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1 Introduction

We explore the ground state magnetic properties of surfaces, ultrathin films and some atomic-
scale structures with the attention to question which systems are magnetic and what is the mag-
netic ground-state structure.
In this article we focus on the dimensional aspect of itinerant magnetism, in particular of those
systems including d electrons, as relevant for the magnetic ground-state properties of metallic
surfaces, interfaces, multilayers, ultrathin films, step edges, or magnetic clusters deposited on
surfaces. Considering the vast number of possible systems, a number growing fast with the
number of constituent atoms, the surface and interface orientation, the chemical and structural
roughness at interfaces, the electronic nature of the substrate (metal, semiconductor, insulator),
an exhaustive review is unattainable. Instead we discuss chemical trends in order to develop an
intuition helpful to understand also new systems or envisage new effects not investigated yet.
The simplest low–dimensional systems are isolated atoms, whose spin moments as function
of the the number of d electrons are well described by Hund’s first rule: the spins of all elec-
trons are aligned in parallel as long as no quantum number is occupied more than once. Thus,
nearly all of the 30 transition–metal atoms have magnetic spin moments. The largest possi-
ble d moments occur at the center of each series, i.e. 5 µB for Cr and Mn in the 3d series.
On the other hand, it is well-known that only 5 of 30 transition metals remain magnetic in
their bulk crystalline phase: Co and Ni are ferromagnetic, Cr is antiferromagnetic, and Mn
and Fe are ferromagnetic or antiferromagnetic depending on their crystal structure (cf. Fig. 1).
Low–dimensional transition–metals should fall in between these two extremes. Magnetic ma-
terial may be envisaged, which is nonmagnetic as bulk metal but magnetic as nano-structure.
Although these arguments do apply, band narrowing, charge transfer, lift of degeneracies, struc-
tural, morphological or thermodynamical changes mire the interpolation and it took about 10
years to settle the “relatively simple” problem of the surface magnetism of Ni(100) [1]. Totally
unclear is the magnetic coupling between the moments of atoms in systems of reduced dimen-
sions, in particular if the frustration of the magnetic interactions comes into play as for example
in exchange-bias systems.
The magnetic ground-state properties may be divided into (i) the formation of local moments
of different sizes (ii) the interaction between the local moments responsible for the formation
of the magnetic order, the magnetic coupling at interfaces or across spacer layers, and (iii) the
magnetic anisotropy energy, which couples the direction of the magnetization to the lattice and
determines the easy and hard axes of the magnetization. At this point it may be useful to put the
magnetic energies involved in (i)–(iii) into a general perspective by comparing them in Table 1
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Fig. 1. Local magnetic moments of isolated 3d
atoms (empty squares connected by dashed line ),
ferromagnetic (solid squares connected by solid
line ) and antiferromagnetic (diamonds connected
by dotted line ) 3d bulk metals. The magnetism of
the atom includes only the moment due to the d
electrons. For the bulk metals the experimental
spin moments are shown.
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Table 1: Typical ground-state energies E in eV/atom for 3d metal films

E (eV/atom)

cohesive energy 5.5

local moment formation 1.0

alloy formation 0.5

magnetic order 0.2

structural relaxation 0.05

magnetic anisotropy 0.0001÷0.002

with the structural and compositional ground-state energies. From the relative importance of
the different energies it is evident that the local moment formation has a considerable influence
on the stability, alloy formation, atom arrangement and atom relaxation at the interface. Since
the local moments may change quite substantially at the interface, materials with new and un-
known phases [2], crystal structures and magnetic structures [3] are to be expected. Despite the
technological importance and the importance for the finite temperature properties of thin films,
the anisotropy energy is a rather small quantity, which is energetically nearly decoupled from
the rest and is therefore treated separately in the chapter Reduced Dimension II. The anisotropy
energy depends on all structural and electronic details of an interface, while in turn, with the
exception of the magnetostriction, not much influence on structural aspects are expected. In this
sense the problem of the magnetic anisotropy can be tackled after the interface is completely
determined otherwise.

There are several low-dimensional systems and phenomena which are not covered in this chap-
ter. To these belong theMagnetic Nanoparticles,Magnetic Clusters in the gas phase, theMolec-
ular Magnets and the Kondo-effect at surfaces, which will be discussed in detail in subsequent
chapters. When the growth of thin films is repeated to form multilayers, in particular those of
thin magnetic films separated by non-magnetic spacer layers, an exchange interaction between
the films across the spacer layer occurs, which is known as the interlayer exchange coupling,
for which a separated chapter is devoted to. Here, we do not include the thermodynamic prop-
erties of low-dimensional systems, which are partly discussed in the chapter Localized Mo-
ments: Finite temperature. The work which I present here are basically predictions, analyzes
and understanding of the magnetic moment and magnetic structure on the basis of the elec-
tronic structure, – results obtained from the density functional theory introduced in the chapter
Bandmagnetism II. The experimental counterpart can be found in the chapters Spin-Polarized
Scanning Tunneling Microscopy and Single-Spin Detection at Surfaces.

2 Theory and Models

In this section the reader is reminded at the theoretical concepts used to predict and analyze
the results. The theories have been introduced in previous chapters. Further, simple models are
discussed to rationalize the results.
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Table 2: Magnetic moments MLSDA in µB/atom for Fe, Co, and Ni, calculated using the local
spin density approximation (LSDA) [8]. Values are compared with experimental data for the
pure spin moment Mspin and with the total moment Mtot including orbital contributions.

Metal MLSDA Mspin Mtot

Fe 2.15 2.12 2.22

Co 1.56 1.57 1.71

Ni 0.59 0.55 0.61

2.1 Density Functional Theory: Non-collinear Magnetism

Density functional theory [4] in the local spin-density approximation (LSDA) [5, 6] or the more
recent generalized gradient approximation (GGA) [7] has been the main underlying basis for
the first-principles electronic structure calculations of magnetic systems in reduced dimensions.
The theory has been introduced in chapter Bandmagnetism II. It is based on the Hohenberg-
Kohn theorem that the ground state energy E of a many-body system is a unique functional of
the charge density n(�r) and the vector-magnetization density �m(�r) and is minimal for the true
ground state densities.
In many applications, e.g. in ferromagnetic (FM) and antiferromagnetic (AFM) solids, there is
a common magnetization axis for all atoms. For these collinear cases a global z-axis can be
chosen along the direction of the magnetic field. In this case, the energy and all other physical
observables become functionals of the electron density and the magnitude of the magnetization
density m(�r) = |�m(�r)| rather than �m(�r), or, equivalently, of the spin-up and spin-down electron
densities n↑(�r) and n↓(�r). As an example we compare in Table 2 the calculated magnetic
moments of the elemental bulk ferromagnets with the experimental ones.
This formalism allows also the calculation of complex magnetic structures such as in non-
collinear magnetism in general or in incommensurate spiral spin-density waves (SSDW) in
particular. Such magnetic structures exist in a great variety of systems. They often occur for
topologically frustrated antiferromagnets (e.g. antiferromagnets on a triangular lattice or anti-
ferromagnets in contact with ferromagnets with atomically rough interfaces as in exchange bias
systems) or materials with competing exchange interactions as for example in fcc Fe, Mn. Char-
acteristic for non-collinear magnets is a set of magnetization axes {�̂e}, as the magnetization axis

may change from atom to atom and the minimum of the energy functional E
[
n(�r), �m(�r)|{�̂e}

]
determines the magnetic structure. The spin-spiral is a particular non-collinear magnetic struc-
ture with moments that are rotated by a constant angle from atom to atom along a certain direc-
tion of the crystal. It can be described by the propagation vector of the spin-spiral �q, the rotation
axis (which is, in a non-relativistic approximation, not fixed with respect to the lattice) and the
relative (cone-)angle ϑ between the magnetic moment and the rotation axis. The rotation angle
of the magnetic moment of an atom at the position �Ri is then given by ϕ = �q · �Ri. For a rotation
around the z-axis the magnetic moment of an atom at the position �Ri is given by

�Mi = M(cos(�q · �Ri) sin ϑ, sin(�q · �Ri) sin ϑ, cos ϑ) . (1)

The great value of this type of non-collinear calculations rests in determining from E [n(�r),

�m(�r)|{�̂e}
]

or E [n(�r), �m(�r)|{�q}] the magnetic ground state as well as the exchange parameters
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Jij . They enter the Heisenberg model (2) giving such access to magnon spectra, spin-wave stiff-
ness constants, magnetic phase diagrams, finite temperature properties and magnetic excitations
of the system in general [9, 10].

2.2 Heisenberg Model and Beyond

To predict the magnetic ground state of a magnetic system can be a highly nontrivial problem.
In cases, for example, where competing exchange interactions between neighboring atoms can-
not be satisfied, the exchange interaction is frustrated which gives rise to a multitude of possible
spin-structures. In the past, the magnetism of complex spin structures of itinerant magnets have
been almost exclusively discussed within the framework of model Hamiltonians, e.g. the classi-
cal Heisenberg Hamiltonian introduced and motivated in chapter Heisenberg Model–Magnetic
Interaction,

H2-spin = −
∑
i,j

Jij
�Si · �Sj . (2)

The spins localized on the lattice sites i, j are considered as classical vectors �S, with the as-
sumption that the spins on all lattice sites have the same magnitude S:

�S2
i = S2, for all i. (3)

The exchange interaction between the spins is described by the pair interaction Jij . In localized
spin systems the Jij can be safely restricted to the ferromagnetic (J1 > 0) or antiferromagnetic
(J1 < 0) nearest-neighbor (n.n.) interaction, i.e. Jij = 0 for all i, j, except for Jn.n. = J1. Also
in itinerant magnets J1 often dominates over the rest of the further distant pairs, however, an
attempt to reproduce TC solely from J1 produces results from limited validity. Exchange inter-
actions beyond the classical Heisenberg model can be motivated from a perturbation expansion
of the Hubbard model [11]. Expanding the Hubbard model into a spin model, replacing the
spin operators by classical spin vectors, a second order perturbation expansion reproduces the
classical Heisenberg model. The fourth order perturbation treatment (the third order is zero in
the absence of spin-orbit interaction) yields two additional terms of different form. One is the
four-spin exchange interaction (4-spin):

H4-spin = −
∑
ijkl

Kijkl

[
(�Si

�Sj)(�Sk
�Sl) + (�Sj

�Sk)(�Sl
�Si) − (�Si

�Sk)(�Sj
�Sl)

]
.

