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Abstract

The emerging �eld of spintronics o�ers the prospect of lower power consumption
and higher performances for future technologies. Materials with perpendicular mag-
netic anisotropy (PMA), like FePd, are promising candidates to be used in spintronic
devices. Research on this type of materials includes the study of the magnetic con-
�guration in thin �lms, how it can be controlled and how it switches. Micromagnetic
simulations enable one to support experimental results and to understand the under-
lying physics. For these reasons, this thesis is a study of the domain-wall structure
and the reversal mechanisms in FePd thin �lms, by means of micromagnetic simula-
tions.

Above a certain critical thickness, the PMA induces the formation of out-of-plane-
oriented magnetic domains, separated by domain walls (DWs). We show that the
DWs are of Bloch type in the middle of the thickness, where the magnetization ro-
tates in planes parallel to the plane of the DW. On the top and bottom surfaces, Néel
closure domains are formed, where the magnetization rotates in a plane perpendicular
to the wall.

The hysteresis and reversal mechanisms with an in-plane (IP) and an out-of-plane
(OOP) applied �eld are then investigated. We show that defects are central in the
reversal mechanisms and must therefore be included in the simulations. During the
IP reversal, a stripe pattern is formed whereas, during the OOP reversal, reverse
domains nucleate at the defects and grow to form a maze (or labyrinth-like) pattern.
The obtained hysteresis curves are closed to experimental measurements.

Finally, the handedness (or chirality) of the Bloch walls is considered. Available
neutron scattering measurements suggest a preferred handedness. A Python code is
written to compute the neutron scattering patterns for the con�gurations obtained
by micromagnetic simulations. It con�rms the interpretation of the experimental
measurements in terms of chirality. We show that the observed chirality is not likely
to be the result of statistical �uctuations of a non-chiral system where left and right-
handed DWs would have equal probabilities. We show that the handedness of the
Bloch walls can be controlled with a weak chiral interaction like the Dzyaloshinskii-
Moriya interaction (DMI). This is however not a proof that DMI exists in FePd thin
�lms. The physical origin of the observed chirality suggests interesting research for
the future.
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Chapter 1

Introduction

1.1 Motivations

1.1.1 Spintronics

Magnetic materials for logic and memory applications have been studied since the
1950s [1]. The hard disk drive (HDD), using the direction of the magnetization to
store information, was indeed invented in 1956 by IBM. The development of the tran-
sistor by the Bell laboratory in 1947 and the success of Si-based devices however
prevented the further development of logic and memory devices based on magnetic
materials. Nevertheless, the size scaling of electronic devices based on semiconduc-
tors is reaching its limits due to the fundamental limit of the atomic size. This leaves
space for the development of devices based on other physical principles, and more
precisely the �eld of spintronics. Spintronic devices use the spin of electrons and/or
holes as additional degree of freedom. They have a promising future as they could
reduce power consumption and increase memory and processing capabilities.

The discovery of tunneling magnetoresistance (TMR) in 1975 [2] enabled the develop-
ment of magnetic tunnel junctions (MTJ) that act as a magnetic �eld sensor. TMR
is observed when two ferromagnetic layers are separated by a thin insulating layer.
Electrons can cross the insulating layer by tunneling, with a higher probability when
the magnetization in the ferromagnetic layers is parallel than when it is antiparallel.
In 1988, Albert Fert [3] and Peter Grünberg [4] discovered the giant magnetoresis-
tance e�ect (GMR). It is observed when two ferromagnetic layers are separated by
a non-magnetic, conducting layer. In this case also, the resistance is lower when the
magnetization in both layers is parallel. By �xing the magnetization in one layer,
and with the magnetization in the other layer that depends on the external magnetic
�eld, TMR and GMR can be used as magnetic �eld sensor. Those e�ects have been
used in several applications, like for example the read heads in HDDs.

1
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Magnetic materials that possess perpendicular magnetic anisotropy (PMA) are es-
sential for the development of MTJs [5]. A thin �lm with PMA presents an easy axis
for the magnetization in the direction perpendicular to the �lm. The magnetization
therefore lies either in the upward or downward direction. This enables one to store
information in the direction of the magnetization and to perform logic operations.
Those types of magnetic memories, like Magnetoresistive Random Access Memory
(MRAM), have the advantage of being non-volatile and fast-switching.

Magnetic thin �lms with PMA usually exhibit magnetic domains with the magneti-
zation either upwards or downwards. Those domains are separated by domain walls
(DWs) where the magnetization gradually rotates from upwards to downwards and
inversely. Those DWs have the property to scatter electrons, hence increasing the re-
sistance in the plane of the �lm. This type of magnetoresistance is called domain-wall
magnetoresistance (DWMR) [6]. Moreover, adding a superconducting layer on top
of a magnetic layer with a domain pattern enables one to tailor the superconducting
states due to the stray �eld of the magnetic layer [7].

FePd is a magnetic material exhibiting PMA and is a promising candidate for ap-
plications in spintronics. It is therefore important to study the precise structure of
the domains and the domain walls in FePd thin �lms, which is the main focus of
this thesis. Even though this thesis focuses on FePd thin �lms, the results can be
extended to any magnetic thin �lm with PMA.

