansion
would converge very slowly, large wavevectors (Kmax) would be needed to represent the
wavefunctions accurately, which makes the set-up and diagonalization of the Hamiltonian
matrix in terms of planewaves impracticable if not impossible. Even with the modern
computer hardware, the planewaves are used only in the context of pseudopotential which
allow an accurate description of the wavefunctions between the atoms, but avoid the fast
oscillations near the core. Thus, less basis functions are needed.

In the APW method the space is partitioned into spheres centered at each atom site,
the so-called muffin-tins (MTs), and into the remaining interstitial region (cf. Fig. 7). The
MT spheres do not overlap and they are typically chosen such that they nearly (to al-
low for structural relaxations) fill the maximal possible space. Inside the muffin-tins, the
potential is approximated to be spherically symmetric, and in many implementations the
interstitial potential is set constant. The restrictions to the potential are commonly called
shape-approximations. Noting that planewaves solve the Schrödinger equation in a con-
stant potential, Slater suggested to replace the Bessel functions jl(Kr) in the Rayleigh
decomposition of the planewave inside the sphere by radial functions ul(K, r), which
match the Bessel functions in value at the sphere radius RMT and whose product with
the spherical harmonics YL(r̂) are the solutions in a spherical potential. It is this procedure
what is understood by the term augmentation. Thus, the single wavefunctions ψk,ν(r) are
expressed as trial functions

ψk,ν(r) =
∑

|G+k|≤Kmax

cG
k,νϕG(k, r) (38)

in terms of the APW basis functions:

ϕG(k, r) =







ei(k+G)r interstitial region
∑

lm

aµGL (k)ul(r
µ|E)YL(r̂µ) muffin-tin µ (39)

The position r inside the spheres µ located at τ
µ (see Fig. 7) is given with respect to the

center of each sphere. L abbreviates the quantum numbers l and m and ul is the regular
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solution of the radial Schrödinger equation
{

− ~2

2m

∂2

∂r2
+

~2

2m

l(l+ 1)

r2
+ V (r) −E

}

rul(r) = 0 (40)

to the energy parameter El. Here, V (r) is the spherical component of the potential V (r).
The coefficients

aµGL (k) = aµL(k + G) = 4π exp(ikτ
µ)ilY ∗

L (K̂)
jl(KR

µ)

ul(Rµ)
, K = k + G (41)

are determined from the requirement, that the wavefunctions are continuous at the bound-
ary of the muffin-tin spheres in order for the kinetic energy to be well-defined. The varia-
tional coefficients cG uniquely determine the wavefunction in the interstitial region.

If E were kept fixed, used only as a parameter during the construction of the basis, the
Hamiltonian could be set up in terms of this basis. This would lead to a standard secular
equation for the band energies where for a given k-point in the Brillouin zone (BZ) a set
of band energies Eν are determined. Unfortunately, it turns out, that the APW basis does
not offer enough variational freedom if E is kept fixed. An accurate description can only
be achieved if the energies are set to the corresponding band energiesEk,ν . In this case the
Hamiltonian matrix H depends not only on k, H(k), but also on Ek,ν , H(Ek,ν), and the
latter can no longer be determined by a simple diagonalization. Since the ul’s depend then
on the band energies, the solution of the secular equation becomes a nonlinear problem,
which is computationally much more demanding than a secular problem. One way of
solving this problem is to fix the energy E and scan over k to find a solution, i.e. find
one band at the time, instead of diagonalizing a matrix to find all the bands at a given k.
Thus, in Slater’s formulation of the methodE enters as an additional non-linear variational
parameter varying the shape of the functions ul till the optimal shape is found for the
band energies Ek,ν one has looked for. There are several other limitations connected to
the APW method. One is rather obvious, when ul(R) in Eq.(41) becomes zero at the
MT boundary, the radial function and the planewave becomes decoupled, known as the
asymptote problem. Others are beyond the scope of the chapter. Further information about
the APW method can be found in the book by Loucks17, which also reprints several early
papers including Slater’s original publication15.

There is one remaining point. Please notice that the APW method produces per con-
struction principle wavefunctions with a discontinuity in the slope at the muffin-tin bound-
ary. Due to these discontinuous first derivatives the secular equation in the APW basis

∑

G′

(〈ϕG|H − εkν |ϕG′〉 + 〈ϕG|TS|ϕG′〉)cG
′

kν = 0 (42)

contains a second term due to the matrix elements 〈ψ| − ∇2|ψ〉 of the kinetic energy
operator T commonly defined as T = −∇2, which is replaced by 〈∇ψ|∇ψ〉, lead-
ing then via Green’s theorem to the appearance of additional surface integrals TS ∝
∫

ψ∗

[

(

∂ψ
∂n

)

−
−
(

∂ψ
∂n

)

+

]

dS, where +(−) indicates just outside and inside the muffin-

tin sphere. The matrix elements of TS are proportional to the difference of the logarith-
mic derivatives from the function ul, D(ul|E) =

u′
l(R)
ul(R) , and that of an empty sphere

D(jl|E) =
j′l(R)
jl(R) , taken at the sphere boundary. The logarithmic derivatives are related to
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Figure 8. Square of the LAPW basisfunction generated for G = 0 and k at the origin (Γ-point) (left) and
boundary (M-point) (right) of the Brillouin zone of a 3-layer thin film of Cu(100). The cuts are taken in the
{110} plane. The basisfunctions are optimally suited to represent 4s states of Cu (left) and 4p states (right).

the phase shifts in scattering events. Thus, the second term in Eq.(42) can be interpreted
describing the scattering of a planewave coming from the crystal at the sphere of the atoms.
It is well-known that the logarithmic derivatives and the phase shifts are energy dependent
quantities, which explains the explicit energy dependence of the APW Hamiltonian in par-
ticular, and all nonlinear electronic structure methods in general.

3.2 The LAPW Basisfunctions

To avoid the problems connected with the APW method resulting from the energy depen-
dence of the Hamiltonian, in the middle of the seventies linearized methods were invented
by Andersen19 and Koelling and Arbman20. Based on an idea proposed by Marcus22, the
basis functions ul in the muffin-tins were supplemented by their energy derivatives u̇l, but
both, ul and u̇l, are now evaluated at a fixed energy El. The original energy dependence
of the radial basis-function is thereby replaced by the Taylor series:

ul(E) = ul(El) + (E −El)u̇l(El) + ... (43)

terminated after the linear term. In this way, the wavefunctions are affected by an error
which is quadratic in the deviation of the eigenvalue E from the energy parameter El, the
error in the eigenvalues enter only to fourth order20. With this extension, the explicit form
of the basis functions is now:

ψG(k) =

{

exp(i(k + G)r) interstitial
∑

l,m

(

aµ,Glm (k)uµl (r) + bµ,Glm (k)u̇µl (r)
)

Ylm(r̂µ) muffin-tin µ.
(44)

Examples of LAPW basisfunctions are shown in Fig. 8. The values of the coefficients
aµ,Glm (k) and bµ,Glm (k) are determined to ensure continuity in value and derivative of the ba-
sis functions across the muffin-tin boundary. (A detailed description of these coefficients
will follow in Sect. 4.2.3.) Thereby, also the surface integrals

∫

ψ∗
(

∂ψ
∂n

)

dS which were
encountered in the APW method disappear. In this way, the energy dependence of the

17



Energy

lo
g.

 d
er

.

2s1s 3s

Figure 9. Schematic drawing of the logarithmic derivative, u
′
l(R)

ul(R)
, for l = 0 as function of the energy. The

asymptotes indicate where the nodes of the wavefunction pass through the muffin-tin radius. They separate the
branches labeled 1s, 2s and 3s.

Hamiltonian is removed, simplifying the eigenvalue problem, Eq.(15), to a standard prob-
lem of linear algebra. Instead of working with ul and u̇l several LAPW implementations
follow the ASW idea, working only with ul but for two different energy parametersEl and
E′
l . As we see below working with ul and u̇l is rather elegant.