The 4-spin interaction arises from the hopping of electrons over four sites, i.e. the process
1 → 2 → 3 → 4 → 1, the other term, resulting from the hopping 1 → 2 → 1 → 2 → 1, is the
biquadratic exchange:

Hbiquadr = −
∑
ij

Bij(�Si · �Sj)
2. (4)

The exchange parameters Jij, Kijkl, and Bij depend on the details of the electronic structure
and it is known [12] that for transition-metals the sign and magnitude are rapidly varying func-
tions of the d-band filling. In thin films, the nearest neighbor exchange constants scaled by the
appropriate power of the magnetic moment, S4 K1 and S4 B1, are about one order of magni-
tude smaller than S2J1, which is for example for Mn/Cu(111) about 30 meV. The higher order
spin interaction have then the effect, depending on the sign and value, to lift magnetic states
degenerate in the Heisenberg model.
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In itinerant magnets, the electrons that are responsible for the formation of the magnetic state
do participate in the formation of the Fermi-surface and hop across the lattice. Thus, it is by no
means clear how far a short-ranged n.n. interaction or even how far the Heisenberg model, and
models beyond that, can go in giving a sufficiently good description of the physics of itinerant
magnets at surfaces and films. We believe that the combination of ab-initio calculations and
the study of model Hamiltonians provides a powerful approach to investigate the magnetic
structures of complex magnetic systems.
For our purpose here, the value of the Heisenberg model lies in two facts: (i) to construct a zero-
temperature phase diagram of relevant spin states as function of the exchange parameters Jij and
(ii) that a spin-spiral state, SSDW, with a propagation vector �q in the first Brillouin zone (BZ)
is a fundamental solution of the Heisenberg model for a Bravais lattice. On a Bravais lattice it
is convenient to write the spin on lattice sites in terms of their discrete Fourier components �S�q.
The Heisenberg Hamiltonian can then be written in the simple form

H2-spin = −N
∑

�q

J(�q) �S�q · �S−�q . (5)

The summation is over the reciprocal lattice vectors �q and N denotes the number of lattice sites
in the crystal.

J(�q) =
∑
i,j

Ji−j e−i
�

q(�Rj−�Ri)=
∑
�0−�Ri

J�0−�Ri
e−i�q(�0−�Ri) = J(−�q) = J(�q)∗ (6)

are the Fourier transformed exchange constants and �Ri is the real-space coordinate of lattice
site i. The lowest energy

E( �Q) = −NS2J( �Q) (7)

is found for the magnetic ground state �S �Q of the SSDW with wavevectors ±�Q (as well as sym-

metry related �Q vectors) which are obtained by minimizing the energy (5) under the condition
(3). The corresponding spin structure are helical spin spirals (1) for ϑ = 90◦ and �Mi = −gµB

�Si.
For particular �Q vectors, e.g. �Q = ±2π/a(0, 0, 1/2) one may find the uudd-state as ground
state, a collinear bilayer antiferromagnetic state of ferromagnetic double layers, which couple
antiferromagnetically. This state, for example, was found in calculations for regime II of fcc-Fe
films on Cu(001) [13].
In three dimensions the simplest estimate of the Néel temperature of a helical spin-spiral with
wave vector �Q is based on a mean-field approximation (MFA), which leads to

kBTMFA
N =

2

3
S2J( �Q) , (8)

where kB is the Boltzmann constant, whereas an improved formula is provided by a random
phase approximation [14]. In two dimensions the isotropic Heisenberg model exhibits no long
range order for finite transition temperatures. Thus, in thin films the determination of the
transition-temperature requires in addition the knowledge of the magnetic anisotropy constant
K which scales the TN obtained for three-dimensions by ∼ ln (J/K) [15, 16]. �Q = (0, 0, 0)
corresponds to the ferromagnetic state, and J(�0) =

∑
i J�0−�Ri

is an on-site exchange parameter.

At surfaces and films, the exchange interaction becomes layer dependent Jj(�0) =
∑

i J�Rj−�Ri
, j

is a representative site in layer j. At the surface, the number of neighbors are reduced and thus
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with respect to the bulk values also JS is reduced at the surface j = S. On the other hand, due
to the large magnetic moments at the surface, JS−1 can be larger than bulk value.
�Q is typically located at high-symmetry points (lines) of the two–dimensional Brillouin zone,
where the energy (7) as function of the �q-vector should have an extremum, a maximum, a min-
imum (or a saddle point), depending on the exchange constants Jij , and the symmetry of the
high-symmetry point. In principle, one cannot exclude that the minimum of the energy will
be located at any arbitrary point along the high-symmetry lines, representing an incommensu-
rate spiral spin-density wave. In practice, we perform first-principles total energy calculations
E [n(�r), �m(�r)|{�q}] along the high symmetry lines to gain an overview of possible minimum
energies E( �Q). The role of higher order spin interactions are then investigated carrying out

constraint calculations of the total energy E
[
n(�r), �m(�r)|{�̂e}

]
for particular paths of magnetic

configurations. Zero-temperature phase diagrams in the J01 · · ·J0i space are very helpful to
reduce the relevant phase space of possible spin structures. This recipe had been followed in
Sect. 4.1.2 and 4.2.2 to explore the magnetic ground state of thin films. The above described
mapping of ab-initio calculations to spin-models relies on the assumption, that the magnetic
moment does not depend on the relative difference of the magnetization axis between atoms.
For itinerant systems this is not necessarily garanteed. The change of the moment with respect
to the relative quantization axis can be mapped on spin-models introducing also higher order
spin interactions.

2.3 Stoner Model

In chapter Bandmagnetism II the Stoner criterion for ferromagnetism

I n(EF) > 1 . (9)

was derived. The Stoner criterion is an instability condition which expresses the competition
between the exchange interaction in terms of the exchange integral I which drives the system
into ferromagnetism for large I and the kinetic energy in terms of the DOS n(EF) at the Fermi
energy EF, which rizes in the magnetic states, the more the wider the band width or the lower
the density of states, respectively. A big exchange integral and a large nonmagnetic DOS at the
Fermi energy favors ferromagnetism.
A Stoner criterion analogous to (9) for a system becoming instable against a frozen spinwave
of wave vector �q,

I χ�q(EF) > 1 , (10)

can be derived. Obviously the local DOS was replaced by the �q dependent susceptibility χ�q, a
quantity which expressed in the Heisenberg model by J(�q). Within eq. (10), antiferromagnetism
is just a special case. While the DOS at EF is easily accessible by experiment or electronic
structure calculations, the static susceptibilities χ�q(EF) are not. This motivated us to derive
an approximate criterion for antiferromagnetism which makes explicit use of the local DOS.

Small magnetic moments with the same magnitude M , but possibly different directions �̂Mj at
different sites j, induce in linear response theory local moments �Mi at sites i

�Mi =
∑

j

χij(EF) M �̂Mj . (11)
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Fig. 2: Graphical illustration of (15) for a DOS typical for transition-metal monolayers on
(001) oriented noble metal substrates.

The staggered susceptibility describing a particular magnetic state (M) is then expressed as

χM =
∑

i

χ0i
�̂M0 · �̂Mi . (12)

Particular examples of this staggered susceptibility are the ferromagnetic (χFM)

χFM = n =
∑

i

χ0i (13)

and the antiferromagnetic (χAFM)

χAFM =
∑

i

(−1)(i) χ0i (14)

susceptibilities. Assuming that for 3d metals the nearest-neighbor interaction is the most domi-
nating one, χ0i can be neglected for all sites beyond nearest neighbors (χ0i = 0 for i > 1), and
χFM and χAFM are given approximately by

n(E) ≈ χ00(E) + χ01(E), and χAFM(E) ≈ χ00(E) − χ01(E) , (15)

where χ00(E) is the local or atomic susceptibility, respectively, at the energy E. The energy
dependence of χ00 is fairly simple. It follows from atomic Hund’s rule-type arguments: The
maximum spin M occurs for half band-filling, hence the atomic (local) susceptibility χ =
∂M/∂H will also be largest. From (15), we can obtain an approximate form for χAFM using
only DOS information. This is illustrated in Fig. 2. As function of the d band-filling, from V
to Ni, the Fermi energy sweeps from the left to the right through the DOS. If the Fermi energy
is positioned at the center of the band as for Cr, and the DOS is low but the antiferromagnetic
susceptibility is high, and antiferromagnetism is expected. If the Fermi energy is closer to
the end of the band, the antiferromagnetic susceptibility is small but the DOS is large and
ferromagnetism is expected as for Fe, Co, and Ni. Mn and Fe are at the edge of both magnetic
states, and depending on circumstances different magnetic ground states can be found. Compare
also to calculated DOS, Fig. 13, in Sect. 4.1.1
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2.4 Role of Coordination Number

As discussed in Sect. 2.3 the Stoner criterion for ferromagnetism (9) depends (i) on the Stoner
parameter I and (ii) the DOS n(EF) at the Fermi energy EF.
(i) The exchange integral I is an intra–atomic, element specific quantity, and in simplest ap-
proximation independent of the local environment, the structure and the site of a given atom,
e.g. surface atom or bulk atom. According to Gunnarsson [17] and Janak [18] a global trend

I3d > I4d > I5d (16)

was found for the exchange integrals of the 3d, 4d, and 5d transition–metal series.
(ii) Focussing on the d electrons as relevent electrons for itinerant magnetism, the DOS depends
on both the coordination number Nnn and the hopping matrix elements hd between the d elec-
trons. This can be understood as follows: The energy integral

∫
W

n�(ε) dε = 2� + 1 over the
band-width W of the local DOS of angular momentum quantum number �(= 2) is normalized
to 2� + 1 states. Thus, in simplest approximation possible (e.g. rectangular shaped DOS), one
can assume that the local DOS scales inversely proportional to the band width W ,

n(EF) ∼ 1

W
. (17)

At the atomic limit the band width converges to zero, the Stoner criterion is always fulfilled
and moments in accordance with Hund’s first rule will be found. In general the DOS consists
of contributions from electrons in s, p, d, and f states. For transition metals by far the largest
contribution comes from the d electrons, and the d–d hybridization determines the shape of the
density of states. Therefore, in the following discussion we restrict ourselves to d electrons and
write

n(EF) ≈ nd(EF) ∼ 1

Wd

. (18)

The average local band width Wd(�Ri) for an atom i at position �Ri can be estimated in a near-
est neighbor tight–binding model, applicable for the itinerant but tightly bound d electrons of
transition–metal atoms, to be

Wd ≈ Wd (�Ri) = 2

√
Nnn(�Ri) hd(Rnn) . (19)

According to (19) the band width depends on two quantities: (a) the hopping matrix element hd

of the d electrons and (b) the number of nearest neighbor atoms or coordination number Nnn.
(a) The hopping matrix element depends on the overlap of the d wavefunctions. It decreases
with increasing lattice constant or distance Rnn to the nearest neighbor atom and for a given
lattice constant it increases with the extension of the wavefunction or, equivalently, the number
of nodes. In Fig. 3 the band widths of 3d, 4d, and 5d bulk transition–metals are schematically
shown, together with the band widths of rare earths and actinides. In line with the arguments
of increasing number of nodes from 3d to 5d wavefunctions a clear “macro trend” between the
transition–metal series is visible summarized as follows:

h3d < h4d < h5d =⇒ W3d < W4d < W5d =⇒ n3d > n4d > n5d (20)