1.1.2 FePd thin �lms

FePd thin �lms with di�erent degrees of perpendicular magnetic anisotropy (PMA)
have been studied in the PhD thesis of Annika Stellhorn [8]. Depending on the
strength of the PMA and the applied magnetic �eld, di�erent patterns formed by the
magnetic domains are observed. Typical patterns are the stripe pattern and the maze
(or labyrinth) pattern, as shown in Fig. 1.1.
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(a) Stripe pattern. (b) Maze pattern.

Figure 1.1: 3µm × 3µm Magnetic Force Microscopy (MFM) top view image of a sample
with a stripe pattern (a) and a sample with a maze pattern (b). From A. Stellhorn [8].

A model for the structure of the domain walls separating the out-of-plane domains
has been proposed in [8] and is sketched in Fig. 1.2. In the middle of the thickness,
the magnetization rotates gradually between two adjacent domains, forming a Bloch-
type wall. On the top and bottom surfaces, triangular domains are formed, called
Néel closure domains.

Figure 1.2: Sketch of a the cross section of a thin �lm with out-of-plane domains separated
by Bloch domain walls and Néels closure domains at the surfaces. Figure adapted from [8].

Neutron scattering measurement performed in [8] suggest that there exists a preferred
rotation direction for the magnetization in the Bloch walls. The origin of this pre-
ferred handedness, or chirality, is unclear yet.

Experimental research is crucial to observe how real magnetic materials behave. In
parallel, micromagnetic simulations provide support to experimental measurements
and enable one to understand the underlying physics. This thesis is therefore a study
of the magnetic con�guration in FePd thin �lms with PMA, by means of micromag-
netic simulations, with 3 main goals formulated in the next section. Most of the
results obtained by simulations are compared to experimental measurements to be
validated.
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1.2 Goals

This thesis has 3 main goals that are formulated as follows.

Goal 1: study the domain-wall structure.

The �rst goal is to perform an extensive study of the structure of the domain walls
between the out-of-plane domains.

Goal 2: understand the hysteresis and reversal mechanisms.

The second goal is to determine and understand the mechanisms by which the mag-
netization switches from the saturated state in one direction to the saturated state
in the other direction due to an external applied �eld, and how this is translated in
hysteresis measurements. Understanding the reversal mechanisms is crucial since it
determines the switching process in memory and logic applications. Both the case of
an in-plane and an out-of-plane applied �eld are considered.

Goal 3: interpret neutron scattering measurements in terms of chirality of

the domain walls.

The third goal is to understand how neutron scattering measurements can give in-
formation on the chirality of the domain walls and interpret correctly the existing
measurements performed on FePd thin �lms.

1.3 Outline

The outline of this thesis addresses the 3 goals successively.

First, the main concepts and assumptions of magnetism and micromagnetic simula-
tions are presented in Chapter 2.

Then, in Chapter 3, the magnetic and structural properties of FePd thin �lms are
presented, as well as real measurements performed in the PhD thesis of Annika Stell-
horn [8]. The parameters that will be used in all the simulations for FePd are given
in this chapter.

In Chapter 4, the �rst goal is addressed. We start by determining the thickness be-
low which the magnetization lies in the plane of the �lm, as a function of the strength
of the PMA. Above this thickness, it is expected to observe out-of-plane magnetic
domains. The structure of the domain walls is then studied in detail, depending on
the thickness and the strength of the PMA.
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Chapter 5 focuses on the second goal. The reversal mechanisms for an in-plane and
out-of-plane applied �eld are determined, and the corresponding hysteresis curves are
compared to experimental measurements to certify the results.

Finally, the third goal is addressed in Chapter 6. Experimental measurements
of Grazing-Incidence Small-Angle Neutron Scattering (GISANS) are presented. A
Python code is written to compute the Magnetic Small-Angle Neutron Scattering
(MSANS) patterns for the con�gurations obtained by micromagnetic simulations.
The results are qualitatively analyzed in terms of chirality of the domains walls.

The main conclusions of this thesis are given in Chapter 7 as well as an outlook for
future work.

Important remark

The input �les for the simulations, the MSANS Python code and some animations
are available on this clickable link. In Chapter 5, some �gures have a clickable link
in the caption to the corresponding animation. The links are always bold and in blue
color, for example "Vid01". In case the links are broken, the following address may
be copied in the browser:
https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw

The �les can also be requested by email at:
b.vermeulen@fz-juelich.de

https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw
https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw?dir=undefined&path=%2FVideos_chapter5%2FIn-plane%2F1-Low_pma&openfile=23777331
https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw




Chapter 2

Magnetism and micromagnetic

simulations: main concepts and

assumptions

2.1 Introduction

In this chapter, the important theoretical notions in magnetostatics and ferromag-
netism used throughout the thesis are reminded. The micromagnetic theory is then
introduced. Finally, the key concepts of micromagnetic simulations are presented and
a simple example is studied.

2.2 Magnetostatics

2.2.1 Maxwell's equations

The fundamental equations of electromagnetism are Maxwell's equations, which can
be written as

∇× E = −∂B

∂t
, (2.1)

∇×H = j +
∂D

∂t
, (2.2)

∇ ·D = ρf , (2.3)

∇ ·B = 0 (2.4)

where

� E is the electric �eld in [V/m],
� D is the electric displacement in [C/m2],

7
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� B is the magnetic �ux density or magnetic induction in [T],
� H is the magnetic �eld in [A/m],
� j is the current density in [A/m2],
� and ρf is the free electric charge density in [C/m3].