If Ĥµ
sp denotes the spherical Hamiltonian in Eq.(40), u̇ can be determined from the

energy derivative of this equation at El:

Ĥµ
spu̇

µ
l = Elu̇

µ
l + uµl . (45)

The normalization of the radial functions is usually chosen like: a

∫ Rµ

0

r2uµl
2
dr = 1 (46)

and the energy derivatives, u̇µl , are orthogonal to the radial functions, i.e.
∫ Rµ

0

r2uµl u̇
µ
l dr = 0 (47)

a relation, which will simplify the calculation of the elements of the Hamilton matrix.
Stimulated by the idea of the LAPW basis set, one may ask to improve the basis set

by matching only the 1st derivative continuously, but also higher derivatives working with
higher energy derivatives of ul. This approach has actually been followed by Takeda and
Kübler69 using n energy parameters to match the wavefunction continuously till the (n −
1)st derivative. However, it turned out that such wavefunctions are variationally very stiff
and the convergence of the results with respect of the number of basis functions is rather
slow. This can be understood by following this procedure up to the extreme were the

aIn the many LAPW-codes, the electrons in the muffin-tin are treated in the scalar-relativistic approximation35 .
This means that a two-component wavefunction is used and the normalization conditions are modified accord-
ingly. For the continuity conditions, only the “large component” of the radial function is taken into account. To
keep the formalism as simple as possible, in the following we will discuss only the non-relativistic case.
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wavefunction matches to all derivatives. Then we know, the ul must be the Besselfunction
jl or the planewave, respectively. We have already argued before that this requires an
infinite number of planewave to describe the wavefunction at the 1/r singularity. Thus, it
is a great merit of the LAPW basis set, that the basis set is linear, but nearly as efficient as
the APW method. The speed of convergence with respect to the number of basisfunctions
can even be improved by the introduction of local orbitals (see Sect. 3.3).

The energies El are chosen to minimize the linearization errors, i.e. in the center of
gravity of the l-like bands. It should be noticed here, that the choice of the energy parameter
in a certain sense also determines the nodal structure of the wavefunction. A basis function,
where the l = 1 energy parameter is chosen to describe a 2s-like wavefunction in a certain
muffin-tin, will not be suitable to describe a 3s or a 1s state. The energy parameter is then
said to be within the 2s branch (cf. Fig. 9). The flexibility of the basis function of course
also depends on the size of the muffin-tin radius, R, so that with the choice of a smaller R
in some cases two branches can be forced to “collapse” to a single branch70. On the other
hand, a smaller flexibility allows to separate core- from valence states in a calculation.
Thus, in a typical calculation only high-lying valence states are calculated (e.g. 3s, 3p,
3d), while very localized states (e.g. 1s, 2s, 2p) are excluded from the calculation. These
states are then treated in a separate, atomic like, calculation using the l = 0 part of the
muffin-tin potential.

As a final point, we will address the question how large l should be in a realistic calcu-
lation. Since the a and b coefficients in Eq.(44) should ensure continuity across the muffin-
tin boundary, the plane-wave cutoff, Gmax and the l cutoff, lmax, are normally chosen to
match: A planewave with wavevector Gmax (given in inverse atomic units) has Gmax/π
nodes per atomic unit. A spherical harmonic with l = lmax has 2lmax nodes along a great
circle on the muffin-tin sphere, i.e. there are lmax/(πR) nodes per atomic unit. Therefore,
a reasonable choice of the cutoffs is lmax = RGmax, typically lmax = 8 is chosen.

3.3 Local Orbitals: LAPW+LO and APW+lo

In certain materials high-lying core states, the so-called semicore states, pose a problem to
LAPW calculations: they are too delocalized to be described as core electrons (contained
entirely in the muffin-tin), but the energy parameter El, which would be needed for their
description, is already used to describe higher lying valence states. E.g. the 5p levels of
La are too high in energy to be neglected in total energy calculations43. Several possible
strategies have been proposed to overcome this problem: The above mentioned reduction
of the size of the muffin-tin radius70, so-called two-window calculations71, and the use of
local orbitals43.

The local orbitals are an extension to the FLAPW basis, that can be used to improve
the variational freedom for a specific purpose, e.g. to improve the representation of the
semicore states. The extra basis functions are completely localized inside the muffin-tin
spheres, i.e. their value and derivative falls to zero at the muffin-tin radius. Thus, no addi-
tional boundary conditions have to be satisfied. This can be achieved via a linear combi-
nation including three radial functions, the standard FLAPW functions uµl and u̇µl plus a
further radial function uµlo. This new radial function is constructed in the same way as uµl ,
but with a different energy parameter Eµlo. If the local orbitals are used to treat semicore
states, this energy parameter is set to the energy of these states. The local orbitals can be
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used very specifically, e.g. if they are applied to the 5p semicore states of tungsten only
local orbitals with p-character are added to the basis.

The three functions uµl , u̇µl and uµlo have to be combined, so that the value and the
derivative of the local orbital go to zero at the muffin-tin radius. Additionally, the resulting
radial functions can be required to be normalized. Hence, to determine the coefficients of
the radial functions ãµlo, b̃µlo and c̃µlo we make use of the following three conditions:

ãµlou
µ
l (R

µ) + b̃µlou̇
µ
l (R

µ) + c̃µlou
µ
lo(R

µ) = 0 (48)

ãµlo
∂uµl
∂r

(Rµ) + b̃µlo
∂u̇µl
∂r

(Rµ) + c̃µlo
∂uµlo
∂r

(Rµ) = 0 (49)
∫ Rµ

0

(ãµlou
µ
l (R

µ) + b̃µlou̇
µ
l (R

µ) + c̃µlou
µ
lo(R

µ))2r2dr = 1 (50)

Where lo is the index of the local orbital, which is necessary because more than one local
orbital can be added for each atom. The local orbitals are finally coupled to “fictitious”
planewaves, Glo, in the same way as the FLAPW basis functions:

ϕµ,lo
Glo

(k, r) =
∑

m

(

aµGlo

Lo (k)uµl + bµGlo

Lo (k)u̇µl + cµGlo

Lo (k)uµlo

)

YL(r̂) (51)

with

aµGlo

Lo (k) = ei(k+Glo)τ µ

ãµlo4π
1

W
il Y ∗

L ( ̂k + Glo) (52)

and similarly for the b and c coefficients (cf. Eq.(79)).
It should be noted here that, although originally developed to treat semicore states, the

LAPW+LO scheme allows also the treatment of higher lying states, that are far above the
energy parameters El of conventional LAPW and which are impossible to describe with
decent accuracyb. Similar concepts have been explored by Krasovskii and Schattke72, 73 in
the extended LAPW method.

Another drawback of the linearized methods (as compared to the APW method) is
the slower convergence of the results (e.g. eigenvalues) with respect to the number of basis
functions that are used in the calculation. The condition of continuous first derivative at the
muffin-tin boundary made the LAPW basis functions “stiffer” as compared to the APW’s.
Although the LAPW’s are flexible in describing wavefunctions far from the linearization
energy El, they provide a poorer basis close to El. This leads to an increasing number
of LAPW’s, that have to be used to describe the wavefunction. An alternative way of lin-
earizing the APW method has been proposed by Sjöstedt et al.44: The APW basis functions
(Eq.(39) but now evaluated at a fixed energy) are complemented within the muffin-tin by
another type of local orbitals:

ϕµ,lo
Glo

(k, r) =
∑

m

(

aµGlo

Lo (k)uµl + bµGlo

Lo (k)u̇µl

)

YL(r̂) (53)

which are evaluated at the same energy as the the APW’s. The coefficients a and b are
chosen such, that this local orbital vanishes at the muffin-tin boundary. This introduces

bOf course accuracy refers here always to the linearization error in comparison to the APW method. Whether an
accurate description of individual states, especially higher lying ones, is possible in DFT at all is not our concern
here.
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again a discontinuous first derivative at the muffin-tin radius, and the surface integral, that
appeared in the APW method, has to be calculated. But in many cases this (small) addi-
tional numerical effort is compensated by a faster convergence with respect to the number
of basis functions. Especially for structures with atoms with small muffin-tin radius (like
O or N) this APW+lo method can lead to significant savings in computing time44, 74. The
question, up to which l the APW’s should be supplemented with these lo’s without intro-
ducing too large computational costs and from which l on a normal (L)APW basis-set can
be used without causing numerical errors has been investigated by Madsen et al.74.

4 The FLAPW Method

4.1 The Concept of FLAPW

The full-potential LAPW method (FLAPW)24, 12 combines the choice of the LAPW ba-
sis set with the treatment of the full-potential and charge density without any shape-
approximations in the interstitial region and inside the muffin-tins. This generalization
is achieved by relaxing the constant interstitial potential V 0

I and the spherical muffin-tin
approximation V 0

MT (r) due to the inclusion of a warped interstitial
∑

V G

I eiGr and the
non-spherical terms inside the muffin-tin spheres:

V (r) =















∑

G

V G

I eiGr interstitial region
∑

L

V LMT (r)YL(r̂) muffin-tin
(54)

This method became possible with the development of a technique for obtaining the
Coulomb potential for a general periodic charge density without shape-approximations
and with the inclusion of the Hamiltonian matrix elements due to the warped interstitial
and non-spherical terms of the potential. The charge density n, is represented analogously
to Eq.(54), just exchanging V by n. Details of the solution of the Poisson equation for an
arbitrarily shaped periodic potential are described in Sect. 4.6.