Within each transition–metal series there exists in additional a “micro trend”: due to the incom-
plete screening of the Coulomb potential of the nucleus by the d electrons, the d wavefunctions
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Fig. 3: Schematic illustration of the band width W of the transition–metals together with rare
earths (4f ) and actinides (5f ), all in the bulk phase. The 5f electrons of the early actinides
and the 3d electrons of transition–metals from the middle to the end of the 3d series (Cr to Ni)
show itinerant magnetism, while the magnetism of the late actinides and the rare earths is best
described as localized magnetism, and their magnetic properties can in good approximation be
explained in terms of Hund’s rule.

at the beginning of the transition–metal series are more extent than at the end of the series, thus
the hopping matrix element at the beginning of the series is larger than at the end, with the
well–known consequences for the band width W and the DOS n(EF).
(b) The smaller the coordination number Nnn the smaller the d–d hybridization and the smaller
is the band width. Let’s consider for example the coordination number of an atom in the en-
vironment of a fcc crystal (Nfcc = 12), of an atom in the (001)–surface of the fcc crystal
(N(001) = 8), and of an atom located in a two–dimensional (001) monolayer film (NML = 4),
keeping the nearest neighbor distance fixed (Rnn = constant) and keeping the bonding strength
fixed (hd = constant). Under these circumstances, one obtains for the ratio of the band widths

Wd
ML : W

(001)
d : W fcc

d = 0.58 : 0.82 : 1 ,

or the local DOS
nML

d : n
(001)
d : nfcc

d = 1.73 : 1.22 : 1 . (21)

The important message of (21) is, that the reduction of the coordination number leads to less
d–d hybridization, thus to band narrowing, and the tendency towards magnetism is considerably
increased. The reduction of the coordination number is hence responsible for the fact that the
magnetism is enhanced at surfaces as compared to bulk, and the magnetism of ultrathin films
should be larger than at surfaces. Accordingly, one can expect, that transition–metals, which
are nonmagnetic as bulk metals, may become magnetic at surfaces or as ultra–thin films. A
nice manifestation of these arguments was recently reported for the size and shape dependence
of the local magnetic moments in Fe clusters on the Ni(100) [19] summarized in Section 5.2.
The arguments put forward here for the increased ferromagnetism in reduced dimensions can
be carried over directly to the increased antiferromagnetic susceptibility.
The magnetic properties are expected to depend also on the surface or film orientation, because
along with a change of the surface orientation goes a change of the coordination number Nnn

(cf. Table 3) as well as a change of the nearest neighbor distance R‖ between the surface atoms
and R⊥ between the surface atoms and the atoms in the next layer. For a fcc lattice, the (111)
surface is the most densely packed one, and we expect for it the smallest enhancement of the
magnetic moments. Among the three low-index surfaces, with the orientation (001), (011), and
(111), the (011) surface leads to the most open surface. For the latter we expect the largest
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Table 3: Coordination number Nnn, interlayer distance d, point symmetry S, and packing
density (fraction of the area of the surface unit cell, covered by atoms with an atom radius of
touching bulk atoms) for a fcc lattice. Only the 3 low–index surfaces, (001), (011), and (111),
are considered. a is the lattice parameter of the simple cubic unit cell.

Nnn S d/a ρ

(111) 9 C3v 0.5774 0.9068

(001) 8 C4v 0.5000 0.7854

(011) 7 C2v 0.3536 0.5554

magnetic moments. At surfaces or ultrathin films of bcc lattice type the trend should be exactly
the opposite. The most densely packed surface is the (011) surface for which we expected the
smallest enhancements of the magnetic moments. The (111) surface is the most open one. This
surface is already close to a stepped one.
The implication of the coordination number, discussed so far is an important aspect in interface
magnetism, but it is not the whole story. Further important aspects neglected so far have to
be taken into account in order to give a qualitative correct description of the magnetism at
interfaces.
POINT SYMMETRY: The disruption of the translational symmetry due to a given interface re-
duces in general the point symmetry. Degeneracies typical for cubic bulk metals may be lifted.
One example is the 3 fold degenerate t2g bulk state, which is split at a (001) surface into a 2 fold
degenerate state and a single state. This symmetry break induces a splitting or broadening of
the DOS and makes magnetism unfavorable. A famous victim of this scenario is Pd. Bulk Pd
has a large density of states at the Fermi energy which contributes to a large exchange enhanced
susceptibility. Thus bulk Pd is nearly ferromagnetic. The band narrowing experienced at the
surface due to the reduction of the coordination number should drive the surface of Pd into the
ferromagnetic state. But this is not the case. Instead, the change of the surface symmetry splits
the states at the Fermi energy, broadens the DOS and counteracts the band narrowing. The
surface of Pd(001) remains nonmagnetic.
SHIFT OF THE d BAND RELATIVE TO THE sp BAND: Compared to a single isolated atom, the
d electrons in a solid are in a state of compression. Therefore, in a solid their energy levels are
positioned at a much higher energy than in an atom. At the surface the charge density of the
d electrons can relax and their energy levels move downwards. They are situated closer to the
bottom of the sp band and the number of d electrons is increased or the d holes are decreased.
This downward shift is often facilitated by a significant hybridization of the d electrons with
sp electrons or holes e.g. of the substrate. As depicted in Fig.4 this leads to an Lorentzian tail
of the DOS. If this tail is positioned close to the Fermi energy, magnetism can be drastically
reduced as for example for a single Ni monolayer on Cu(100), for which the local Ni moment
amounts to 0.33 µB as compared to the magnetic Ni moment at the Ni(100) surface (0.72 µB).
For a monolayer Pd on Ag(100) magnetism is even absent. In both cases we would expect an
increase of the moment due to the reduction of the coordination number by a factor two when
compared the respective (100) surface. On the other hand elements at the beginning of the
transition-metal series such as V profit from this effect and magnetism can appear more likely.
sp–d DEHYBRIDIZATION: The main carrier of itinerant magnetism are the d electrons. For
atoms, we know, the number of d electrons are integer numbers. In metallic systems, this is
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not the case, the number of d electrons is a fractal number and depends, besides the dominating
d − d hybridization, on the hybridization with the s and p electrons. Due to the hybridization
of the d electrons with the sp electrons, d states below the Fermi energy are hybridized into
unoccupied sp hybrids and the number of d electrons is reduced when compared to the isolated
atom. This so–called sp–d dehybridization changes as function of the coordination number
or the nearest neighbor distance the fractional number of d electrons without any topological
change of the DOS. This is illustrated in Fig. 5. Surfaces and monolayers with their smaller
coordination numbers have therefore a higher number of d electrons favorable for magnetism.
For an illustration, in a computer experiment we investigated the magnetic moment of one layer
of Ni for various lattice parameters and coordination numbers. In Table 4 one finds that with
decreasing coordination number and with increasing atom separation the magnetic moment
increases although the Ni majority band is always completely filled.
CHARGE NEUTRALITY: The local charge neutrality has to be fulfilled in order to avoid the
otherwise appearing strong Coulomb forces. It induces again a band alignment. Band narrowing
(at interfaces) means automatically that the number of electrons must change. To avoid charged
interfaces a realignment of the center of gravity of the bands occurs. The d band, which moved
to lower energy in order to relax the compression moves now upwards again. Due to an upward
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Table 4: Calculated magnetic moments in units of µB for Ni(001) as an unsupported, free–
standing monolayer (coordination number Nnn = 4), as a function of the lattice constant:
aAg = 7.79 a.u., aPd = 7.42 a.u., aCu = 6.76 a.u., and aNi = 6.65 a.u.. Nnn = 8 indicates the
local magnetic moment of the Ni(001) surface andNnn = 12 indicates the bulk value. Included
is also the local magnetic moment of the Ni(011) surface (Nnn = 7).

Nnn lattice parameter

Ag Pd Cu Ni

4 1.02 0.96 0.87 0.85

7 – – – 0.74

8 – – – 0.72

12 – – – 0.59

shift in the energy, the minority and majority electrons become depopulated differently and
together with the change of the number of majority electrons due to the sp–d dehybridization
the magnetic moment increases. All together we find a complex alignment of all the bands
individually for each symmetry of the electrons.
STRONG AND WEAK FERROMAGNETS: Despite the drastic change of the coordination number
and the lattice parameter, the Ni moment in Table 4 changes only in the range of ±20%. This is
typical for strong ferromagnets (magnets with filled majority band). In general, one can say that
the magnetism of strong ferromagnets is rather robust against any environmental changes. Weak
ferromagnets (magnets with partly occupied majority bands) are sensitive to any environmental
changes with moments collapsing easily.
Neglecting these interwoven effects has caused in the past confusion in the field of surface and
interface magnetism. They are readily included by performing self-consistent first-principles
calculations.

3 Surfaces

3.1 General Overview

The theoretical studies of the magnetism of the transition-metal surfaces can be summarized as
following: Magnetic moments have been found for all investigated surfaces of Cr, Fe, fcc and
hcp Co, and Ni. The surface of Mn has not been investigated seriously, due to the many possible
bulk ground states. The surface magnetism of V(100) and Rh(100) is still controversial. For
both surfaces there are experimental [20, 21, 22] and theoretical [23, 24, 25, 26, 27] investiga-
tions suggesting surface magnetism, while we and others concluded that the V(100) [28, 29, 30]
and Rh(100) [31] surfaces are nonmagnetic. Probably Rh(100) is at the edge of becoming mag-
netic. For the (100) surface of the Pd, which exhibits a strong Stoner enhanced susceptibility
in bulk, no surface magnetism was found. Although bulk V, Ru, Rh, and Pd metals are non-
magnetic, the MxV1−x alloys with M=Ru, Rh, Pd are nonmagnetic, and the (100) surfaces of
V, Ru, (Rh,) and Pd are also nonmagnetic, Turek et al. [32] showed that the (100) surfaces of
the MxV1−x alloys are magnetic. In Table 5 the calculated local magnetic spin moments of the
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Table 5: Calculated local magnetic spin moments M
(100)
S , M

(110)
S , and M

(111)
S in comparison

to the corresponding magnetic bulk moments MB in µB/atom for bcc Cr, Fe, fcc Co(100), hcp
Co(0001), and fcc Ni.

Cr Fe Co Ni

M
(100)
S 2.55 2.88 1.85 0.68

M
(110)
S – 2.43 – 0.74

M
(111)/(0001)
S – 2.48 1.70 0.63

MB ± 0.60 2.13 1.62 0.61

(100), some (110) and (111) surfaces are collected together with the corresponding bulk values
for comparison. For all magnetic metals the magnetic surface moments exceed the bulk values.
With respect to the bulk values for Cr(100) and Fe(100) the calculated surface moments are en-
hanced by a factor 4.25 and 1.35, respectively. The enhancement of the calculated moments at
the Co and Ni surfaces is relatively small. Co and Ni are strong ferromagnets and the enhance-
ment is basically due to a sp–d dehybridization, while Cr and Fe are weak (anti)ferromagnets
which can occupy additional majority d states on the dispense of minority d states. In agree-
ment with our understanding of the relation between the surface coordination number and the
magnetic moment of fcc and bcc metals, the magnetic moment of a Ni atom at the Ni(110)
surface is larger than for a Ni atom at the Ni(100) surface. The smallest moment is found at the
close-packed Ni(111) surface. For bcc Fe it is slightly different: Also here the smallest moment
is found at the close-packed (110) surface. The largest moment, however, was not found for
the most open Fe(111) surface, but for the (100) surface. Both the (100) and the (111) surface
have four atoms with nearest neighbor bulk distance, but differ in the number of next-nearest
neighbor atoms and their distribution in surface and subsurface layer.
In general the screening of the surface due to the d electrons is rather efficient. The surface
induced perturbation of the magnetic moments does not penetrate deeply into the bulk. The
moments at the fcc Co(100) or hcp Co(0001) surfaces reach already the bulk value in the first,
latest in the second layer below the surface. For bcc (100)–surfaces, as e.g. Fe or Cr the pertur-
bation penetrates a bit deeper into the bulk. This is understood by the fact that for these surfaces
the change of the surface moments (or perturbation) is larger. Additionally for bcc metals with
half d band filling the bcc-pseudogap in the density of states provides a worse screening of the
surface perturbation and surface states can penetrate deeper into the bulk. For comparison we
present in Fig. 6 the layer resolved magnetic moments for Fe(100) and Fe(110).