Magnetostatics correspond to the case where there is no time dependence. Using the
equation of conservation of electric charge ∇ · j = −∂ρf/∂t, the three equations left
to describe magnetostatics are

∇ · j = 0, ∇ ·B = 0 and ∇×H = j. (2.5)

In order to solve physical problems, constitutive relations of the form B = B(H)

must be added to take into account the response of the materials to the �elds and to
close the set of equations. For ferromagnetic materials, the relation between B and
H is not a one-to-one relation. It depends on the history of H. This results in some
hysteresis, as discussed in Section 2.4.3.

2.2.2 B, H and M

Writing Maxwell's equations in terms of the fundamental �elds (E and B) and the
auxiliary �elds (D and H) enables one to have a set of equations valid for any medium,
without introducing material properties or physical constants. The magnetic �elds B

and H are linked by
B = µ0(H + M) (2.6)

where the constant µ0 = 4π 10−7 [T m A−1] is the magnetic permeability of vacuum
and M is the magnetization in [A/m].

The magnetization M is the magnetic moment µ per unit volume. The magnetic
moment of a free atom results from the spin of the electrons, the moment associated
with their orbital angular momentum around the nucleus and possibly the spin of
the nucleus itself. Nevertheless, the contribution from the nucleus can be neglected
because it is three orders of magnitude smaller than the moment associated with the
electrons [9]. A change of the orbital angular momentum of the electrons induced by
an applied �eld can also result in an atomic magnetic moment (diamagnetic contri-
bution).

In magnetostatics, the magnetization is de�ned as a mesoscopic average of the mag-
netic moment over a few nanometers (much larger than the inter-atomic distance)
and a few microseconds (much larger than the �uctuations characteristic time), such
that δµ = MδV with δµ the time-averaged magnetic moment in a mesoscopic volume
δV [10]. The magnetization M(r) is then a smoothly varying function. This is called
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the continuous medium approximation.

The magnetic �ux density B is a divergenceless (or solenoidal) �eld (∇·B = 0). This
implies that the �ux lines of B are closed loops and that we cannot associate B with a
magnetic charge from where �ux lines would diverge. On the contrary, the magnetic
�eld H is not divergenceless. Indeed, from ∇ ·B = 0 and Eq. 2.6, we can write

∇ ·H = −∇ ·M. (2.7)

A non-uniform magnetization can therefore act as sources and sinks for H, or positive
and negative magnetic charges. One can de�ne a magnetic charge density in the bulk
as ρm = −∇ ·M and at the surface as σm = M · en with en the outside normal
[10]. In the static case, H can therefore result from a current density j and from the
magnetization distribution in other magnets or in the magnet itself, so that

H = Hc + Hm, (2.8)

where the current contribution and the magnetization contribution are written Hc

and Hm respectively. The part of Hm which is due to the magnetization distribution
of the considered magnet is denoted Hd (called the stray �eld outside the magnet
and the demagnetizing �eld inside the magnet). The �elds B, H and M for a uni-
formly magnetized material without external applied �eld are represented in Fig. 2.1.
Magnetic charges are present at the top and bottom surfaces, producing an H �eld
opposite to M inside the magnet, hence the name demagnetizing �eld. Outside the
magnet, where M = 0, the B �eld is simply µ0H.35 2.2 Magnetic fields

B
P

B

m0H

m0M

P

HP
M

P

Figure 2.7

B, M and H for a magnet.

where Hc is created by conduction currents and Hm is created by the mag-
netization distributions of other magnets and of the magnet itself. The second
contribution is known as the stray field outside a magnet or as the demagnetizing

field within it. It is represented by the symbol Hd .

Equation (2.27) relating the fundamental field B, the auxiliary field H and
the magnetization M of the medium is normally rearranged as

B = µ0(H + M). (2.33)

In free space, M = 0 and B = µ0 H . There B and H are indistinguishable,
apart from the constantµ0,which is so small that no confusion should ever arise
between them. Units of H , like those of M, are A m−1. One tesla is equivalent
to 795 775 A m−1 (or approximately 800 kA m−1). The quantities B, H and
M for a uniformly magnetized block of material in the absence of any external
field are illustrated in Fig. 2.7, where the relation (2.33) between them is shown
at a point ‘P’. Inside the magnet the B-field and the H-field are quite different,
and oppositely directed. H is also oppositely directed to M inside the magnet,
hence the name ‘demagnetizing field’. The field lines of H appear to originate
on the horizontal surfaces of the magnet, where a magnetic charge of density
σm = M · en resides; en is a unit vector normal to the surface. The H-field is
said to be conservative (∇ × H = 0), whereas the B-field, whose lines form
continuous closed loops, is solenoidal (∇ · B = 0).

When considering magnetization processes, H is chosen as the independent
variable, M is plotted versus H, and B is deduced from (2.33). The choice
is justified because it is possible to specify H at points inside the material in
terms of the demagnetizing field, acting together with the fields produced by
external magnets and conduction currents.

2.2.4 The demagnetizing field

It turns out that in any uniformly magnetized sample having the form of an
ellipsoid the demagnetizing field Hd is also uniform. The relation between Hd

Figure 2.1: Illustration of the H, M and B �elds for a uniformly magnetized block without
external applied �eld. The relation between them (Eq. 2.6) is sketched at a point P. Figure
taken from [10].