4.2 Construction of the Hamiltonian Matrix

The FLAPW Hamiltonian and overlap matrices consist of two contributions from the two
regions into which space is divided.

H = HI + HMT and S = SI + SMT (55)

Both contributions have to be computed separately.

4.2.1 Contribution of the Muffin-Tins

Writing the product of the radial functions u with the spherical harmonics as φL = ulYL,
the contribution of the muffin-tin to the Hamiltonian matrix and the overlap matrix is given
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by:

HG
′
G

MT (k) =
∑

µ

∫

MTµ

(

∑

L′

aµG
′

L′ (k)φαL′(r) + bµG
′

L′ (k)φ̇αL′ (r)

)∗

ĤMTα

(

∑

L

aµGL (k)φαL(r) + bµGL (k)φ̇αL(r)

)

d3r (56)

(The overlap matrix SG
′
G

MT (k) is obtained by replacing ĤMTα by 1.) It is distinguish
between the atom index µ and the atom type index α(µ). In most application they are
symmetry equivalent atoms in the unit cell, i.e. some atoms can be mapped onto each
other by space group operations. Clearly, these atoms must possess the same physical
properties, e.g. the potential has to be equal. As a consequence, the Hamiltonian and the
basis functionsϕαL(r) do not differ among the atoms of the same type. This fact is exploited
in that the muffin-tin potential of an atom type is only stored once for the representative
atom, and the matrices Eq.(58) is also calculated for the representative only. ĤMTα is
the scalar relativistic Hamiltonian operator. It can be split up into two parts, the spherical
Hamiltonian Ĥsp (cf. Eq. (40)) and the nonspherical contributions to the potential Vns.

ĤMTα = Ĥα
sp + V αns (57)

The above integrations contain the following type of matrix elements.

tαφφL′L =

∫

MTα
φαL′(r)ĤMTαφ

α
L(r)d3r (58)

These matrix elements do not depend on theAµGL (k) andBµGL (k) coefficients. Thus, they
are independent of the Bloch vector and need to be calculated only once per iteration. The
functions φαL and φ̇αL have been constructed to diagonalize the spherical part Ĥα

sp of the
muffin-tin Hamiltonian ĤMTα :

Ĥα
spφ

α
L = Elφ

α
L and Ĥα

spφ̇
α
L+ = Elφ̇

α
L + φαL. (59)

Multiplying these equations with φαL′(r) and φ̇αL′(r) respectively and integrating over the
muffin-tins gives

〈φαL′ |Ĥα
spφ

α
L〉MTα = δll′δmm′El ; 〈φαL′ |Ĥα

spφ̇
α
L〉MTα = δll′δmm′

〈φ̇αL′ |Ĥα
spφ

α
L〉MTα = 0 ; 〈φ̇αL′ |Ĥα

spφ̇
α
L〉MTα = δll′δmm′El〈u̇αl |u̇αl 〉MTα (60)

Where the normalization condition for uαl has been used. So, only the expectation values
of the nonspherical part of the potential are left to be determined. Since the potential is
also expanded into a product of radial functions and spherical harmonics,

V α(r) =
∑

L′′

V αL′′(r)YL′′ (r̂), (61)

the corresponding integrals consist of product of a radial integrals and angular integrals
over three spherical harmonics, the so-called Gaunt coefficients:

tαφφL′L =
∑

l′′

Iαuul′ll′′G
m′mm′′

l′ll′′ + δll′ δmm′El (62)
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with

Gmm
′m′′

ll′l′′ =

∫

Y ∗
lmYl′m′Yl′′m′′dΩ and Iαuul′ll′′ =

∫

uαl′(r)u
α
l (r)V αl′′ (r)r

2dr (63)

as well as similar expressions for Iαuu̇l′ll′′ and others. The I matrices contain the radial
integrals. Finally, the Hamiltonian and overlap matrix elements become

HG
′
G

MT (k) =
∑

µ

∑

L′L

(aµG
′

L′ (k))∗tαφφL′La
µG
L (k) + (bµG

′

L′ (k))∗tαφ̇φ̇L′L b
µG
L (k)

+(aµG
′

L′ (k))∗tαφφ̇L′L b
µG
L (k) + (bµG

′

L′ (k))∗tαφ̇φL′La
µG
l (k) (64)

SG
′
G

MT (k) =
∑

µ

∑

L

(aµG
′

L (k))∗aµGL (k) + (bµG
′

L (k))∗bµGL (k)〈u̇αl |u̇αl 〉MTµ (65)

4.2.2 The Interstitial Contribution

The interstitial contributions to the Hamiltonian and overlap matrix have the following
form.

HGG
′

I (k) =
1

Ω

∫

I

e−i(G+k)r

(

− ~2

2m
4 +V (r)

)

ei(G
′
+k)rd3r (66)

SGG
′

I =
1

Ω

∫

I

e−i(G+k)rei(G
′
+k)rd3r (67)

The potential is also expanded into planewaves in the interstitial region.

V (r) =
∑

G
′

V
G

′ e−iGr (68)

Without the existence of the muffin-tin spheres the integration would stretch over the entire
unit cell and the integration becomes rather simple. The kinetic energy is diagonal in
momentum space and the potential is local, diagonal is real space and of convolution form
in momentum space.

HGG
′

I (k) =
~2

2m
|G + k|2δ

GG
′ + V(G−G

′ )

SGG
′

I = δ
GG

′

However, these matrix elements are not as straightforward to calculate as they appear at
first glance, because of the complicated structure of the interstitial region. The integrations
have to be performed only in between the muffin-tins. Therefore, a step function Θ(r) has
to be introduced, that cuts out the muffin-tins.

Θ(r) =

{

1 interstitial region
0 muffin-tins (69)
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Using the step function the matrix elements can be written:

HGG
′

I (k) =
1

Ω

∫

cell

e−i(G−G
′
)rV (r)Θ(r)d3r

+
1

2
(G

′

+ k)2
1

Ω

∫

cell

e−i(G−G
′
)rΘ(r)d3r (70)

SGG
′

I =
1

Ω

∫

cell

e−i(G−G
′
)rΘ(r)d3r (71)

In momentum space Eq.(70) becomes:

HGG
′

I (k) = (VΘ)(G−G
′ ) +

~2

2m
(G

′

+ k)2Θ(G−G
′ ) (72)

SGG
′

I = Θ(G−G
′ ) (73)

Where ΘG and (VΘ)G are the Fourier coefficients of Θ(r) and V (r)Θ(r) respectively.
Apparently these coefficients are needed up to a cut-off of 2Gmax. The step function can
be Fourier transformed analytically.

ΘG = δG,0 −
∑

µ

e−iGτ µ 4π(RαMT )3

Ω

j1(GR
α
MT )

GRαMT

where τ
µ indicates the position of atom µ. The Fourier transform of the product of V (r)

and Θ(r) is given by a convolution in momentum space.

(VΘ)G =
∑

G
′

V
G

′ Θ(G−G
′)

This convolution depends on both, G and G
′

, therefore the numerical effort increases
like (Gmax)

6. However, (V Θ)G can be determined more efficiently, using Fast-Fourier-
Transform (FFT). In Fig. 10 it is shown schematically how (VΘ)G can be obtained using
FFT. Using this scheme the numerical effort increases like (Gmax)

3 ln(Gmax)
3 withGmax.

(r)

V(G)

analytic F.T.

(V

Θ

Θ)(G)
cut-off 2Gmax

(G)Θ~ FFT

V(r)

(r)Θ~

(VΘ)(r)
FFT

FFT~

Figure 10. Schematic representation of the calculation of (V Θ)G. First Θ(r) is Fourier transformed analytically
with a cut-off of 2Gmax yielding Θ̃G. Then Θ̃G and VG are fast Fourier transformed and multiplied on a real
space mesh. Finally, the result (V Θ̃)(r) is back-transformed to momentum space.
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S

S gSα

µ

µαp p

Figure 11. Local coordinate frames inside each muffin-tin.