3.2 Example: Cr(100)

Both, V and Cr are bcc 3d transition metals with about half-band filling. From band theory we
expect antiferromagnetism along the [001] direction which will convert at the (100) surfaces
to ferromagnetic (100) planes which couple antiferromagnetically from layer to layer, which
is called layered antiferromagnetism (LAF) (see Fig. 7). More accurately the ground state of
bulk Cr is a spin-density wave (SDW) state where the LAF structure is modulated by a wave
vector �qo = 2π/a0(0, 0, qo) ; qo = 0.952 ≈ 19/20. The SDW in bulk Cr can be ascribed to
the so-called nesting between parallel sheets of the paramagnetic Fermi surface [34], which
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Fig. 6: Layer resolved local magnetic Fe moment from the surface (S) to the bulk (C) for
Fe(100) and Fe(110) [33].

Fig. 7. The layered antiferromagnetic structure.
Spins are depicted perpendicularly to the surface
only for graphical simplicity. The surface p(1× 1)
unit cell is given by dashed lines. Bulk moments
are presented by shorter arrows than surface mo-
ments to signify their different size.

gives rise to a peak in the �q-dependent spin susceptibility χ(�q) at the nesting wave vector �qo.
The surface breaks the symmetry, thus the Fermi surface topology alters and the nesting feature
may disappear. Therefore, one can envisage that no SDW appears in the vicinity of the surface
or interface. This problem has been investigated recently by the Uppsala group for Fe/Cr [35]
and Cr/Mo [36] films, and by Bihlmayer et al. [30] for Cr(100). At first GGA calculations
of the Cr(100) surface in the LAF state where carried out. This surface exhibits a magnetic
moment of 2.6 µB that decays rapidly to the bulk value (see right of Fig. 8). Then a compressed
(corresponding to q = 11/12) SDW is introduced in a 23-layers Cr film terminated by two
Cr(100) surfaces. In the left of Fig. 8 we see an anti-node located at the surface which has
a moment of 2.4 µB, while the magnetic moment in the center of the film indicated as C in
Fig. 8 are similar to the bulk values of bulk Cr with a SDW of q = 11/12. This film-SDW
is a (meta)stable magnetic configuration since it is 12.7 meV higher in energy than the LAF
state, but it is a stable solution. From a certain film thickness on the SDW should then be
lower in energy than the LAF state. These energy differences, though, have to be taken with
some care. LSDA and GGA calculations seem to predict a somewhat too strongly enhanced
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Fig. 8: Layer resolved local magnetic Cr moments from the surface (S) to the bulk (C) for the
Cr(100) surface [30]. Left figure includes a stable bulk spin-density wave (SDW) with a node at
atom S−6, right figure for layered antiferromagnetic (LAF) Cr. Calculations were carried out
in a film geometry of 23 layers. Bulk value was reached in the center layer indicated by C.

magnetic surface moment of 2.5 µB and 2.6 µB, respectively. Surface relaxation reduced the
GGA surface moment from 2.61 µB to 2.45 µB. Reducing this value artificially to 1.75 µB,
brought a reasonable agreement with tunneling spectroscopy measurements of the spin-split dz2

surface state of Cr(100) [37]. Currently it is not clear whether this is an error of the LSDA
or GGA or due to finite temperature. This inaccuracy in the theoretical determination of the
magnetic bulk and surface moments may translate in an inaccurate estimate of the critical Cr
film thickness from which on the SDW becomes more stable than the LAF solution.
To study the influence of the surface moment on the SDW, a Cr(100) surface capped with one
monolayer of V was calculated. V and Cr have similar lattice constants and thus it should
be experimentally possible. We find that V couples layered antiferromagnetically to Cr. The
surface moment of V is 2.1 µB and surprisingly the Cr moment at the V/Cr interface is reduced
to 0.6 µB. In this case, Cr forms the onset of a node at the interface. Introducing a SDW in
this system leads to an unstable magnetic arrangement that decays into the LAF state, which is
energetically very close. The actual results depend sensitively on the interlayer relaxation. The
interlayer relaxation of the V/Cr interface reduces the V moment to about 1.3 µB and the Cr
moment increases about 0.7 µB.
The experimental verification of the surface magnetism of a LAF system such as the Cr(100)

Fig. 9. Topological antiferromag-
netic order of a Cr(100) surface
with terraces separated by single
surface steps. Different terraces
are magnetized in opposite direc-
tions. Only surface spins are in-
dicated. Spins are depicted per-
pendicularly to the surface only for
graphical simplicity.
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Fig. 10. Local density of states per spin for a non-
magnetic V atom located in bulk V and at the
V(100) surface.

surface turned out to be rather difficult. Any realistic surface consists of terraces of at most
1 µm in width separated by mono-atomic steps. From terrace to terrace the surface magne-
tization may flip and in average the magnetization of the surface cancels between oppositely
magnetized terraces. Obviously terraces introduce a new length scale which lead to topological
antiferromagnetism depicted in Fig. 9 on a sub-micrometer scale. Recently this picture was
confirmed experimentally by spinpolarized scanning tunneling spectroscopy [38].

3.3 Example: V(100)

We investigated the possible magnetism of the V(100) surface using a 15 V layers thick film
terminated by two V(100) surfaces. For a structurally unrelaxed 15 layer V film the surface
magnetic moment was only 0.15 µB and the magnetic moment of the subsurface layer was al-
ready as small as −0.06 µB. The introduction of the surface relaxation (∆d12 = −11.1 %,
∆d23 = +0.7 %, ∆d34 = +3.1 % of the bulk interlayer distance) by total energy minimization
finally quenched the magnetism completely. The same happened for a V(105) step-edge, fer-
romagnetism of the step-edge disappeared after relaxation. In an older LSDA investigation, we
studied the magnetism of (unrelaxed) 1, 3, and 5 layers V films in a c(2 × 2) unit cell, i.e. with
two atoms per film plane (see Sect. 4.1.2). While the unsupported monolayer was clearly in-
plane antiferromagnetic, the trilayer system was on the edge of a magnetic stability, while the 5
layer system was always nonmagnetic. From these results we conclude that in very thin V films
a surface magnetic moment can be stabilized, while for thicker and relaxed films no surface
magnetism can be found. In Fig. 10 the local density of states of a V atom at the (100) surface
and in bulk are presented. We see that both have roughly the same density of states n(EF) at
the Fermi energy. According to the Stoner criterion, In(EF ) > 1, the surface magnetism of V
is not more likely than the magnetism of bulk V.

3.4 The (100)-Surfaces of VRu, VRh and VPd Alloys

Common to all bcc (100)-surfaces is a dz2 surface state located in the pseudogap of the den-
sity of states of the bcc metals separating bonding from antibonding states. For Cr, Mn and
Fe this surface state is spin-split and attracted recently a wide attention as it was used to probe
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Fig. 11: (a) shows the total magnetic moment of the semi-infinite (100) RuxV1−x, RhxV1−x, and
PdxV1−x alloy as function of the 4d transition-metal concentration x. (b) shows the local V
magnetic moment of a V atom located in the surface layer of the (100) surface of these alloys.

and image the surface magnetism of these systems using (spin-polarized) scanning tunneling
microscopy and spectroscopy. One example is the observation of the topological antiferromag-
netism of Cr(100) discussed above. This surface state is clearly visible as a strong peak in the
LDOS of Fig. 10, a few tenths of an eV above EF. Magnetism could be possible by extending
this peak to the vicinity of the Fermi energy. This is achieved by alloying V, for example, with
Ru, Rh, or Pd. The main effect of alloying is to broaden this peak due to the scattering of
electrons in the random alloy. Turek et al. [32] have explored this idea and found that all three
systems exhibit magnetism over a wide range of concentrations which is unexpected taking into
account that all those bulk alloys are nonmagnetic and that V, Ru, Rh, and Pd are nonmag-
netic in the bulk and at the surface. The magnetic moment as function of the concentration
are summarized in Fig. 11. The largest total moments of 0.7µB, 0.75µB, 0.8µB were found for
Ru0.2V0.8(100), Rh0.2V0.8(100), and Pd0.25V0.75(100). A closer analysis reveals that the primary
contribution to the magnetism is due to the large local moments of V in the surface layer. These
are shown in Fig. 11b. For RuV and RhV we find peak V moments of about 1 µB at about 25%
Ru or Rh concentration.
From the investigation of the surface magnetism, in particular the investigation of the layer
dependence of the local moments from the surface to the bulk, we can draw the very important
conclusion that at perfect surfaces the changes of the local moment due to the existence of a
surface is limited in first approximation to the atoms in the surface layer. A better description
may include the changes of the moments in about the first 4 layers at the surface. In the context
of thin films this observation means that the new properties different from the surfaces are only
expected in the ultrathin limit of films such as monolayers, bilayers up to a few layers.

4 Ultrathin Films

The transition-metal monolayers on noble-metal substrates are the classical systems exhibit-
ing two-dimensional (2D) magnetism. Because of the reduced coordination number of nearest
neighbor transition-metal atoms in a monolayer film, the d-band width in two-dimensions is
considerably smaller and correspondingly the LDOS at the Fermi energy is considerably larger
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Fig. 12: Local magnetic moments as calculated for ferromagnetic (left figure) 3d metal mono-
layers on Ag(100) [39] (dots), Pd(100) [40] (squares), and Cu(001) [2] (triangles), and (right
figure) 3d, 4d [45], and 5d [46] monolayers on Ag(001) (dots) and Ag(111) [44] (triangles).

than in the bulk situation. Thus the magnetic instability should occur for a much wider variety
of transition-metal elements. Following this line of argument it is clear that the strength of the
d–d hybridization between monolayer and substrate is an additional parameter which controls
the d-band width of the monolayer. For instance, large band-gap material, e.g. MgO(100), as
substrate allows the formation of two-dimensional monolayer bands within the band gap of
the substrate material. In this case the impact on the magnetization of the monolayer due to
the substrate is expected to be small. The same is true for noble-metal substrates, which have
d bands well below the Fermi energy. The width of the monolayer d band is not significantly
broadened by the monolayer-substrate d–d interaction, and magnetism is restricted to the mono-
layer. Increasing the d–d hybridization by choosing appropriate nonmagnetic transition-metal
substrates, e.g. Pd(100) or W(110), will lead to a considerable broadening of the monolayer
bands and introduce a significant spin-polarization of the substrate until we have changed from
the two-dimensional limit to the semi–infinite regime. Choosing a magnetic substrate an addi-
tional complexity arises due to the competition of the magnetic coupling in the monolayer and
between monolayer and substrate.