In a uniformly magnetized sample having the form of an ellipsoid, the demagnetizing



CHAPTER 2. MAGNETISM AND MICROMAGNETIC SIMULATIONS 10

�eld is also uniform and can be written as

Hd = −NM (2.9)

where N is the demagnetizing tensor [10]. In the case of a thin �lm, denoting x and
y the in-plane directions and z the out-of-plane direction, the demagnetizing tensor
becomes diagonal with Nx = Ny = 0 and Nz = 1. Indeed, when the magnetization
lies in the out-of-plane direction, magnetic charges are created at the top and bottom
surfaces, resulting in a demagnetizing �eld opposite to M.

2.2.3 Internal and external �elds

When an external �eld Hext produced by a magnet or an electric current is applied
to a sample, the internal �eld H is given by

H = Hext + Hd, (2.10)

i.e. the sum of the applied �eld Hext and the demagnetizing �eld Hd produced by
the magnetization distribution of the sample itself, which is unknown in general.
When performing measurements to deduce M(H), one can approximate H using the
demagnetizing tensor or use a geometry where there is no demagnetizing �eld like in a
toroid. One can also plot the relation M = M(Hext) without having to approximate
Hd. In this case however, the result will not only depend on the material itself, but
also on the geometry of the sample. When showing an hysteresis loop of B or M

versus the H �eld, it is therefore important to clearly specify if the real H �eld is
plotted or only the applied �eld Hext.

2.2.4 Magnetostatic energy

As will be explained in Section 2.4 in the framework of the micromagnetic theory, the
equilibrium magnetic con�guration of a sample is given by the minimum of the total
free energy. Let us therefore introduce here the energy contributions due to magne-
tostatic e�ects, namely the self-energy of a body (associated with its demagnetizing
�eld) and the energy associated with an external �eld.

A magnetic dipole in a �eld B experiences a torque Γ = µ × B and one can de�ne
the Zeeman energy Em = −µ · B. If we consider two dipoles, this energy becomes
Em = −µ1 ·B21 = −µ2 ·B12 = −1

2
(µ1 ·B21 +µ2 ·B12) where B12 is the �eld produced

by the dipole 1 at the position of the dipole 2, and inversely for B21. This energy is
the reason why free dipoles tend to aggregate in treads. This dipole-dipole interaction
energy can be generalized to the case of a solid without external �eld to obtain the
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self-energy energy Ed (also called demagnetizing energy or dipolar energy). One can
show that it is given by [10]

Ed = −1

2

∫

V

µ0Hd ·M d3r (2.11)

where V is the volume of the sample. Using M = B/µ0 − Hd and the result∫
B ·Hd d3r = 0 for a magnet in its own �eld without currents [10], we have

Ed =
1

2

∫
µ0H

2
d d3r (2.12)

where the integral is over all space. This expression of the self-energy shows that the
magnetization tends to adopt a con�guration that minimizes the demagnetization
�eld. In the case of a thin �lm, the magnetization therefore tends to lie in the plane
of the �lm.

Then, when an external �eld Hext is applied, one needs to add the Zeeman energy

EZ = −
∫

V

µ0Hext ·M d3r (2.13)

to obtain the full magnetostatic energy Ed + EZ.

2.2.5 System of units

In magnetism, two main systems of units are currently used: the centimeter-gram-
second System of Units (CGS) and the International System of Units (SI) (meter-
kg-second-Ampère). The �rst one is used a lot in textbooks and scienti�c literature
because it simpli�es the writing of the equations. However, only the SI will be used
throughout this thesis for the two reasons given in Appendix A, together with a
conversion table for the relevant physical quantities.

2.3 Ferromagnetism

2.3.1 Ferromagnetic order

As explained in Section 2.2, some atoms have a non-zero magnetic moment µ. A fer-
romagnet is a material that has a spontaneous average magnetic moment (i.e. even in
zero applied �eld) resulting from the regular arrangement of the magnetic moments
of the atoms the material is made of. Above the Curie temperature TC, thermal agi-
tation suppresses this ordering and the material has no net magnetic moment. This
is the disordered paramagnetic phase. Below TC, in the ordered ferromagnetic phase,
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the atomic magnetic moments tend to align, giving rise to a spontaneous magne-
tization Ms. The interaction that tends to align the atomic moments is called the
exchange interaction.

Ferromagnetism can be explained from the Pauli exclusion principle and the Coulomb
interaction [11]. Ferromagnetic atoms have partially �lled valence subshells. In these
atoms, the spins of the electrons tend to be parallel, to the extent allowed by the
Pauli principle. Indeed, when the spins are parallel, the electrons are farther apart
due to the diplole-dipole interaction, which reduces the Coulomb energy. This results
in a nonzero magnetic moment for the atom. When adjacent atoms are close enough,
the wavefunctions of the electrons in the valence subshells overlap. The electrons of
di�erent atoms then also tend to align their spin, giving rise to the so-called exchange
interaction. The interaction energy between two atoms i and j carrying electron spins
Si and Sj is represented by the Heisenberg Hamiltonian [9]

HHeisenberg = −2JijSi · Sj (2.14)

where Jij is the exchange integral and is linked to the overlap of the electronic distri-
butions of the two atoms. For a ferromagnetic material, Jij > 0 between two adjacent
atoms such that the spins tend to align.