4.2.3 The Muffin-Tin a- and b-Coefficients

Within FLAPW the electron wavefunctions are expanded differently in the interstitial re-
gion and the muffin-tins. Each basis function consists of a planewave in the interstitial,
which is matched to the radial functions and spherical harmonics in the muffin-tins. The
coefficients of the function inside the spheres are determined from the requirement, that the
basis functions and their derivatives are continuous at the sphere boundaries. These coef-
ficients play an important role. In this section we will therefore discuss how the matching
conditions can be solved and what properties they induce.

In many systems that the FLAPW method can be applied to some atoms are symmetry
equivalent, i.e. these atoms can be mapped onto each other by a space group operation
{R|t}. Such a group of atoms is called an atom type, represented by one of the atoms. Let
{Rµ|tµ} the operation that maps the atom µ onto its representative. This atom can now be
assigned a local coordinate frame Sµ (cf. Fig. 11), where the origin of Sµ is at the atoms
position τ

µ. The local frame is chosen such that the unit vectors of the local frame Sµ

are mapped onto those of the global frame by Rg (RµSµ = Sg). The local frame of the
representative atom Sα is only translated with respect to the global frame, i.e. the same
rotation Rµ maps Sµ onto Sα. The potential (and other quantities) inside the muffin-tins
can now be written in terms of the local coordinate system. Due to the symmetry we find
VMTα(rα) = VMTµ(rµ), where r

α and r
µ are expanded in terms of the local frames Sα

and Sµ respectively. As a consequence the radial functions ul(r) and the t-matrices are the
same for all atoms of the same type. This way symmetry is exploited to save memory and
computer time (during the calculation of the t-matrices).

Any planewave can be expanded into spherical harmonics via the Rayleigh expansion.

eiKr = 4π
∑

L

il jl(rK) Y ∗
L (K̂) YL(r̂) (74)

Where r = |r|, K = |K| and K abbreviates (G + k). Looked at from the local frame
K and τ

µ appear rotated, besides the origin of the local frame is shifted. Therefore, the
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planewave has the following form in the local frame:

ei(R
µ
K)(r+R

µτ µ) (75)

Thus, the Rayleigh expansion of the planewave in the local frame is given by:

eiKτ µ

4π
∑

L

il jl(rK) Y ∗
L (Rµ

K̂) YL(r̂) (76)

The requirement of continuity of the wavefunctions at the sphere boundary leads to the
equation:

∑

L

aµGL (k) ul(RMTα)YL(r̂) + bµGL (k) u̇l(RMTα)YL(r̂)

= eiKτ µ

4π
∑

L

il jl(rK) Y ∗
L (Rµ

K̂) YL(r̂), (77)

where RMTα is the muffin-tin radius of the atom type α. The second requirement is, that
the derivative with respect to r, denoted by ∂/∂r = ′, is also continuous.

∑

L

aµGL (k) u′l(RMTα)YL(r̂) + bµGL (k) u̇′l(RMTα)YL(r̂)

= eiKτ µ

4π
∑

L

il Kj′l(rK) Y ∗
L (Rµ

K̂) YL(r̂) (78)

These conditions can only be satisfied, if the coefficients of each spherical harmonic YL(r̂)

are equal. Solving the resulting equations for AµGL (k) and BµGL (k) yields:

aµGL (k) = eiKτ µ

4π
1

W
il Y ∗

L (Rµ
K̂)

[u̇l(RMTα)Kj′l(RMTαK) − u̇′l(RMTα )jl(RMTαK)]

bµGL (k) = eiKτ µ

4π
1

W
il Y ∗

L (Rµ
K̂)

[u′l(RMTα)jl(RMTαK) − ul(RMTα )Kj′l(RMTαK)] .

(79)

The Wronskian W is given by:

W = [u̇l(RMTα)u′l(RMTα ) − ul(RMTα )u̇′l(RMTα)] (80)

4.3 Brillouin-Zone Integration and Fermi Energy

In the current implementation of the FLAPW method the Fermi energy is determined in
two steps. First the bands are occupied (at all k-points simultaneously), starting from the
lowest energy, until the sum of their weights equals the total number of electrons per unit
cell, i.e. the discretized equivalent of Eq.(27) is solved at T = 0. Then, the step function is
replaced by the Fermi and the Fermi energy is determined from the requirement that:

N =
∑

k

∑

ν

w(k, εν(k) −EF ) (81)
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Where the weights are given by:

w(k, εν(k) −EF ) = w(k)
1

e(εν(k)−EF )/kBT + 1
(82)

The weights w(k, εν(k) −EF ) are stored to be used for later Brillouin zone integrations.

4.4 Representation of the Density and the Potential

The expansion of the charge density n and the potential is very similar to expansion of
the wavefunction. In the interstitial-region the two quantities are expanded into three-
dimensional planewave, inside the muffin-tins they are represented by spherical harmonics
and radial functions, which are store on an exponential mesh and in the vacuum they are
expanded into two-dimensional planewave and z-depended functions, which are also given
on an exponential mesh. However, the charge density is given by Eq.(1), which contains
contains terms of the form ei(G−G

′)r. Consequently, for a consistent representation the
charge density cut-off has to be twice the wavefunction cut-off Gmax. In Sect. 4.2.2 we
explained, that the potential is also needed up to cut-off of 2Gmax. This leads to a large
number of coefficients, that need to be stored. Fortunately, this number can be reduced, if
the symmetry of the system is exploited.

Of course, the charge density and the potential posses the lattice symmetry. Therefore,
the expansion into planewaves is more general than necessary. The Planewaves can be
replaced by symmetrized planewaves, the so called stars. They are defined by:

Φ3D
s (r) =

1

Nop

∑

op

eiRG(r−t), (83)

where {R|t} are the symmetry operation of the lattice space group; if all the translation
vectors t are zero, the space group is call symmorphic. By this construction all planewaves,
that are symmetry equivalent, are combined to form one star. The two-dimensional stars
Φ2D
s (r) are defined in the same way, applying the operations of the two-dimensional space

group only.
The same arguments can be applied to the expansion of the n (V ) inside the muffin-tins.

In this case the relevant symmetry group is the point group of the atom under considera-
tion. Thus, different expansions are used at different atoms in general. The symmetrized
functions are called lattice harmonics and they are linear combinations of spherical har-
monics

Kν(r̂) =
∑

m

cαν,mYL(r̂). (84)

The lattice harmonics are real, orthonormal and invariant under the point group operations.
Finally, the expansion of the the charge density has the form

n(r) =

{
∑

s nsΦ
3D
s (r) r ∈ I

∑

ν n
α
ν (r)Kν(r̂) r ∈MTα

(85)

The potential is expanded in exactly the same way.
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4.5 Construction of the Electron Density

In this section we will discuss the determination of the charge density from the eigenfunc-
tions. In density functional calculations of an infinite periodic solid, the electron density is
given by an integral over the Brillouin zone (cf. Eq.(27)).

n(r) =
1

VBZ

∫

BZ

∑

ν,εν(k)<EF

|ψν(k, r)|2d3k (86)

Where VBZ is the volume of the Brillouin zone, ν is the band index and EF is the Fermi
energy. In spin-polarized calculations the summation includes also the spin-index σ (cf.
Sect.2.3), while in a non-magnetic calculation a factor “2” has to be added to account for
the spin-degeneracy. In the case of film calculations the three-dimensional Brillouin zone
is replaced by a two-dimensional Brillouin zone. In both cases integration methods that
sample eigenfunctions and the eigenvalues on discrete k-point are used to compute the
integrals. These methods transform the integration into a weighted sum over the k-points,
where the choice of k-points and their weights depend on the integration method used.
These weights depend not only on the k-point, but also on the energy of a band, i.e. on
the band (index), because each band contributes to the electron density only if its energy is
below the Fermi energy.

n(r) =
∑

k

∑

ν

|ψν(k, r)|2w(ν,k) (87)

Within the FLAPW method the eigenfunctions are represented in terms of the coefficients
of the augmented planewaves.

ψν(k, r) =
∑

G

cGν (k)ϕG(k, r) (88)

Inside the muffin-tin spheres each planewave is coupled to a sum of spherical harmonics
and radial functions. Hence, in a sphere µ an eigenfunction is given by:

ψµν (k, r) =
∑

G

cGν (k)
∑

L

aµGL (k)uαl (r)YL(r̂) + bµGL (k)u̇αl (r)YL(r̂) (89)

The aµGL (k) and bµGL (k) coefficients can be replaced by band dependent A- and B-
coefficients, obtained by performing the contraction over the planewaves:

ψµν (k, r) =
∑

L

aµL,ν(k)uαl (r)YL(r̂) + bµL,ν(k)u̇αl (r)YL(r̂), (90)

where

AµL,ν(k) =
∑

G

cGν (k)aµGL (k), BµL,ν(k) =
∑

G

cGν (k)bµGL (k). (91)

4.5.1 “l-like” Charge

Since the wavefunctions are expanded into spherical harmonics inside the muffin-tin
spheres, they can be split up into contributions with a certain l-character.