4.1 (100) Oriented Monolayers on Nonmagnetic Substrates

4.1.1 Ferromagnetic Monolayers

A systematic investigation of the magnetism of all possible 3d, 4d, and 5d transition-metals
monolayers on Ag(001) are collected in Fig. 12 and in Table 6. One finds that all 3d metal
monolayers (Ti, V, Cr, Mn, Fe, Co, Ni) on Ag(001) substrate show ferromagnetic solutions. Tc,
Ru, and Rh are ferromagnetic among the 4d-metals, and Os and Ir are ferromagnetic among
the 5d-metals on Ag(001). The local magnetic moments are partly very large, not only for the
3d monolayers, but surprisingly also for the 4d and 5d ones. In the 3d series the overall trend
of the local moments follows Hund’s first rule. The largest local moment of about 4 µB was
found for Mn and from Mn to Ni the magnetic moment decreases in steps of 1 µB. The latter
is a consequence of the strong ferromagnetism in these monolayers. The magnetic moments of
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Table 6: Local magnetic moments in µB/atom for 3d transition–metal atoms as ferromag-
netic (F) and antiferromagnetic (AF) 3d monolayers (ML) on Ag(001) [39], Pd(001) [40],
W(110) [41] and on Cu(001) [2, 42]; compared with results for 3d monolayers as interlayers
(IL) in Cu(001) [2], unsupported (001) monolayers (UL) in the lattice constant of Cu(111) and
Ag(001) [43], and with results for ferromagnetic 3d monolayers on Cu(111) and Ag(111) [44].
“−” indicates that no calculation was performed for this system. “0” indicates that the calcu-
lated moment was smaller than the numerical accuracy estimated to be about 0.02 µB/atom.
“?” indicates a system, for which the calculation was not finished up completely to self-
consistency, but result is approximately correct.

Ti V Cr Mn Fe Co Ni

Ag ML on Ag(001) F 0.34 2.09 3.78 4.04 3.01 2.03 0.65
AF 0 2.08 3.57 4.11 3.06 ? 0

UL – Ag(001) F 1.72 2.87 4.50 4.32 3.29 2.20 1.02
AF 0 2.59 4.09 4.32 3.32 2.10 0

ML on Ag(111) F 0 1.39 3.43 3.91 2.95 1.93 0.51

Pd ML on Pd(001) F 0 0.51 3.87 4.11 3.19 2.12 0.89
AF 0 1.39 3.46 4.05 3.20 1.99 0.59

W ML on W(001) F − 0.00 − 2.97 2.37 1.14 0.00
AF − 0.00 2.52 3.32 − − 0.00

Cu ML on Cu(001) F − 0 0 2.97 2.61 1.76 0.33
AF − 0 2.52 2.92 2.35 ? 0

IL in Cu(001) F − 0 0 2.01 2.39 1.51 0
AF − 0 1.84 2.15 − − −

ML on Cu(111) F − 0 0 3.05 2.69 −
UL – Cu(111) F − 0 0 3.06 2.75 − −

Ti, V, and Cr monolayers show a pronounced dependence on the substrate: Ti is magnetic on
Ag, but nonmagnetic on Pd; the magnetic moment of V is reduced by more than 1.5 µB when
changing the substrate from Ag to Pd; and for Cr the magnetic moment changes from 3.8 µB

as an adlayer on Ag or Pd to zero as an adlayer on Cu. Although not as dramatic, the reduction
is also visible for Mn. We attribute the drastic reductions of the monolayer moments to the
reduction of the lattice constants in the sequence Ag to Pd to Cu.

When comparing the results of the local moments between 3d, 4d, and 5d monolayers on
Ag(001) an interesting trend is observed: The element with the largest magnetic moment among
each transition metal series is shifted from Mn to Ru (isoelectronic to Fe) and at last to Ir (iso-
electronic to Co), respectively. Following these trends we do not expect ferromagnetism for
any other 4d or 5d metal on noble metal (001) substrates, and indeed Mo and Re remained
nonmagnetic. The overall picture of monolayers on Ag and Au is the same, but the different
substrate interactions cause Tc and Os on Au to be nonmagnetic and lead to a slightly larger
moment for Rh. Pd and Pt are predicted to be nonmagnetic. With the exception of Ru, for which
a rather small magnetic moment of 0.2µB was calculated, no monolayer magnetism was found
for 4d metals on Pd(100). Investigations [47] including the spin-orbit interaction have shown
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Fig. 13: Local density of states (LDOS) of ferromagnetic 3d metal monolayers on Ag(100).
The Fermi energy defines the origin of the energy scale, separating occupied (at negative ener-
gies) from unoccupied states (at positive energies). Majority (minority) states are indicated by
positive (negative) values of LDOS.

that the spin-orbit interactions reduces significantly the magnetic spin moment of the 5d metal
monolayers and depending on the interlayer relaxation the spin moment might be suppressed.

4.1.2 Antiferromagnetic Monolayers

It is by no means clear whether the ferromagnetic state is actually the magnetic ground state.
Looking at the LDOS of the 3d monolayers in Fig. 13 and considering the analysis of the anti-
ferromagnetic susceptibility (15) we expect an antiferromagnetic phase for Cr and possibly also
for V and Mn monolayers. In reality, various antiferromagnetic states as well as non-collinear
spin configurations could be anticipated. Studying an Heisenberg model (2) for a square lattice
as formed by the (001) monolayers up to the second nearest-neighbor interaction (J1, J2) the
situation becomes relatively simple. As long as the nearest-neighbor interaction is the dominat-
ing one, there are only two phases to be considered: the ferromagnetic p(1×1) structure (J1 > 0)
discussed in the previous section and the antiferromagnetic c(2×2) superstructure (J1 < 0, a
checkerboard arrangement of up and down spins similar to the c(2×2) ferrimagnetic structure
in Fig. 20, but with moments of identical size on both sub-lattices). The c(2×2) structure corre-
sponds to the M-point in the 2DBZ of the square lattice. If the next-nearest neighbor interaction
is antiferromagnetic, J2 < 0, and sufficiently strong, |J1| < 2|J2|, then the magnetic structure
with a 2D �Q‖ vector of the X-point in the 2DBZ, corresponding an antiferromagnetic p(2×1)
or p(1×2) structure (ferromagnetic rows of atoms along the [100] or [010] direction coupling
antiferromagnetically from row to row) becomes the magnetic ground state.
Figure 14 shows the local moments for the ferromagnetic and c(2×2) antiferromagnetic phase
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Fig. 14: Left figure: Local magnetic moments of 3d monolayers on Cu(100) [2] and
Ag(100) [39] calculated for the p(1×1) ferro– (solid circles connected by dashed line) and
the c(2×2) antiferromagnetic configuration (open circles connected by solid line). Right figure:
Total energy difference∆E = EAFM −EFM per 3d atom between the c(2×2) antiferromagnetic
and p(1×1) ferromagnetic phase for 3d monolayers on Cu(100) (triangle connected by full line)
and Ag(001) (solid circles connected by dashed line). ∆E > 0 (< 0) means, the ferromagnetic
(antiferromagnetic) configuration is the most stable one. “?” indicates an result which is not
fully converged.

of 3d monolayers on Cu(001). It becomes evident that, for many systems (see also Table 6)
both configurations exist with moments of similar values. Depending on the inplane lattice con-
stant, differences in the local moments for the two magnetic phases develop for earlier transition
metals, e.g. for Cr on Cu(001), for V on Pd(001) or for Ti on Ag(001). Figure 14 shows also
the energy differences ∆E = EAFM − EFM per atom between the c(2×2) antiferromagnetic
and the ferromagnetic configuration for 3d metal monolayers on Cu(001) and Ag(001). A clear
trend emerges: The Ni, Co, and Fe overlayers (∆E > 0) prefer the ferromagnetic configuration
and the Mn, Cr, and V ones favor the antiferromagnetic one. From the strong similarities of the
monolayer trends for these two substrates we conclude, that this is a general trend: Fe, Co, and
Ni favor the p(1×1) ferromagnetism on the (001) surfaces of Pd, Pt and the noble metals Cu, Ag
and Au [48] whereas V, Cr, and Mn monolayers prefer the c(2×2) antiferromagnetic configu-
ration. The same trend was recently found for monolayers on W(110) [41], and is expected for
Al substrates although V and Ni might then be nonmagnetic. Since ∆E ≈ 8S2J1, ∆E reflects
basically the change of J1 as function of the band filling (number of d electrons) or how EF

moves through the LDOS in Fig. 13. For Mn on Ag(001), where ∆E or J1, respectively, is
relatively small, the J’s between more distant pairs may determine the picture. We investigated
by total energy calculations the stability of the possible p(2×1) structure and found that the
c(2×2) structure is indeed the magnetic ground state.

The c(2×2) antiferromagnetic phase was first predicted by theory. After the prediction several
experiments indicated that the c(2×2) state may indeed exist: no ferromagnetic long range
order was found at low temperatures for a V monolayer on Ag(100) [49], but a local exchange
splitting was found for V, Cr, and Mn monolayers on Ag(100) [50]. More than 10 years after the
theoretical prediction a direct proof of the c(2×2) antiferromagnetic state became for the first
time possible by using the spin-polarized scanning tunneling microscopy in the constant-current
mode [51, 52]. The experiments were carried out for a Mn monolayer on W(110).
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4.1.3 Magneto-Interlayer Relaxation

In order to give the reader an impression (i) how strongly the formation of large monolayer
moments may affect the interlayer relaxation and (ii) what is the influence of the magnetic order
on the interlayer distance, total energy calculations as function of the interlayer distances are
presented for two selected systems: Mn/Ag(001), and Mn/Cu(001). Prior to these calculations
we determined the in-plane lattice constants which are taken to be the bulk lattice constants of
the substrate; we found a value of aCu