Some materials with a lack of inversion symmetry can exhibit a weak antisymmetric
coupling called the Dzyaloshinskii-Moriya interaction (DMI) [12, 13]. This interaction
is represented by the Hamiltonian [10]

HDMI = −Dij · (Si × Sj) (2.15)

where Dij is a vector. This weak interaction tends to couple spins perpendicularly
and can induce chiral magnetic structures such as skyrmions.

2.3.2 Anisotropy

Magnetic anisotropy refers to the case where there exists some preferred direction
for the magnetization, colloquially referred to as an easy axis. The three main types
of anisotropy are the shape anisotropy, the magnetocrytalline anisotropy and the in-
duced anisotropy [10].

Shape anisotropy is caused by the demagnetizing energy Ed (Eq. 2.11) which is due
to the interaction between the magnetization and the demagnetizing �eld resulting
from the shape of the sample. The direction of magnetization that minimizes the
demagnetizing �eld is favored. Magnetocrystalline anisotropy is an intrinsic property
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(i.e. not related to the shape of the sample) originating from the crystal structure.
Finally, induced anisotropy corresponds to the creation of an easy axis by applying a
mechanical stress or by annealing an alloy under a magnetic �eld.

2.4 Micromagnetism

The main assumption of micromagnetism is the continuous medium approximation.
The magnetization M(r) is considered as a mesoscopic average that varies smoothly
in space, ignoring the atomic structures, and with a constant magnitude equal to the
spontaneous magnetization Ms. This enables one to have a convenient framework
to compute the total free energy and compute the magnetization con�guration by
energy minimization. Magnetization dynamics can also be described.

2.4.1 Micromagnetic energy

In micromagnetism, the total free energy is given by [10]

Etot = Eex + Ea + Ed + EZ. (2.16)

The �rst term is the exchange energy given by

Eex =

∫

V

A

(∇M

Ms

)2

d3r =

∫

V

A

[(∇Mx

Ms

)2

+

(∇My

Ms

)2

+

(∇Mz

Ms

)2
]

d3r (2.17)

with A the exchange sti�ness in [J/m]. This energy is minimized when the magnetiza-
tion is uniform, corresponding to the case where all the spins are parallel. The second
term is the magnetocrystalline anisotropy energy. In the case of uniaxial anisotropy,
it is computed as

Ea =

∫

V

Ku sin2 θ d3r (2.18)

with Ku the anisotropy constant in [J/m3] and θ the angle between the magnetization
M and the easy axis eu. The third term is the demagnetizing energy given by Eq. 2.11
and accounts for the shape anisotropy. The fourth term is the Zeeman energy due to
an applied �eld given by Eq. 2.13.

Writing the expressions of the four terms, Eq. 2.16 becomes

Etot =

∫

V

[
A

(∇M

Ms

)2

+Ku sin2 θ − 1

2
µ0M ·Hd − µ0M ·Hext

]
d3r. (2.19)
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2.4.2 Magnetic domains and domain walls

If only the exchange and anisotropy energies were present, the magnetization would
be uniform and parallel to the easy axis eu. If one considers also the demagnetizing
energy Ed, the total energy is decreased by creating domains of uniform magnetization
in di�erent directions to decrease the demagnetizing �eld, as illustrated in Fig. 2.2.
In (a), magnetic charges are formed at the top and bottom surfaces, producing a large
demagnetizing or stray �eld. By creating domains in (b) and (c), the demagnetizing
energy is reduced. In (d) and (e), the demagnetizing energy is reduced to zero by
adding triangular closure domains to avoid any magnetization component normal to
the surface. Note that the walls of the closure domains making a 45◦ angle with the
magnetization do not produce any magnetic charges either.

in iron �w 1 erg/cm2. Accurate calculation for a 180° wall in a (100) plane
gives �w � 2(2K1 JS2/a)1/2.

Origin of Domains

Landau and Lifshitz showed that domain structure is a natural conse-
quence of the various contributions to the energy—exchange, anisotropy, and
magnetic—of a ferromagnetic body.

Direct evidence of domain structure is furnished by photomicrographs of
domain boundaries obtained by the technique of magnetic powder patterns
and by optical studies using Faraday rotation. The powder pattern method 
developed by F. Bitter consists in placing a drop of a colloidal suspension of
finely divided ferromagnetic material, such as magnetite, on the surface of the
ferromagnetic crystal. The colloid particles in the suspension concentrate
strongly about the boundaries between domains where strong local magnetic
fields exist which attract the magnetic particles. The discovery of transparent
ferromagnetic compounds has encouraged the use also of optical rotation for
domain studies.

We may understand the origin of domains by considering the structures
shown in Fig. 30, each representing a cross section through a ferromagnetic
single crystal. In (a) we have a single domain; as a consequence of the mag-
netic “poles” formed on the surfaces of the crystal this configuration will have
a high value of the magnetic energy The magnetic energy den-
sity for the configuration shown will be of the order of here
Ms denotes the saturation magnetization, and the units are CGS.

In (b) the magnetic energy is reduced by roughly one-half by dividing the
crystal into two domains magnetized in opposite directions. In (c) with N do-
mains the magnetic energy is reduced to approximately 1/N of the magnetic
energy of (a), because of the reduced spatial extension of the field.

M s
2
 � 106 erg/cm3;

(1/8�) 
 B2 dV.

�
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Figure 30 The origin of domains.
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Figure 2.2: Illustration of the decrease of the demagnetizing energy by forming magnetic
domains. Figure taken from [9].