ψµν (k, r) =
∑

l

ψµν,l(k, r) (92)
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The particle density of a certain state depends on the square of the wavefunction. There-
fore, it contains cross-terms with a mixture of different l’s.

nµν (r) =
1

VBZ

∫

BZ

∑

l

|ψµν,l(k, r)|2 +
∑

l′l

2
(

ψµν,l′(k, r)
)∗

ψµν,l(k, r)d
3k. (93)

If, however, the density is integrated over the muffin-tin, the cross-terms vanish because
of the orthogonality of the spherical harmonics. Thus, the total electron density inside a
sphere can be written as a sum over contributions with definite l-character.

nµν =
∑

l

nµν,l, nµν,l =
1

VBZ

∫

BZ

∫

MTµ

|ψµν,l(k, r)|2d3rd3k. (94)

Where nµν,l is called “l-like” charge. We can also define a k-dependent l-like charge by:

nµν,l(k) =

∫

MTµ

|ψµν,l(k, r)|2d3r. (95)

Substituting Eq.(90) yields:

nµν,l(k) =

l
∑

m=−l

|AµL,ν(k)|2 + |BµL,ν(k)|2Ṅα
l , (96)

where

Ṅα
l =

∫ RMT α

0

(u̇αl (r))2r2dr (97)

and the orthogonality of the spherical harmonics, the normalization of uαl and the orthog-
onality of uαl and u̇αl have been used.

4.5.2 Determination of the Optimal Energy Parameter

In order to minimize the linearization error, the energy parameters should be chosen as
close to the band energies as possible. However, the band energies εν(k) depend on k

whereas the energy parameters Eαl are constants. In addition, the radial functions con-
tribute to the eigenfunctions of different band with different energies. Therefore, devia-
tions between εν(k) and Eαl have to be accepted. An optimal choice can be obtained from
the requirement, that the energy parameters minimize

∫

BZ

∑

ν,εν(k)<EF

(εν(k) −Eαl )
2
nµν,l(k)d3k, (98)

which is the quadratic error weighted with the amount of charge that each band contributes
to the l-like charge with the l-character of the energy parameter. Setting the derivative
(∂/∂Eαl ) equal to zero yields the optimal energy parameter:

Eαl =

(

∑

k

∑

ν

εν(k)nµν,l(k)w(ν,k)

)/(

∑

k

∑

ν

nµν,l(k)w(ν,k)

)

(99)
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4.5.3 Construction of the Electron Density in the Muffin-Tins

Substituting Eq.(90) into Eq.(86) yields the electron density in the muffin-tin spheres.

nµ(r) =
1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

L′

(

AµL′,ν(k)uαl′(r) +BµL′,ν(k)u̇αl′ (r)
)∗

Y ∗
L′(r̂).

∑

L

(

AµL,ν(k)uαl (r) +BµL,ν(k)u̇αl (r)
)

YL(r̂)d3k. (100)

The particle density inside the muffin-tins is also expanded into spherical harmonics

nµ(r) =
∑

L

CµL(r)YL(r̂). (101)

The coefficients CµL′′(r) can be determined by multiplying Eq.(100) with
∫

dΩYL′′(r̂).

CµL′′(r) =
1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

L′

(

AµL′,ν(k)uαl′(r) +BµL′,ν(k)u̇αl′(r)
)∗

∑

L

(

AµL,ν(k)uαl (r) +BµL,ν(k)u̇αl (r)
)

Gmm
′m′′

ll′l′′ d3k, (102)

where it has been used, that the Gaunt coefficients are real, i.e.
∫

YlmY
∗
l′m′Y ∗

l′′m′′dΩ =

∫

Y ∗
lmYl′m′Yl′′m′′dΩ (103)

Finally, applying a Brillouin zone integration method yields:

CµL′′(r) =
∑

l′l

(

∑

k

∑

ν

∑

m′m

(

AµL′,ν(k)
)∗

AµL,ν(k)Gmm
′m′′

ll′l′′ w(ν,k)

)

uαl′(r)u
α
l (r)

+ · · ·A∗B +B∗A+B∗B · · · . (104)

4.5.4 Construction of the Electron Density in the Interstitial Region

In the interstitial region the wavefunctions are represented in the following form.

ψν(k, r) =
∑

G

cGν (k)ei(G+k)r (105)

Starting from Eq.(1) the electron density is given by:

n(r) =
1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

G′G′′

(

cG
′

ν (k)
)∗

cG
′′

ν (k)d3kei(G
′′−G

′)r (106)

The electron density in the interstitial region is also expanded into planewaves.

n(r) =
∑

G

nGeiGr (107)

Hence, the planewave coefficients of the electron density are:

nG =
1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

G
′
G

′′

G
′′−G

′=G

(

cG
′

ν (k)
)∗

cG
′′

ν (k)d3k (108)
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Apparently, the planewave cut-off of the particle density has to be twice the cut-off of
the wavefunction expansion (Gmax) to allow an accurate description. The k and state
dependent density

nG

ν (k) =
∑

G
′
G

′′

G
′′−G

′=G

(

cG
′

ν (k)
)∗

cG
′′

ν (k) =
∑

G′

(

cG
′

ν (k)
)∗

c(G+G
′)

ν (k) (109)

is given by a convolution in momentum space. For each coefficient a sum over G has to be
performed. Consequently, the numerical effort put into the determination of nG

ν (k) scales
proportional to the number of G-vectors squared, i.e. proportional to (Gmax)

6. However,
nG
ν (k) can be calculated more efficiently using the fast Fourier transform (FFT). First,
cGν (k) is Fourier transformed to real space, where it is squared on a real space mesh yield-
ing nν(k, r), then all states are summed up and finally the resulting particle density is
back-transformed to momentum space.

cGν (k)
FFT−→ ψν(k, r)

square−→ nν(k, r)
P

ν−→ n(k, r)
FFT−1

−→ nG(k)

With this scheme the numerical effort increases proportional to (Gmax)
3 lnGmax)

3, which
is a major improvement for large systems. In a last step the planewaves have to be com-
bined to form the three-dimensional stars.

4.6 Construction of the Coulomb Potential

The Coulomb potential consists of two parts, the Hartree term VH (r) and the external
potential of the nuclei Vi(r).

Vc(r) = VH (r) + Vi(r) (110)

The Hartree potential has to be determined from the charge density via the Poisson equa-
tion.

∆VH(r) = 4πn(r) (111)

In real space the solution of Eq.(111) is given by

VH(r) =

∫

4πn(r′)

|r− r′| d
3
r. (112)

In reciprocal space, however, the Poisson equation is diagonal, as a result the solution is
very simple.

VH(G) =
4πn(G)

G2
(113)

Therefore, and because of the representation of the charge density and the potential in the
interstitial- and vacuum-region, the solution of the Poisson equation in reciprocal space
appears to be convenient. However, due to the rather localized core and valence states
the charge density changes on a very small length scale near the nuclei. Therefore, the
planewave expansion of n convergences slowly, and a direct use of Eq.(113) is impractical,
if not impossible. This difficulty can be circumvent via the pseudocharge method.
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4.6.1 The Pseudocharge Method

The pseudocharge method, developed by Weinert23, is a very elegant technique to calculate
the interstitial and vacuum Hartree potential. The underlying idea is to divide the solution
of the Poisson equation into two steps. In the first step the true muffin-tin charge is replaced
by a convergent pseudocharge density ñ, that leads to the same potential outside the muffin-
tins. Then, the interstitial (and vacuum) potential is calculated in reciprocal space. In
the second step the muffin-tin potential is determined from the Dirichlet boundary value
problem, defined by the exact muffin-tin charge and the interstitial potential on the muffin-
tin sphere boundaries. The potential outside the the muffin-tin spheres due to a charge
distribution inside the sphere is determined completely by its multipole moments qL.