0 = 6.65 a.u. for Cu and aAg
0 = 7.58 a.u. for Ag. Clearly, the

Mn monolayers show the largest magnetic moments on any substrate and the magneto-volume
effects should be most substantial.
Fig. 15 shows the total energy as function of the interlayer distance for a Mn monolayer on
Cu(001) and Ag(100) for three different magnetic states: nonmagnetic, ferromagnetic and c(2×
2) antiferromagnetic. We find, as already discussed in Sect. 4.1.2 that the nonmagnetic solution
is the highest in energy and the antiferromagnetic one is the lowest energy magnetic state.
Second, we find a substantial change of the minimum energy interlayer distances with change
of the magnetic state. On Cu(100) the most contracted minimum energy distance was found for
the nonmagnetic solution with ∆zN =1.39%. For the ferromagnetic state a relaxation of ∆zF =
4.02% and for the antiferromagnetic state a relaxation of ∆zAF = 5.41% was determined. We
find that the effect of the long range magnetic ground state on the relaxation is equally important
as the formation of moments itself: the formation of a magnetic moment expands the interlayer
distance by about 2.6% and the change in the magnetic state changes the interlayer distance
by 1.4%. This coincides with the energy differences between the ferromagnetic state and the
nonmagnetic state which is comparable to the energy difference between the antiferromagnetic
state and the ferromagnetic one.
On Ag(001), the interlayer relaxations for the nonmagnetic, ferromagnetic, and antiferromag-
netic Mn monolayers are determined to ∆zN =−13.4%, ∆zF =−6.75%, and ∆zAF =−5.94%,
respectively. The lattice constants of Ag is 14% larger than the lattice constant of Cu. Conse-
quently the Mn atoms relax inwards on these substrates. Due to the large Mn moments, around
4 µB on these substrates (recall the moment of Mn on Cu is slightly below 3 µB), the magneto-
volume effect is very large. The ferromagnetic Mn monolayers experience a large expansion of
their minimum energy interlayer distance of about 7%, much larger than for Cu and the mag-
netic configuration modifies this expansion by an other 1% to 2%. The impact of the magnetic
order on the interlayer distance is within about 2%, but the magneto–volume effect due to the
formation of large magnetic moments is much larger for Mn on Ag than for Mn on Cu. This
is in line with the arguments based on energy differences. The energy difference between the
antiferromagnetic state and the ferromagnetic state is for all Mn systems in the same ballpark
of about 300 meV/Mn atom (cf. Table 1), while the formation energy of local moments is at
large difference: about 200 meV for Mn on Cu but 1300 meV for Mn on Ag. This explains the
large difference in the magneto-volume effects between Mn on Cu and Mn on Ag. In all cases
the relaxations stabilize the ferromagnetic and antiferromagnetic phases, respectively.
Concluding, the atomic volume depends on the magnetism, mostly on the size of the mo-
ment and to a smaller extent on the magnetic state. An extreme example of this is the ex-
perimentally observed unusually large atomic buckling of the c(2×2)MnCu/Cu(001) [53] and
c(2×2)MnNi/Ni(001) [53] surface alloys. In these alloys a buckling of the surface atoms of
0.30 Å (MnCu) [53] and 0.25 Å (MnNi) [53] was found. Although the atomic radii of Pd and Au
are much larger than for Mn, the buckling of the c(2×2)CuPd/Cu(001) and c(2×2)CuAu/Cu(001)
atoms was observed to just 0.02 Å[54] and 0.10 Å[55], respectively. It was shown that this
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Fig. 15: Total energies as function of the interlayer relaxation for nonmagnetic (open dia-
monds), ferromagnetic (solid diamonds), and c(2×2) antiferromagnetic (solid circles) Mn mono-
layers on Cu(001) and Ag(001). The energy of the nonmagnetic monolayer at 0% relaxation
was chosen as the origin of the total energy scale. The interlayer relaxation is given in relative
units with respect to the interlayer distance of the substrate. The vertical arrows indicate the
minimum energy interlayer relaxation.

buckling was a consequence of the magneto-volume effect, due to the large moments of Mn
(3.75 µB) in Cu [56] and Ni (3.55 µB) [57].

4.2 (111) Oriented Monolayers on Nonmagnetic Substrates

4.2.1 Ferromagnetic Monolayers

The (0001) surface of an hcp crystal and the (111) surface of a fcc crystal establish a triangular
lattice. Compared to the (100) surface the coordination number changes from 4 to 6, and the
symmetry changes from fourfold to threefold or sixfold, respectively. Moreover, the differences
in the magnetic properties between films on a square lattice and on a triangular lattice gives an
estimate of the importance of the pseudomorphic growth condition for the magnetism of the
films.
Figure 12 exhibits the general trend that the magnetic moments of the sixfold coordinated mono-
layers on Ag(111) are smaller in magnitude than those of the fourfold coordinated ones on
Ag(001). On the Ag(111) surface we found magnetism for all 3d metals with the exception of
Ti, which was very small anyway. There is nearly no difference between the monolayer mo-
ments of Mn, Fe, Co, and Ni on the differently oriented Ag substrates. A comparatively larger
reduction of the magnetic moments is found at the beginning of the 3d series where the wave-
function is more extended than at the end of the series. Thus, changing the coordination number
from 4 to 6, changes the local moments not significantly. One consequence of this result is that
for monolayers which do not grow pseudomorphically on any substrate, but keep an average
distance between monolayer atoms similar to the pseudomorphic films, no dramatic difference
in the formation of large local moments are expected.
With the exception of Ru (1.23 µB), and Rh (0.67 µB) and a tiny moment for Ir (0.05 µB) among
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Fig. 16: (Left:) The hexagon shows the first BZ of the 2D hexagonal Bravais lattice. The gray-
shaded area indicates the irreducible part. (Center:) The RW-AFM structure. (Right:) the
coplanar non-collinear Néel (120◦) structure. Indicated are the corresponding two- and three-
atom unit cells and the continuous paths, which connect the corresponding magnetic structure
to the FM state.

the 5d metals, no ferromagnetism was found for any other 4d and 5d monolayers on Ag(111).
For the 4d metal monolayers Ru and Rh, the moments are reduced to about 70% of the (001)
values and for the 5d metal Ir only a tiny magnetic moment of 0.05 µB, about 15% of the (001)
value, remains. Obviously, the degree of the reduction of the magnetic moments due to the
increase of the hybridization with the increase of the coordination number from 4 to 6, follows
simply the increasing degree of delocalization of the d wavefunction when moving from the 3d
to the 4d and 5d transition–metal wavefunctions.

4.2.2 Monolayers with Complex Spin Structures

Antiferromagnetic interactions on a triangular lattice are the origin of frustrated spin systems. In
recent years the epitaxial growth of such ultra-thin films has been studied intensively by various
experimental techniques. In particular, pseudo-hexagonal c(8 × 2)Mn films on Cu(100) [58],
Mn films on the (111) surfaces of fcc Pd [59], Ir [60], Cu [61, 62, 63], and MgO [64] and on
the (0001) surface of Ru [65] and Co [66] have been prepared and analyzed. But also other
ultra-thin hexagonal films, e.g. Cr and V on Pt(111) and Ru(0001) [67, 68, 69], have been
investigated.
To obtain an overview of all relevant spin-structures we develop first a zero-temperature phase
diagram in the context of the Heisenberg model. As discussed in Sect. 2.2 the magnetic ground
states are SSDWs, most likely with a commensurate propagation vector �q‖ located at the high-
symmetry points in the first 2DBZ of a 2D Bravais lattice. For the 2DBZ of the triangular
(hexagonal) lattice, displayed in Fig. 16 (Left), the high-symmetry points are the corner points
Γ, K, and M of the irreducible wedge of the 2DBZ (I2DBZ). The Γ-point corresponds to the
ferromagnetic solution. The K-point corresponds to a 120◦ Néel state (Fig. 16 (Center)), a 2D
coplanar spin structure with three atoms in a (

√
3 × √

3) R30◦ unit cell for which the relative
angle between the spins at the different sites is always 120◦. The M-point corresponds to row-
wise antiferromagnetic (RW-AFM) configuration (Fig. 16 (Right)), which can be described by a
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four possible magnetic states.

rectangular unit cell with two antiferromagnetically aligned atoms. Magnetic ground states with
incommensurate �q‖-vectors are also possible preferentially with �q‖-vectors from the connecting
high-symmetry lines M-Γ-K-M.

Along the line M-Γ-K-M we investigated the energetics within the Heisenberg model up the
second nearest-neighbor interaction, i.e. including the exchange constants J1, J2. The results
are summarized in Fig. 17 in terms of a zero-temperature phase diagram. Depending on the
signs and values of J1, and J2 four kinds of possible magnetic ground states exist: FM, RW-
AFM, 120◦ Néel, and the SSDW. If J2 is zero or positive (ferromagnetic) than there are only
two possible magnetic ground states, determined by the sign of J1, the FM and the Néel state.
But small values of J2 are already sufficient to change the magnetic ground state and an infi-
nite number of magnetic states becomes possible, the RW-AFM state or the incommensurable
SSDW at any possible wave-vector �q‖ at the high-symmetry line Γ-M. Extending the model
by including also J3, a magnetic state with a �q‖ at any high-symmetry line can become ground
state.

Since the J’s are rapidly varying functions of the number of d electrons, ab-initio calculations
are carried out to determine the element specific ground states. Since the calculations are very
time consuming, the full overview has been worked out only for unsupported, free-standing
monolayers (UML). Fig. 18 shows for the UMLs with the Cu lattice constant the total energy
E( �Q‖) and the magnetic moments M( �Q‖) calculated for a discrete set of the spin-spiral �Q‖

vectors along the high-symmetry lines. Among all the SSDWs calculated, the high-symmetry
points have the lowest energies: the 120◦ Néel state (K-point) for Cr(111), the RW-AFM state
(M-point) for Mn(111), and the FM state (Γ-point) for Fe(111). For Fe and Mn, the M( �Q‖) are
nearly a constant, but the Cr moments change drastically, as no ferromagnetic solution could be
found for Cr(111). One more interesting observation is the local minimum of E( �Q‖) for Mn on
the line Γ-K, which is only 21 meV higher in energy than the RW-AFM state. We expect that a
small change in the d-band filling, e.g. due to alloying with Fe, may change the energetics and
an incommensurate SSDW may become the magnetic ground state.