Magnetic domains are separated by domain walls (DWs) in which the magnetization
rotates. Two common types of domain walls are the Bloch wall and the Néel wall,
illustrated in Fig. 2.3. In a Bloch wall, the magnetization rotates in planes parallel to
the plane of the wall. This implies that ∇ ·M = 0 and no magnetic charge is created
in the bulk. In a Néel wall, the magnetization rotates in a plane perpendicular to the
plane of the wall. In this case, ∇ ·M 6= 0 and magnetic charges are created within
the bulk.
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(a) Bloch wall. (b) Néel wall.

Figure 2.3: Illustration of the two main types of domain walls between domains with
opposite magnetization. (a) In a Bloch wall, the magnetization rotates in planes parallel to
the plane of the wall. (b) In a Néel wall, the magnetization rotates in a plane perpendicular
to the plane of the wall.

When an external magnetic �eld Hext is applied to a sample with magnetic domains,
two main magnetization processes can be observed. The �rst one is domain wall
motion resulting in the growth of the favorably-oriented domains at the expense of
the unfavorably-oriented domains. The second one is magnetization rotation within
a domain when it is not aligned with the applied �eld.

2.4.3 Reversal, pinning and nucleation

The hysteresis of M(H) that can be observed for ferromagnets depends on the re-
versal mechanisms to transit from the saturated con�guration in one direction to
the saturated con�guration in the other direction. For single-domain particles, the
three main mechanisms are coherent rotation of the magnetization, curling by pass-
ing through a vortex state or buckling which is a combination of the �rst two [10].
Reversal can also be achieved by the growth of reverse domains. Reverse domains
can nucleate in the bulk at a defect or from spontaneous thermal �uctuations. They
can also nucleate from surface asperities where there is a strong local demagnetizing
�eld. Once a reverse domain has nucleated, it will grow through domain-wall motion.
The propagation of the domain walls can be hindered by defects acting as pinning
centers.

2.4.4 Coercivity and hysteresis

The hysteresis loops for ideal soft and hard spheres are shown in Fig. 2.4. Note that for
a sphere, the demagnetizing tensor is N = 1

3
I with I the identity tensor. The curves

for B instead of M can be retrieved using Eq. 2.6. For the ideal soft ferromagnet,
there is no hysteresis whereas, for the ideal hard ferromagnet, the hysteresis is large.
The value of Hext at which M = 0 is called the coercivity Hc.
A general hysteresis loop is shown in Fig. 2.5, where the magnetization averaged over
the sample is plotted. The nucleation �eldHn is the �eld where the �rst deviation from
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Figure 2.11

Magnetization, M , and
induction, B , for a
ferromagnetic sphere
plotted as a function of the
applied field, H ′, or the
internal field, H. (a)–(d) are
for a soft magnetic sphere
and (e)–(h) are for a
permanently magnetized
sphere. The working point,
where the sphere is subject
only to its own
demagnetizing field, is
shown by the dot.

saturated, the magnetic medium becomes ‘transparent’, with the same perme-
ability as free space.

The behaviour of a hard ferromagnetic sphere is quite different. It is per-
manently magnetized with M = Ms ; in zero applied field, there is an internal
field H = − 1

3Ms and the flux density is B = 2
3µ0Ms = 2

3Bs throughout the
sphere. When a field is applied parallel to M, B(H ) is linear, with slope µ0.

The working point of the magnetic sphere in its own demagnetizing field is
marked in Fig. 2.11. A permanent magnet is one where the coercivity exceeds
the demagnetizing field, giving a working point in the second quadrant.6

Generally, magnetic media are not linear, isotropic and homogeneous but
nonlinear and hysteretic and often anisotropic and inhomogeneous as well! Then
B, like M, is an irreversible and nonsingle-valued function of H , represented
by the B(H) hysteresis loop deduced from the M(H) loop using (2.33). A
typical B(H ′) loop is shown in Fig. 2.12. The coercivity on the B(H ′) loop,
denoted as BHc is always less than or equal to Hc shown on the M(H ′) loop
in Fig. 1.3. The quantity Hc is sometimes (confusingly) called the ‘intrinsic
coercivity’. The switching for a macroscopic magnet is usually not the one-shot,
square loop process assumed for the sphere in the previous example.

2.3 Maxwell’s equations

Just as an auxiliary magnetic field is needed to account for a magnetically
polarized medium, so an auxiliary electric field is needed to account for an

6 Quadrants of a hysteresis loop are counted anticlockwise. The first is the one where M and H
are both positive.

Figure 2.4: Hysteresis loops of the magnetization M versus the external �eld Hext = H ′

or the magnetic �eld H for ideal soft (a and b) and hard (e and f) ferromagnetic spheres.
Figure taken from [10].

the saturation state is observed. The remanent magnetizationMr is the magnetization
at zero applied �eld. For a macroscopic real sample, the hysteresis loop is made of
a large number of discrete jumps, called Barkhausen jumps. These correspond to
jumps of the domain walls in an energy landscape with multiple minimums shaped
by the many defects that can act as pinning centers or nucleation centers.

Figure 2.5: Illustration of a generalM -Hext hysteresis loop with the de�nitions of the rema-
nent magnetization Mr, the coercive �eld Hc and the nucleation �eld Hn. The Barkhausen
jumps are illustrated in the inset. Figure inspired from [10].