V (r) =
∞
∑

l=0

l
∑

m=−l

4π

2l+ 1

qL
rl+1

YL(r̂), (114)

However, the multipole moments do not define the charge density uniquely. The charge
density is given by:

n(r) = nI(r)Θ(r ∈ I) +
∑

α

nα(r)Θ(r ∈MTα) (115)

Of course, in film calculation there is also a vacuum charge, and we will come back to this
later. Eq.(115) can be rewritten

n(r) = nI(r) +
∑

α

[nα(r) − nI(r)]Θ(r ∈MTα). (116)

Thus, the interstitial charge has been extended into the muffin-tin and subtracted there
again. The second term in Eq.(116) can now be replaced by a pseudocharge ñα, that has
the same multipole moments (cf.23 for details). The resultant pseudocharge ñ is given by

ñ(r) = nI(r) +
∑

α

q̃α(r) (117)

ñ(r) is constructed to have a more rapidly converging Fourier expansion than the original
charge density n(r). Therefore, the Poisson equation can now be solved using Eq.(113).

Still, the muffin-tin potential V αMT remains to be determined. For this step the exact
muffin-tin charge nα has to be used. Since, the interstitial potential is already known at
this point, the calculation of V αMT constitutes a classical spherically symmetric Dirichlet
boundary value problem, which can be solved by the Green’s function method75.

V αMT (r) =

∫

MTα

nα(r′)G(r, r′)d3r′ − R2
α

4π

∮

Sα

VI(r
′)
∂G

∂n′
dΩ′ (118)

The second integral is over the muffin-tin sphere boundary Sα, and it is necessary to satis-
fies the boundary conditions. The Green’s function is given by:

Gα(r, r′) = 4π
∑

l,m

YL(r̂′)YL(r̂)

2l + 1

rl<
rl+1
>

(

1 −
(

r>
RMTα

)2l+1
)

(119)
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where r> = max{|r|, |r′|}, r< = min{|r|, |r′|}. Finally, the muffin-tin potential has to
be expanded into lattice harmonics Kν(r̂).

V αMT (r) =
∑

ν

V αMT,ν(r)Kν(r̂) (120)

The potential of the nuclei V αi (r) = eZα

|r| is added to the spherical (l = 0) component of
the potential V αMT,0(r).

The muffin-tin potential is computed in the same way for both, bulk and film calcula-
tions. Apparently, the interstitial and the vacuum have to be treated differently is the two
cases, due to the different boundary conditions and the different representation of the vac-
uum potential. Therefore, the next two sections the solution of the Poisson equation will
be outlined separately for these cases in.

4.6.2 Determination of the Interstitial Coulomb Potential in Bulk Calculations

In the case of bulk calculations we have periodic boundary conditions in three dimensions.
Therefore, the solution of the Poisson equation,

G
2V (G) = 4πñ(G) (121)

is very simple. Obviously, this equation can only be solved, if ñ(0) = 0. Since ñ(0) is the
average charge density, this means, that charge neutrality is essential. Still, V (0) remains
undetermined by Eq.(121), i.e. one has the freedom to shift the potential by a constant.
This is a consequence of the periodic boundary conditions, because they do not fix the
reference of the potential. Usually V (0) is chosen to be zero, hence the Coulomb potential
in the interstitial-region is given by:

VI (r) =
∑

G6=0

4πñ(G)

G2
eiGr =

∑

s6=0

4πñs
G2
s

Φ3D
s (r) (122)

where the first summation is expressed in terms of G-vectors and the second in terms of
stars.

4.7 Computation of the Exchange Correlation Potential

The problem of the determination of the exchange correlation potential is quit different
from the Coulomb potential. On one hand, V σ

xc is a local quantity, i.e. V σxc(r) depends
only on n↑(r) and n↓(r) at the same position r. Thus, the muffin-tins, the interstitial- and
vacuum-region can be treated independently. On the other hand, V σ

xc and εσxc are non-linear
functions of n↑ and n↓. Therefore, V σxc and εσxc have to be calculated in real space. V σxc and
εσxc are determined in the same way. First, n↑ and n↓ are transformed to real space, where
V σxc and εσxc are calculated. Then, V σxc and εσxc are back-transformed. Then, V σxc is added to
the Coulomb potential, yielding the spin-dependent potential V↑ and V↓. εσxc is needed for
the determination of the total energy.
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4.7.1 Calculation of ε
σ

xc
and V

σ

xc
in the Interstitial-Region

In the interstitial-region the charge density is expanded into three-dimensional stars with
coefficients nσs . Multiplying these by eiRGt yields the planewave coefficients nσG. If the
space group is symmorphic the star and planewave coefficients are identical. However, due
to numerical inaccuracy, the calculated coefficients of symmetry equivalent planewaves are
not exactly equal, and the corresponding star coefficient is obtained from the average of
the planewave coefficients. In the next step a three-dimensional Fast-Fourier transform is
carried out. Then, the exchange correlation potential is calculated on a real space mesh ri.
Finally, V σxc is back-transformed, and the star coefficients are computed.

nσs −→ nσG
FFT−→ nσ(ri) −→ V σxc(ri)

FFT−1

−→ V σ,Gxc −→ V σ,sxc .

4.7.2 Calculation of ε
σ

xc
and V

σ

xc
in the Muffin-Tin Spheres

The muffin-tin charge is expanded into lattice harmonics and radial functions. The radial
functions are stored on a discrete real-space mesh. Thus, the transform to real space affects
only the angular part. The charge density is calculated on a set of special angular points
r̂i = (θi, φi). Again, the exchange correlation potential is calculated in real space. There-
after, the result V σxc(r) is expanded into spherical harmonics YL. The YL are orthonormal,
therefore the coefficients can be obtained from

vσxc,L(r) =

∫

YL(r̂)V σxc(r, r̂)dΩ. (123)

The choice of the points r̂i = (θi, φi), on which nσ(r) and V σxc(r) are calculated, depends
on the integration method, that is used to perform the angular integration. In the current
implementation Eq.(123) is computed via a Gauß-Legendre integration and the angular
points are chosen such, that the orthonormality condition of the YL holds also for the
angular mesh r̂i.

5 The FLAPW-Method for Specialized Geometries

5.1 The Film Geometry for Surfaces and Thin Films

Today, the physics of surfaces and films is an field of major interest and investigation.
However, surfaces are difficult to treat, because they break the translational symmetry,
i.e. there is only the 2-dimensional symmetry parallel to the surface left to be used to
reduce the problem, and a semi-infinite problem is left perpendicular to the surface. In
our approach surfaces are approximated by thin films, typically 10–15 atomic layers thick.
Obviously, this approximation, which is called the thin-slab approximation, can only yield
good results if the interaction between the two surfaces of the film is week enough, so that
each of them shows the properties of the surfaces of an ideal semi-infinite crystal. In the
case of film calculations space is divided into three distinct regions, the muffin-tins, the
interstitial and the vacuum region (cf. Fig. 12). The interstitial region now stretches from
−D/2 toD/2 in z-direction, which is defined to be the direction perpendicular to the film.
The representation of the wavefunctions inside the muffin-tin spheres remains exactly the
same as in the bulk case. Since the periodicity along the z-direction is lost, the unit cell
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Figure 12. The unit cell in film calculations contain two semi-infinite vacuum regions.

extends principally from −∞ to ∞ in z-direction. Still the wavefunctions can be expanded
in terms of planewaves. However, the wavevectors perpendicular to the film are not defined
in terms of D, but in terms of D̃, which is chosen larger than D to gain greater variational
freedom. Therefore, the planewaves have the form

ϕG‖G⊥
(k‖, r) = ei(G‖+k‖)r‖ eiG⊥z with G⊥ =

2πn

D̃
, (124)

where G‖ and k‖ are the 2-dimensional wave- and Bloch vectors, r‖ is the parallel com-
ponent of r and G⊥ is the wavevector perpendicular to the film. The basis functions in the
vacuum region are constructed in the same spirit as the functions in the muffin-tins. They
consist of planewaves parallel to the film, and a z-dependent function uG‖

(k‖, z), which
solves the corresponding one-dimensional Schrödinger equation Eq.(125), plus its energy
derivative u̇G‖

(k‖, z).
{

− ~2

2m

∂2

∂z2
+ V0(z) −Evac +

~2

2m
(G‖ + k‖)

2

}

uG‖
(k‖, z) = 0 (125)

Evac is the vacuum energy parameter and V0(z) is the planar averaged part of the vacuum
potential. As in the case of u̇l in the muffin-tins, the function u̇G‖

(k‖, z) is calculated from
a Schrödinger-like equation, which can be obtained by deriving Eq.(125) with respect to
the energy.
{

− ~2

2m

∂2

∂z2
+ V0(z) −Evac +

~2

2m
(G‖ + k‖)

2

}

u̇G‖
(k‖, z) = uG‖

(k‖, z) (126)
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The resulting basis functions have the form