For Mn, the lowest energy magnetic state found so far is the RW-AFM state, which corresponds
to the commensurate SSDW state with one single �Q‖-vector at the M-point of the 2DBZ, and the
RW-AFM is also called single- �Q‖ (1Q) state. In the 2DBZ there are three M-points correspond-
ing to the three possible directions of the long axis of the RW-AFM unit cell on a triangular
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Fig. 18. Calculated total energies
(circles, left scale) and magnetic
moments (triangles, right scale) for
spin-spiral states in 3d-UMLs with
the Cu(111) geometry as function
of the 2D wave vector �Q‖ along the
high symmetry lines of the 2DBZ.
The energy is shown relative to the
energy of the RW-AFM state.

lattice. They are equivalent in symmetry but are different to each other with �Q‖-vectors, �Q
(k)
‖ ,

for k = 1, 2, 3. Within the Heisenberg model, the energy of each SSDW, denoted by one of
the three wave vectors �Q

(k)
‖ or any SSDW being an orthogonalized linear combination of those,

are degenerate. Higher order spin interactions (4) and (4) may lift this degeneracy and a so-
called triple- �Q‖ (3Q)-state, may become lower in energy. The 3Q-state is a three-dimensional
non-collinear spin-structure on a 2D lattice (see Fig. 19) with four chemically identical atoms
per surface unit-cell, where the relative angle between all nearest-neighbor spins is given by
the tetrahedron angle of 109.47◦. The 3Q-state is formed as a linear combination of the three
RW-AFM (1Q) structures orthogonal in spin-space, each having one of the three �Q

(k)
‖ -vectors

of the M-points:

�m(�r + �Ri) = m(�r) × 1√
3

3∑
k=1

ei �Q
(k)
‖

�Ri
ê

(k), (22)

where the ê
(k) are orthogonal unit vectors in spin space. We see that in the nearest-neighbor

approximation to the higher order exchange contributions the sign of K1 and B1 determine the
sign of the energy difference ∆E = E3Q − E1Q = 16/3S4(2K1 + B1) and thus whether the
3Q or the 1Q state becomes the magnetic ground state. From the ab-initio calculations for the
Mn UML in the geometry of Cu(111) we [3] found that the 3Q-state is 15 meV/atom lower in
energy than the 1Q-state.
Calculations including the Cu(111) substrate show that the energy differences between dif-
ferent magnetic states change due to the presence of the substrate, but the magnetic ground
state remains unaltered: Cr/Cu(111) exhibits the 120◦ Néel state (2.35 µB), Mn/Cu(111) the
3Q-structure (2.74 µB), which is 17 meV lower in energy than the 1Q-state (3.00 µB), and
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Fig. 19. An image of the magnetic 3Q-structure, with
spins pointing in all three directions of the spin-space.
Note that, due to the neglect of the spin-orbit inter-
action only the relative orientation of the moments is
specified.

Fe/Cu(111) is ferromagnetic (2.63 µB). On the Ag(111) substrate [70] the overall picture is
the same, but two differences were noticed: V/Ag(111) is magnetic (2.19 µB) and exhibits
as Cr/Ag(111) (3.65 µB) the 120◦ Néel state and the magnetic ground state of Mn/Ag(111)
is the RW-AFM state (3.91 µB) and not the 3Q-state (3.88 µB). Fe/Ag(111) is ferromagnetic
(3.02 µB). We believe that the complex spin-structures presented here, can be resolved using
the spin-polarized scanning tunneling microscope in the constant-current mode [71, 70].

4.3 Magnetic Substrate: Magnetic Exchange Coupling of 3d Metals on
Fe(001)

4.3.1 Monolayers

3d-metal monolayers on Fe(001) are prototypical systems where the in-plane magnetic inter-
actions, described by the exchange coupling parameter J‖, compete with the strong magnetic
interactions J⊥ between the monolayer and the substrate. Depending on the signs and values
of J‖ and J⊥, complex spin structures as ground states can be anticipated. Finally, total-energy
calculations are required to determine the minimum-energy magnetic-state among the various
metastable solutions. We recently carried out calculations [72, 73] which considered three com-
peting spin structures: the p(1×1) ferromagnetic (FM), the p(1×1) layered antiferromagnetic
(LAF), and the c(2×2) ferrimagnetic (FI) spin configurations shown in Fig. 20. Figure 21
summarizes the results from calculations for structurally unrelaxed monolayers, i.e. where the
monolayer atoms are located at the ideal, bulk truncated, pseudomorphic Fe atom sites. For
most 3d metal overlayers (Cr, Mn, Fe, Co) on Fe(001) all three configurations exist and are

layered antiferro. c(2x2) ferrimagn.ferromagnetic

Fig. 20. Schematic representation of a ferro-
magnetic, a layered antiferromagnetic, and
a c(2×2) (anti)ferrimagnetic superstructure
of a monolayer film (broken line) grown as
overlayer on a magnetic substrate (full line).
Upper panel shows view onto the surface,
lower panel shows side-view. Arrows indi-
cate the relative spin direction at the posi-
tions of the atoms.
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Fig. 21: a) Left Figure: Local magnetic moments of unrelaxed 3d transition-metal monolayers
on Fe(001). Positive (negative) sign of moments indicates an (anti)ferromagnetic, FM (AF),
spin alignment to the Fe substrate, emphasized by open (filled) symbols. Shown are results
of three different spin configurations: p(1×1) FM (solid line), p(1×1) LAF (dotted line), and
the c(2×2) FI (dashed lines) for positive and negative moments. Figure is complimented with
results for 3d monolayers on Ag(001) (© connected by dash-3-dotted line). As the Ag substrate
is nonmagnetic, ferro- and antiferromagnetic spin alignment is indistinguishable and moments
are identical and are shown twice, once for positive and negative sign. b) Right Figure: Total
energy difference ∆E1 =ELAF − EFM between the p(1×1) layered antiferromagnetic and the
ferromagnetic coupling (squares connected by solid lines) and ∆E2 =EFI − EFM between the
c(2×2) ferrimagnetic and the p(1×1) ferromagnetic coupling (diamonds connect by dashed lines)
of 3d transition–metal monolayers with Fe(001). The ferromagnetic (layered antiferromagnetic
or ferrimagnetic) coupling has lower energy for ∆E > 0 (< 0), and is therefore favored. The
layered antiferromagnetic coupling is preferred over the ferrimagnetic one if ∆E1 < ∆E2.
Filled square or diamond indicate the magnetic ground state. For V and Ni only one magnetic
state has been found.

energetically stable. Only the V and Ni monolayers were found to couple exclusively layered
antiferromagnetically or ferromagnetically, respectively, to the Fe(001) substrate. Surprisingly,
the ferromagnetic (M>0), the layered antiferromagnetic (M<0) and the two different magnetic
moments (M1 > 0 and M2 < 0) for the ferrimagnetic phase are all similar in size. The largest
magnetic moment of about 3 µB was found for Mn, and then the magnetic moments drop for
elements left and right of Mn, reminiscent of the behavior on the noble-metal substrates.
In order to see the effect of the hybridization between the substrate and the overlayer on the size
of the local moments, the local magnetic moments of 3d-metal monolayers on Ag(001) [39] are
included for comparison. Fe (a‖ = 5.33 a.u. ) and Ag (a‖ = 5.51 a.u. ) have very similar in-
plane lattice constants and thus very similar in-plane d–d hybridizations may be expected for the
monolayer, but the d–d hybridization across the interface is largely different. From Fig. 21a one
infers that the magnetic moments for the Fe, Co, and Ni monolayers are rather independent on
the substrate, but increasing deviations are obtained for the monolayer moments in the sequence
from Mn to V. The extent of the 3d wave function increases for chemical elements from the end
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Fig. 22. Relative energy E − Ec(2×2) for the
five magnetic configurations. The small en-
ergy difference between the c(2×2) FI state
and the p(2×2) FM configuration indicates
that the two solutions are nearly degenerate
ground states.

of the 3d series to the beginning of the series. Accordingly, the d–d hybridization within the
monolayer and between the monolayer and the Fe substrate increases. As a consequence, the
magnetic moments for Mn, Cr, and V overlayers are visibly reduced.
Since the local magnetic moments of the three different magnetic states for Cr, Mn, Fe, and Co
monolayers on Fe(001) are very similar in size, total-energy calculations have been performed
to determine the minimum energy magnetic configuration. The energy difference ∆E1 =
ELAF−EFM between the layered antiferromagnetic and ferromagnetic configuration and ∆E2 =
EFI − EFM between the c(2×2) ferrimagnetic and the ferromagnetic configuration, ignoring
again any monolayer relaxation, are shown in Fig. 21b. For V and Ni monolayers, which show
only one magnetic solution, no data points are included. As has been reported in the litera-
ture [74, 72, 75] we find with the exception of Cr, that the ferromagnetic coupling (∆E1 > 0)
is energetically always more favorable than the layered antiferromagnetic one and that for Cr
and Mn the ferrimagnetic coupling (E2 < 0) is energetically preferred over the ferromagnetic
one. For Fe, Co, and Ni, the ferromagnetic solution is the most stable one. When we com-
pare for Cr or Mn the energies among the three different magnetic phases, we find that for
Cr the layered antiferromagnetic coupling is the magnetic ground state, energetically followed
by the ferrimagnetic and the ferromagnetic coupling, which are metastable phases. The cal-
culated total-energy differences between FM and LAF configurations and between FM and FI
show some differences to those of Handschuh et al. [72] mostly due to the different choice of
the in-plane lattice constant. Summarizing, (i) the magnetic ground state structures are LAF
for V and Cr, FI for Mn, FM for Fe, Co, and Ni. (ii) For the Mn monolayer we find a sec-
ond spin configuration with an energy of about 55 meV/Mn above the ground-state structure.
Therefore, extending the search for the magnetic ground state of Mn to larger surface unit-cells
may lead to a more complicated ground-state spin-structure. Elmouhssine et al. [76] and Asada
et al investigated the possibility of additional low-energy spin-structures in the p(2×2) surface
unit-cell containing four Mn surface atoms. Two additional spin-structures were included: the
p(2×2) FM magnetic structure with three Mn atoms out of four coupling ferromagnetically to
the Fe substrate and one Mn atom coupling antiferromagnetically, as well as the p(2×2) AF
structure, which is the layered antiferromagnetic version of p(2×2) FM, where three Mn atoms
couple antiferromagnetically and one atom couples ferromagnetically to Fe. Indeed the calcula-
tions reveal that on Fe(001), the Mn c(2×2) FI, and the p(2×2) FM are nearly degenerate ground
states. This is obvious from Fig. 22, which displays the energies of the different configurations
relative to the c(2×2) FI state energy. Tight-binding linear muffin-tin orbital calculations by
Elmouhssine et al. found that the p(2×2) FM superstructure is 15 meV higher in energy than
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the c(2×2) one, while Asada et al. found by FLAPW calculations that the total energy of the
p(2×2) FM superstructure is slightly lower (∼ 6.4 meV/Mn) than the c(2×2) FI structure. Not
shown here but the interlayer distances of relevant magnetic configurations had been fully op-
timized by the use of force calculations, and these relaxations do not change this picture. The
energy differences are comparable to the thermal energy at room temperature. Thus surface
roughness and thermal excitations in true experimental situations could lead to the coexistence
of these two magnetic configurations and thus the appearance of magnetic domains within the
Mn monolayer. At present one cannot exclude the possibility of magnetic states with even lower
energy not investigated yet.