2.4.5 Dynamics

The micromagnetic energy enables one to compute equilibrium con�gurations by look-
ing for local minimums without considering the dynamics. The dynamics of the
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magnetization can be described by the Landau-Lifschitz-Gilbert equation [10]

dM

dt
= γ0µ0M×H− α

Ms

M× dM

dt
(2.20)

where γ0 is the gyromagnetic ratio in [T−1 s−1] and α is a dimensionless damping
coe�cient. The �rst term accounts for the precession of the magnetization around the
magnetic �eld and the second term accounts for the damping due to losses, enabling
the magnetization to eventually align with the magnetic �eld.

2.5 Introduction to micromagnetic simulations

Micromagnetic simulations enable one to compute the equilibrium con�gurations of
the magnetization as well as the dynamics. Several programs exist, di�ering by the
discretization scheme, the numerical methods and the hardware. Space can be dis-
cretized using a �nite-di�erence method or a �nite-element method [14]. Finite-
di�erence solvers compute average quantities in each cell and include OOMMF [15],
MuMax3 [16] and FIDIMAG [17]. Finite-element solvers, like Magpar [18], Nmag
[19], magnum.fe [20] and FastMag [21], are based on the magnetic scalar potential
(when ∇×H = 0).

In this thesis, the GPU-accelerated �nite-di�erence solver MuMax3 is used. Let us
therefore introduce the �nite-di�erence method, compare MuMax3 with the CPU-
based software OOMMF and consider a �rst simple example.

2.5.1 Finite-di�erence method

In �nite-di�erence micromagnetics, the simulation space is divided in a regular rect-
angular grid with Nx, Ny and Nz points in the x, y and z directions. The grid points
correspond to the cell centers. The unknown is the dimensionless unit magnetization
vector

m =
M

Ms

, with ‖m‖ = 1, (2.21)

at each grid point, indicating the direction of the magnetization. Volume quantities
like the magnetization and the e�ective �eld are treated at the center of each cell (and
considered constant within each cell). Coupling quantities like the exchange sti�ness
are considered at the faces between the cells [16].

The di�erent energy terms of Eq. 2.19 can then be approximated by replacing the
integral by a sum over all the grid points and by replacing the derivatives of m(r)

with �nite-di�erence quotients. The total energy can then be minimized using nu-
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merical methods like the conjugate-gradient method or the steepest-descent method
to obtain the equilibrium con�guration.

When the dynamic response of a system is needed, the LLG equation under the form
[22]

∂m

∂t
= − |γ0|µ0

1 + α2
[m×Heff − αm× (m×Heff)] (2.22)

can be used, with the e�ective �eld [22]

Heff = − 1

µ0Ms

δEtot

δm
. (2.23)

The time integration of Eq. 2.22 can then be performed using a Runge-Kutta method.

The cell size should be chosen small enough to have an accurate numerical solution,
but not too small to avoid excessively long computation times. To ensure accuracy,
it is recommended to have a cell size smaller than the magnetostatic and the mag-
netocrystalline exchange lengths. The magnetostatic exchange length is de�ned by
[23]

lex,Ms =

√
A

1
2
µ0M2

s

(2.24)

and characterizes the competition between the exchange energy Eex and the dipolar
energy Ed. The magnetocrystalline exchange length is de�ned by [23]

lex,K =

√
A

Ku

(2.25)

and characterizes the competition between the exchange energy Eex and the anisotropy
energy Ea. The smallest of these two lengths gives a length scale on which the mag-
netization changes. The cell size should therefore be smaller than this length scale.
Another good practice is to check the maximum angle between the magnetization of
neighboring cells and make sure it is smaller than 30◦.

2.5.2 Software and hardware used for this thesis

Two popular �nite-di�erence micromagnetic simulation programs are OOMMF [15],
developed at the National Institute of Standards and Technology (NIST) in the United
States, and MuMax3 [16], developed at Ghent University (Belgium). The main dif-
ference between the two is that OOMMF runs on one or multiple CPUs, whereas
MuMax3 is accelerated with a GPU. MuMax3 has been chosen for all the simulations
in this thesis because of its good performances and its ease of use.
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Most of the simulations have been performed on two supercomputers from the Jülich
Supercomputing Center (JSC). The �rst one, called JUSUF (Jülich Support for
Fenix), contains 61 accelerated compute nodes, each equipped with an NVIDIA V100
GPU. The second one, called JUWELS (Jülich Wizard for European Leadership Sci-
ence) [24], contains 936 nodes each equipped with 4 NVIDIA A100 GPUs. Some
simulations have also been performed on a computer from the ULiège, called tree-

beard, equipped with an NVIDIA TITAN V GPU.

The solution in MuMax3 can be computed with 3 di�erent functions [16]. The Min-

imize function performs energy minimization using a steepest gradient algorithm.
The Run function enables one to perform dynamic simulations by integrating the
LLG equation. Finally, the Relax function is an alternative to Minimize to compute
an equilibrium con�guration. It integrates the LLG equation without the precession
term, using only the damping term. This pseudo-dynamic algorithm is preferred for
high-energy initial con�gurations, like a random magnetization, for which the energy
minimization function may not converge. The pseudo-dynamic algorithm is therefore
more robust, but it is considerably slower than energy minimization algorithm.