ϕG‖G⊥
(k‖, r) =

{

aG‖G⊥
(k‖)uG‖

(k‖, z) + bG‖G⊥
(k‖)u̇G‖

(k‖, z)
}

ei(G‖+k‖)r‖

(127)
The coefficients aG‖G⊥

(k‖) and bG‖G⊥
(k‖) are determined in exactly the same way as it

is done for the muffin-tins by requiring that the functions are continuous and differentiable
at the vacuum boundary. It should be mentioned, that the vacuum basis functions offer
less variational freedom than the basis set in the interstitial region does. This can be seen
by noting that there are only two functions, uG‖

and u̇G‖
times the corresponding planar

planewave, to be matched to all planewaves of the interstitial region with the same G‖. But
there are generally far more than two different G⊥’s, i.e the number of basis functions in
the vacuum region is significantly smaller than in the interstitial region. However, this can
be improved rather easily. In Eq.(125) only one energy parameter Evac is used. Instead
one can used a whole series of parameters Eivac to cover an energy region. A possible
choice of the energy parameters could be Eivac = EG⊥

vac = Evac − ~
2

2mG
2
⊥, which leads

correspondingly to G⊥ dependent basis functions uG‖G⊥
(k‖, z). For more details see

Ref.76. In general, however, the present approximations is accurate, the energy spectrum
of the electrons in the vacuum region is small due to the work-function.

Finally we would like to summarize the basis set used for thin film calculation with the
FLAPW method.

ϕG‖G⊥
(k‖, r) =







































ei(G‖+k‖)r‖ eiG⊥z interstitial

{

aG‖G⊥
(k‖)uG‖

(k‖, z)

+bG‖G⊥
(k‖)u̇G‖

(k‖, z)
}

ei(G‖+k‖)r‖ vacuum

∑

L

aµGL (k)ul(r)YL(r̂) + bµGL (k)u̇l(r)YL(r̂) MTµ

(128)

This expansion has been suggested by H. Krakauer, M. Posternak and A. J. Freeman31.
Correspondingly, the charge density and potential is expanded in the form:

n(r) =







∑

s nsΦ
3D
s (r) r ∈ interstitial region

∑

s ns(z)Φ
2D
s (r) r ∈ vacuum

∑

ν n
µ
ν (r)Kν(r̂) r ∈ MTµ

(129)

and the Hamiltonian and overlap matrix consists now of an additional term (compare to
Eq.(55)), the vacuum contribution, paying tribute that the space is now partitioned in three
regions

H = HI + HMT + HV and S = SI + SMT + SV . (130)

ns(z)Φ
2D
s contains important information for the analysis and interpretation of STM to-

pography and spectroscopy results on the basis of the Tersoff-Hamann model77 as worked
out by Heinze et al.78.

5.2 The Wire Geometry for Chains, Wires and Tubes

In the FLAPW method for one-dimensional systems46, the infinite three-dimensional space
is again partitioned into three regions: the muffin-tin spheres around the atoms, the inter-
stitial region between the atoms and within a cylinder along the axis of the wire (z) of the
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Figure 13. Spatial partitioning of space into muffin-tin spheres (MT), interstitial region (IR) and vacuum region
(VR) (shown in blue color) is shown from aside (left) and from the top (right). The vacuum region is the infinite
region outside the cylinder with the diameter Dvac. In-plane reciprocal vectors G‖ are generated in an in-plane
square lattice with the lattice constant D̃ > Dvac.

radius Rvac. Outside this cylinder there is an infinitely extended vacuum region (VR in
Fig. 13). From here on we define the z-axis as the axis of one-dimensional translational
symmetry. As our method is based on the use of LAPW basis functions,19, 31, 12 the set
of reciprocal vectors G = (G‖, Gz) is generated in a rectangular box, which reflects the
translational periodicity of the system in z-direction. The corresponding Bloch number, kz ,
lies within the first one-dimensional Brillouin zone. The in-plane reciprocal lattice vectors
G‖ are generated in an in-plane square lattice with the lattice constant D̃. The vacuum re-
gion is an infinite region outside the cylinder with the diameterDvac < D̃ (Dvac = 2Rvac),
with the axis along z-direction.

As characteristic for the FLAPW method, optimally adjusted basis functions are used
it three different regions of space. In the interstitial region and in the spheres, the usual
LAPW basis functions are used. In the vacuum the following representation is used:

ϕG(kz , r) =
∑

m

(

aGm(kz)u
Gz
m

(

kz , r
)

+ bGm(kz)u̇
Gz
m

(

kz , r
)

)

eimϕei(Gz+kz)z . (131)

The space coordinate r is written in terms of cylindrical coordinates (r, ϕ, z) and the sum-
mation over m goes up to the angular expansion parameter mmax, which ensures that the
oscillations of the plane-waves on the cylindrical vacuum boundary continue smoothly to
the vacuum side. Since the vacuum potential is rather flat, relativistic effects on the basis
functions can safely be ignored, and the cylindrically symmetrical part of the vacuum po-
tential V0(r) and the vacuum energy parameter Ev, determined in every iteration, enter in
solving the radial Schrödinger equation for every pair (m,Gz) giving rise to the vacuum
radial basis wavefunctions uGz

m (kz , r) and their energy derivatives u̇Gz
m (kz, r).

The sets of augmentation coefficients a and b both for the MT spheres and the vacuum
region are determined such that the basis functions and their spatial derivatives are con-
tinuous across the MT spheres, interstitial and vacuum region boundaries. All the basis
functions with reciprocal lattice vector G that fulfill the condition |kz + G| < Kmax are
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included. The corresponding representation of the charge density and potential involves all
vectors G with |G| < Gmax. Typically, Gmax ≈ 3 ·Kmax in order to describe multipli-
cation of the interstitial potential with the step function. The vacuum parameter mmax is
defined in the same manner as lmax in the spheres:14 mmax ' Kmax · Rvac.

6 Where has the CPU Time gone

A thorough understanding where and how much CPU time is spent during a FLAPW cal-
culation is compulsory to judge which problems can be solved with given computers and to
develop strategies to overcome possible limitations. Along the discussion of two possible
paths to speed-up the calculations put forward in the following two sections, we estimates
of CPU time requests for different parts of the FLAPW-method as implemented in the
FLEUR code30.

6.1 Using Symmetry to speed-up Calculations

As surface science is an important field of materials science and condensed matter physics,
in this section we compare the very efficient film approach (see Sect. 5.1) to simulate
surfaces in electronic structure calculations with the very popularly used repeated slab
model within a super-cell approach, where the unit cell consists of a film of a finite number
of layers of a material and empty space describing the vacuum and the decoupling of the
films from unit cell to unit cell. To repeat was has been said in Sect. 5.1, the key fact is,
that the film approach reduces the number of LAPW basis functions NAPW as compared
to the super-cell model.

To illustrate the effect, we choose as reference system a calculation of a 9-layer film of
Cu(110) with a single k-point in a p(4× 2) unit cell containing 72 atoms. This system was
also chosen in performance tests of the unparallelized WIEN-code79, 80) offers to possibility
to gauge different implementations of the same method. Our calculations were performed
with equivalent cutoff parameters also on a single node IBM/RS 6000 AIX-SP2 system
to facilitate a comparison of the run times. We made no attempt to optimize the code
for a certain architecture. In comparison to a repeated slab calculation (NAPW = 7069),
the film geometry (D̃ = 30 a.u.) reduces NAPW by approx. 1000 or 14%. This reduces
the computational effort in the Hamiltonian setup (scaling with N 2

APW) by 27%, in the
diagonalization (∝ N3

APW) by 37% (cf. chart in Fig.14). Potential generation (linear with
NAPW) and charge density construction for the IR (this is done via discrete FFT and scales
with NAPW ln(NAPW)) are moderately affected.

Our reference system, as well as many other systems of interest, possesses inversion
symmetry. In the above calculation, we exploited this fact already, solving a symmetric
rather than an hermitian eigenvalue problem, saving time and memory. But a further benefit
can be drawn from this symmetry: The augmentation coefficients P k,G

L,µ (P = a, b cf.
Eq.(79)) for an atom µ at a position τ µ are evaluated as

P k,G
L,µ = 4πilei(k+G)·τ µfl(x)Y

?
L (k̂ + G) (132)

where Rµ is the MT radius and fl(x) is a linear combination of Bessel functions of argu-
ment x = (k +G)Rµ. This time consuming evaluation has to be done for all atoms in the
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Figure 14. Left: Breakup of the computing time for a calculation of the p(4×2) Cu(110) film. The run-times are
given for a repeated slab model, a true film calculation, and the latter with making use of inversion and z-reflection
symmetry. The total time of 178 min. per self-consistency cycle should be compared to 174 min. obtained with
the optimized WIEN code80 at the same computer using standard diagonalization and otherwise similar cutoff
parameters. Middle: Speed-up from the parallelization over the ~k-points for a 9-layer film of Fe(100) with 196
k-points. Right: Speed-up and memory requirements due to eigenvector parallelization tested on a 9-layer film
of p(4× 2) Cu(110) with a single k-point on a Cray T3E. The memory requirements for the calculation with two
processors was extrapolated and a similar value was also found for the unparallelized calculation.