4.3.2 Doublelayers

In order to demonstrate the complexity of the systems we show here also the results of the 3d
metal bilayers on Fe(001). For the doublelayer systems we have examined all possible mag-
netic configurations within the c(2×2) unit cell. With the exception of Mn all stable magnetic
configurations found have the magnetic p(1×1) structure. The magnetic ground states are the
p(1×1) LAF one for V, Cr, and Mn, and the p(1×1) FM one for Fe, Co, and Ni bilayers on
Fe(001). For Mn we found in addition to the p(1×1) LAF ground-state structure also the su-
perstructure ([↑↓]S ↓S−1 | ↑ Fe) as stable solution with a total energy of 43.2 meV/Mn higher
than the LAF structure. The magnetic moments for the bilayer systems are collected in Fig. 23.
Please note for the case of the LAF Mn doublelayer the almost vanishing magnetic moment of
the subsurface atom. Furthermore, for the Mn bilayer, in addition to those two configurations,
the ground state (↑S ↓S−1 | ↑ Fe) and the superstructure stated just above, we also found a third
configuration, (↓S ↑S−1 | ↑ Fe), which is about 9 meV/Mn higher in energy than the ground
state. Thus there exist three states within an energy range corresponding to about 400 K. We
believe that this gives already a glimpse of the difficulties involved in dealing with thicker Mn
overlayers on Fe(001) [77].
For a Cr monolayer the measured magnetic moment was found to be at most 1 µB [78, 79],
which is less than half of the theoretical prediction [74, 72]. It was also reported that the layer-
by-layer growth leads to a strong intermixing with the substrate Fe layers [80, 81, 82]. Mn
overlayers seem to be even much more involved. There is a general experimental consensus
that for Mn around one ML coverage the signals related to the magnetization disappear. The
microscopic origin for this observation is under strong debates. One explanation supported by

Fig. 23. Local magnetic moments (M) for
the ground-state spin configurations of un-
relaxed 3d transition-metal doublelayers on
Fe(001). The solid line denotes the 3d sur-
face atoms (3d(S)) aligned parallel (M > 0)
to the Fe substrate, the dotted line denotes
the 3d subsurface atoms (3d( S-1)), whose
coupling changes from LAF (M < 0) to FM
(M > 0) from early to late 3d elements. The
chained line denotes the interface Fe atoms
(Fe(I)).
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5d (right, empty symbols) transition–metal adatoms at the hollow–site of Ag(100) (squares
connected by full lines) [84] and monolayers as overlayers on Ag(100) [46] (circles connected
by dashed lines).

theory [72, 75] is a possible onset of the in-plane ferrimagnetic coupling. On the other hand,
strong interfacial alloying has been observed [83], which may lead to the same results. A third
option is the possibility of a doublelayer growth mode, which may also lead to the disappearance
of magnetic signals. The difficulty in controlling and characterizing the morphology of the
interface seems to be intimately related to the difficulties in understanding of the interfacial
magnetism of those systems. A complete picture requires additional theoretical investigations
including the the possibility of interdiffusion and surface alloying.

5 Atomic-Scale Structures

5.1 Adatoms

Single transition-metal adatoms adsorbed on (100) substrates of Cu, Ag, Au [84, 85], Pd and
Pt [86] have been investigated by first-principles calculations. When the 3d overlayer and
adatom moments on Ag(100) are compared as shown in Fig. 24, a surprising similarity in the
general trend and the magnitude of the magnetic moments is found. Obviously the local mo-
ments of monolayers follow Hund’s first rule of the adatoms. In other words, if we decompose
the DOS according to (13) in terms of the local (χ00) and the interatomic non-local suscepti-
bilities (χ0i, i > 1), then for the adatoms the non-local susceptibilities are basically zero, by
definition, but also for the monolayers χ00 dominates over χ0i. For Fe, Co, and Ni, monolayer
and adatom, the magnetic moments are about equal and fully saturated. This will not change
for other atomic-scale structures such as chains. For example recent calculations of one-atomic
Fe, Co, Ni wires along the 〈111〉-type step-edge of the Pt(111) surface exhibit local moments of
3.18 µB, 2.12 µB, 0.83 µB, respectively. From Mn to Ti, monolayer and adatom moments de-
viate systematically due to the increasing extent of 3d wavefunction and the respective increase
of the d–d hybridization in the monolayer.
For the 4d and 5d transition-metal adatoms the comparison to the monolayers on Ag(100) looks
radically different. While the adatoms still follow Hund’s first rule with maximal moments at
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Fig. 25: A: Spin moment (in µB) of atoms of Fe clusters at Ni(001) surface, and average (per
atom) moment of the clusters (the view is surface-adapted, i.e., rotated by 45◦ with respect
to the in-plane fcc cubic axes; the clusters are viewed from the top, i.e., all atoms lie on the
surface). B: Linear trend for the atomic Fe spin moment as function of the coordination to Fe
neighbors [19].

the center of each series, the magnetism of monolayers is obviously largely determined by the
non-local susceptibilities χ0i which add an essential contribution to χ00 necessary to fulfill the
Stoner criterion (9). This is a consequence of the large extent of the 4d and 5d wavefunctions.
Since χ0i depends on all details of the local environment, each atomic-scale structure of 4d and
5d metals will have a different collection of magnetic moments. This observation motivated the
work on atomic-scale clusters.

5.2 Clusters

Small atomic clusters on surfaces constitute very interesting subjects, as their electronic struc-
ture and subsequently the magnetic properties depend in addition to other factors mentioned
above, on the individual cluster shape and size. In order to explore the consequences of this
statement we explore the spin-moment of Fe on a Ni(100) surface [19]. The clusters considered
are shown schematically in Fig. 25, viewed from the top (all atoms lie on the surface). The
view is adapted to the surface geometry, meaning that it is rotated by 45◦ with respect to the
in-plane fcc cubic axes of the underlying substrate lattice. The smallest cluster is a single Fe
adatom, while the largest consists of 9 Fe atoms. On each atom, the calculated spin moment
is written, and the average (per atom) moment of each cluster is also given. The Fe moment
is always ferromagnetically coupled to the Ni substrate moment. Already at a first glance it is
obvious that the average moment of the clusters depends on the cluster size. The single adatom
has manifestly the highest moment (3.24µB), while the 9-atom cluster shows a lower average
moment of 2.85µB.
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Fig. 26: Magnetic clusters of a particular transition metal deposited on an (100) oriented Ag
substrate.

From what has been said in Section 2.4 this behavior is expected on the grounds of hybridization
of the atomic d levels with the neighbors. Atoms in larger clusters have, on the average, higher
coordination, thus their d wavefunctions are more hybridized; this leads to lesser localization
and lesser tendency to magnetism.
To pursue this idea further, we tried to correlate the local atomic spin moment to the coordi-
nation of each atom, irrespective of the form or size of the cluster. For instance, let us focus
on all Fe atoms which have only one first Fe neighbor, i.e., Nc = 1 (the coordination to the
substrate is the same, Ns = 4, for all Fe atoms). Such atoms appear in the clusters with size 2,
3, 4, 5, and 7; there are, in total, 10 such examples (having excluded cases which are trivially
equivalent by symmetry). All of them have spin moments ranging in the small interval between
3.10 and 3.13µB. Similarly, for the Fe atoms with two Fe neighbors the spin moment ranges
from 2.91 to 2.97µB. Collecting all possible cases, from Nc = 0 (single adatom) to Nc = 4, we
present the results in Fig. 25B. One finds an almost linear dependence of the spin moment on
the coordination number. In agreement with the analysis of the 3d transition-metal films Fe has
a strong intra-atomic exchange field, arising from rather localized 3d wavefunctions resulting
in strong intra-atomic susceptibility.
In many cases for homo-atomic and mass-selected ferromagnetic clusters, it is very difficult to
address experimentally the magnetic properties of each individual cluster or even each atom in
a cluster. Often just the average magnetic moment of clusters of particular size or the average
local magnetic moment per atom averaged over an ensemble of clusters of the same size but
different shapes can be determined. Using this scaling behavior it is possible to estimate the
magnetic moments of clusters if the shape is known.
In the light of what has been said above for the 4d and 5d adatoms on surface this is not the
general case for arbitrary atoms. For example, the magnetism of small 4d and 5d clusters on
Ag(100) show highly non-local susceptibilities, resulting even in an increase of the spin moment
with coordination. This is connected to the larger extent of the 4d states compared to the 3d
of Fe. The magnetic properties of several linear chains (C) and plane islands (I) of 4d and 5d
adatoms have been calculated [87] and are shown in Fig. 26. In particular, linear chains of 2
(dimers, C2), 3, and 4 adatoms (C3 and C4) have been considered, being oriented in the (110)
direction as well as three compact islands with 4, 5, and 9 adatoms (I4, I5, and I9).
Figure 27 shows the calculated moments per adatom for these nanostructures. Since several
nonequivalent atoms exist for the clusters C3, C4, I5, and I9, only the average moment is given.
For the linear chains quite large moments are obtained, but the behavior with size is non-regular.
While the C2 and C4 moments are very similar, the C3 moments of Mo and Tc are much smaller.
In this context it is interesting to compare the moments of the inner and outer chain atoms. For
Mo and Tc the outer atoms of C3 and C4 have larger moments than the inner ones. In the C4
chain, for instance, the two inner Mo atoms have moments of 1.85 µB, while the outer atoms
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Fig. 27: Average magnetic moment per adatom for 4d (left) and 5d (right) clusters [87].

carry 3.00 µB. Moving to Ru and Rh the situation changes. In the Ru chains both types of
atoms have about the same moments, whereas in the case of Rh the inner atoms carry larger
moments. In the Rh C4 chain the inner atoms have moments of 0.96 µB but the outer ones
only 0.76 µB. this is because the higher coordination of the inner atoms tends to enhance the
moments for Rh while Ru is an intermediate case being insensitive to environmental changes.
The large moments obtained for all three chain structures indicate that infinite chains of these
atoms should also show appreciable moments.
For the linear structure considered we also obtain antiferromagnetic solutions being the most
stable configurations in the middle of the series. The moments can be quite large. For instance,
for the Mo chains C2, C3, and C4 the atomic moments are larger than 3 µB.
For the compact islands (I4, I5, and I9) the hybridization effects within the cluster are even
larger. Similar to magnetic monolayers [88, 45, 89] we find only appreciable moments for the
Ru and Rh nanostructures, but no or very small moments for Mo and Tc. This is a consequence
of the large spatial extent of 4d wave functions being more important for the compact islands
than for the chain structures. Within the Ru structures I5 and I9 we observe that the outer atoms
carry a larger moment than the inner ones, the same effect as found above for the linear structure
of Mo and Tc. For Rh the situation is more complicated. For the I5 island the inner moment
(1.00 µB) is larger than the outer one (0.66 µB), in agreement with the above rule, while the
central atom in the I9 cluster has a very small moment of 0.16 µB, and the outer atoms have
moments of 0.62 µB and 0.64 µB. Thus by comparing the islands with the chain structures, not
only the peak of the moment curve is shifted to even larger valences, i.e, from Tc to Ru, but
also the transition from surface enhancement of the moments to surface suppression is shifted:
For the chains this turnover occurs at Ru, but for the more compact islands at about Rh. The
very small moment obtained for the central atom of I9 seems to be in conflict with the results
of monolayers for a Rh overlayer on Ag (100) which should have a moment of about 1 µB.
Calculations for larger Rh islands lead for the inner Rh atoms to considerably larger moments
(0.66 µB). Thus we conclude from these calculations, as well as from the strong difference
obtained for the different linear chains C2, C3, and C4, that the moments of the 4d clusters
show an unusual and oscillatory dependence on the cluster size.
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[4] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[5] U. von Barth and L. Hedin, J. Phys. C. 5, 1629 (1972).
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[49] M. Stampanoni, A. Vaterlaus, D. Pescia, M. Aeschlimann, F. Meier, W. Dürr, and
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