Hamiltonian as well as in the charge density setup. If two equivalent atoms µ and µ′ are
connected by inversion symmetry, then −τ µ = τµ′ and therefore it is easily verified from
Eq.(132) that P k,G

L,µ′ = (−1)l+m(P k,G
l,−m,µ)

?. This simple relation helps to speed-up both
the matrix setups and the charge density generation. In our specific example 44% of the
coefficients can be constructed in this way. The actual speed-up gained from this procedure
can be seen in the chart of Fig. 14.

A film with a mirror plane perpendicular to its surface normal (which shall point in
z-direction), i.e. z-reflection symmetry, allows the use of symmetrized basis functions31:

χ±
k‖,G

(r) =
√

2ei(k‖+G‖)·r‖

{

cos(Gzz); (+)

sin(Gzz); (−)
(133)

where G = (G‖, Gz). Here we exploit the fact, that in film-calculations k = k‖. There-
fore, not only the density and potential, but also the basis functions have z-reflection sym-
metry. This enables a block-diagonalization of the eigenvalue problem, decomposing the
Hamilton- and overlap matrix into symmetric and antisymmetric blocks. Apart from a
small overhead – resulting from sorting the eigenvectors – we expect a speed-up of a factor
4 for a N3

APW scaling diagonalization routine. From the chart in Fig. 14 one finds that this
value is almost obtained. In summary, we gained a speed-up of more than a factor 2.5 as
compared to a repeated slab calculation where these symmetries were neglected.

Using the same concept for one-dimensional systems, compared to the conventional
FLAPW formulation, the 1D-method can be 150 times faster than the supercell approach,
and the Hamiltonian construction and the diagonalization part of the 1D code even 270
times faster than that of the bulk super-cell code46. As compared to the supercell approach
using the film geometry, per self-consistency iteration the 1D-method is then 15 times
faster , and the Hamiltonian construction and the diagonalization part of the 1D code is 25
times faster than that of the film super-cell code.
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6.2 Parallelization of the Algorithm

Due to the rather complex algorithm of a FLAPW-program as compared to a quantum
Monte Carlo code for instance, there no straight forward parallelization strategy. From
the chart in Fig. 14 it is evident that there is no single, well-defined part of the program
that consumes almost all computer-time. Moreover, depending on the actual problem, the
computational costs are distributed quite differently: while in large systems most of the
time is spent in the diagonalization of the eigenvalue problem, in systems of moderate size
other parts of the code might get equally time consuming. But even small systems can
become supercomputer applications when the eigenvalue problem has to be solved for a
huge number of k-points,Nk, as it is required in many magnetic problems. Applications on
workstation clusters require a minimization of communication between the nodes, while
on massively parallel machines the memory requirements for the setup of the Hamilton
matrix may surpass the resources available on a single processor. This calls for flexible
parallelization strategies.

To fulfill adequately the needs of all different kinds of calculations we introduced par-
allelization on two levels: a coarse grained k-point parallelization and a fine grained com-
bined eigenvector and eigenvalue parallelization. Depending on the actual values of Nk

and the number of processors,Npe, available for the application as well as on the memory-
resources on the individual processors, the simultaneous application of both strategies al-
lows a flexible load balancing.

k point parallelization: For a calculation of the p(4 × 2) Cu(110) surface with only
one k-point we find that 92.6% of the time was spent in the k-dependent part of the code,
whereas the rest was used mainly for the potential construction (5.7%). From this we
expect that the k-point parallelization will be a very efficient strategy beyond one k-point.

In the parallelized version of the FLEUR-code the setup and the potential construction
are done on a single processor. All necessary variables are then broadcasted to the other
processors and the potential can be read from a file if there is a common file system for all
nodes. The eigenvalue problem that has to be solved for all k-points can now be distributed
over the processors and the results (eigenvalues and -vectors) are written to a global direct-
access file. If no common filesystem exists, each node may write the results to a private
file and send the eigenvalues back to the node that did the setup and which determines now
the Fermi-level. With this result, the occupancy of the eigenvalues can be calculated and
the result is sent to all processors. With this information all nodes can calculate a partial
charge density (and e.g. forces on the atoms, orbital moments etc.) from the eigenvectors
that were calculated in the last step. Up to this point the communication between the nodes
was almost negligible, but now the charge densities from all nodes are sent back to and
summed up by the first node. Here, the charge density mixing and all necessary output is
done that finishes a step of the self-consistency cycle.

Since there is no additional computational effort and a moderate amount of communi-
cation between the nodes, the performance is almost ideal. In case of the film containing
72 Cu atoms a parallelization of more than 92% can be expected from the unparallelized
calculation. But the performance is also splendid for smaller systems as it is shown in
Fig. 14. Test was carried out for a 196 k-point calculation as it occurs typically in the
connection with calculations of the magnetic anisotropy calculations where often even a
denser sampling of the Brillouin zone is necessary.

Eigenstate parallelization: Due to memory (per node) limitations on massively parallel
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machines, k-point parallelization alone does not suffice to calculate big systems. In this
case one distributes the eigenvalue problem for each k-point on N ev

pe nodes.
We found it most useful to adopt a parallel QR-algorithm for the solution of the general-

ized (symmetric or hermitian) eigenvalue problem that uses the matrices in a column-wise
distributed fashion, i.e. a column i of the Hamilton and overlap matrix can be found on the
processor with the number mod(i, N ev

pe). Since our matrices are symmetric or hermitian
we calculate only one part of every column, the other part is sent from the other nodes to
complete the column. Compared to the unparallelized code, where packed matrices are
used, this gives us no big improvement on the use of memory if N ev

pe = 2, but when four
processors work on one k-point we use only half of the memory per node for the matri-
ces (and they normally use most of the memory in this step). Since the communication
is moderate and no additional computational effort arises for the matrix setup, the scaling
of this part with the number of processors is almost linear. The parallel QR-algorithm re-
duces the generalized eigenvalue problem via a Cholesky-factorization (see also Sect. 2.4)
to a normal one and uses a Householder transform to get a tridiagonal matrix. From this
matrix the (≈ 10%) lowest eigenvalues are determined and the eigenvector calculation
is distributed over the N ev

pe nodes. Finally, each processor holds approximately the same
number of eigenvalue/eigenvector pairs.

For the determination of the charge density there is no conceptual difference whether
each node calculates a partial charge density from a subset of k-points or from a subset of
eigenvalues of a selected k-point. Therefore, it is rather easy to implement a parallelized
charge-density generator once the complete eigenvectors are available on the nodes. The
efficiency of this parallelization strategy for the Cu(110) reference system is shown in the
right panel of Fig. 14.

The parallelization of FLAPW-codes enabled calculations of systems with unprece-
dented complexity involving unit cells of several hundredth of atoms dealing simultane-
ously with complex magnetic structures. The strategy of parallelization presented com-
bines the flexibility required to tackle very different problems with transparency in the
source-code and an acceptable performance on various parallel computer platforms.
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69. T. Takeda and J. Kübler, Linear augmented plane wave method for self-consistent

calculations, J. Phys. F 9, 661 (1979).
70. S. Goedecker, Treatment of semicore states in the linearized augmented-plane-wave

method and other linearized electronic-structure methods, Phys. Rev. B 47, 9881
(1993).

71. J. Yu, A. J. Freeman, R. Podloucky, P. Herzig, and P. Weinberger, Origin of electric-
field gradients in high-temperature superconductors: YBa2Cu3O7, Phys. Rev. B 43,
532 (1991).

72. E. E. Krasovskii and W. Schattke, The extended-LAPW-based k·p method for complex
band structure calculations, Solid State Comm. 93, 775 (1995).

73. E. E. Krasovskii, Accuracy and convergence properties of the extended linear
augmented-plane-wave method, Phys. Rev. B 56, 12866 (1997).

74. G. K. H. Madsen, P. Blaha, K. Schwarz, E. Söstedt, and L. Nordström, Efficient lin-
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