2.5.3 Dimensional analysis

Let us perform a brief dimensional analysis of the problem of interest of this thesis,
in order to identify the key parameters to vary. The sample is considered to be a
thin �lm with an in�nite extension in the plane of the �lm. A length scale for this
geometry is then simply given by the thickness d. Without an external applied �eld,
the relevant energies are the exchange, the anisotropy and the demagnetizing energy.
The total energy per unit volume is then given by

Etot

V
=

1

V

∫

V

[
A (∇m)2 +Ku sin2 θ − 1

2
µ0Msm ·Hd

]
d3r (2.26)

where Hd depends on the magnetization con�guration and the geometry. The equilib-
rium con�guration of m is found by minimizing this energy and therefore depends on
the 5 independent variables listed in Table 2.1. Three independent units are involved:
kg/s2, m and A (or equivalently J, m, A). According to the Buckingham π theorem,
the number of independent dimensionless groups that can be formed is 5 − 3 = 2.
A �rst dimensionless number can be given by the ratio of the thickness d over the
magnetostatic exchange length

d

lex,Ms

=
d√
A

1
2
µ0M2

s

. (2.27)
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A second dimensionless number can be given by the anisotropy quality factor [25]

Q =
Ku

1
2
µ0M2

s

(2.28)

characterizing the magnitude of Ea versus Ed. The only two interesting parameters
to vary during the simulations are therefore d/lex,Ms (or d/lex,K) and Q. Applying an
external magnetic �eld brings an additional parameter to vary.

Variables m A Ku µ0 d Ms

Units 1 J

m

J

m3

J

mA2
m

A

m

SI units 1 kg

s2
m

kg

s2m

kg

s2
m

A2
m

A

m

Table 2.1: Units of the di�erent variables relevant for the magnetization con�guration in
a thin �lm.

The quality factor Q can be computed from the initial magnetization curves with an
in-plane and an out-of-plane applied �eld using a basic thermodynamical reasoning
[26, 27]. The work increment per unit volume to change the average magnetization
by δM with an external �eld Hext is δw = µ0Hext · δM. The di�erence ∆e in work
per unit volume to magnetize the sample to saturation in-plane and out-of-plane is
then given by

∆e =

∫ Ms

0

µ0H
ip
extdM

ip −
∫ Ms

0

µ0H
oop
ext dMoop = R (2.29)

where R is used to denote the area between the in-plane (IP) and out-of-plane (OOP)
magnetization curves. Assuming a reversible process, ∆e also corresponds to the
di�erence in energy between the IP and OOP saturated states. The energy density for
the former is only due to the magnetocrystalline anisotropy since the demagnetizing
�eld is zero in this case. It is therefore simply eip = Ku. The energy density for the
OOP saturated state is only due to the demagnetizing �eld, which is equal to Hd =

−M for a thin �lm. We therefore have eoop = −1
2
µ0MHd = 1

2
µ0M

2
s . Consequently,

∆e = eip − eoop = Ku − 1
2
µ0M

2
s . Equating this to Eq. 2.29, we have

Ku −
1

2
µ0M

2
s = R (2.30)

and the quality factor can be computed with

Q =
Ku

1
2
µ0M2

s

=
R

1
2
µ0M2

s

+ 1. (2.31)
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2.5.4 Simple case: the Bloch wall

Before performing complex simulations, let us �rst compute the magnetization con-
�guration in a simple case for which an analytical solution is known. We consider a
180◦ Bloch wall between two domains with a magnetization in opposite directions.
Denoting z the easy axis, assuming that the magnetization only depends on x and
neglecting the demagnetizing �eld that could arise from the surface magnetic charges,
the total energy (per unit surface) is

Etot = Eex + Ea =

∫ [
A (∂θ/∂x)2 +Ku sin2 θ

]
dx (2.32)

where θ is the angle between the magnetization and the easy axis z. The Bloch wall
is between two domains with θ = 0 and θ = π. This energy is minimized for [10]

x =

√
A

Ku

ln [tan(θ/2)] . (2.33)

Inverting this equation yields

θ(x) = 2 tan−1

[
exp

(
πx

δw

)]
(2.34)

where

δw = π

√
A

Ku

. (2.35)

δw is the characteristic width of the Bloch wall, obtained from extrapolation of the
tangent at the center of the wall. Replacing Eq. 2.34 into Eq. 2.32 yields the energy
of a Bloch wall per unit area

σw = 4
√
AKu. (2.36)

This has been computed inMuMax3 by considering only the exchange and anisotropy
energies, with as initial con�guration two domains with opposite magnetization. Since
there is no demagnetizing energy, the only relevant exchange length here is the mag-
netocrystalline exchange length lex,K . This is even more obvious when we look to
Eq. 2.34 where we see that the pro�le only depends on δw = π lex,K . The equilibrium
con�guration is computed by energy minimization for several cell sizes ∆x. The re-
sults for the total energy and the θ(x) pro�le are shown in Fig. 2.6. One can see that
the simulated solution converges to the analytical solution for decreasing cell size ∆x

and that the solution is relatively accurate for ∆x < lex,K . For ∆x = 0.5 lex,K , the
maximum angle between neighboring cells is 30◦.
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Figure 2.6: Convergence of the numerical simulation for a Bloch wall: total energy (a)
and θ(x) pro�le (b) for several values of the cell size ∆x. Parameters of the simulation:
Ms = 106 A/m, A = 7 10−12 J/m, Ku = 1256637 J/m3 with a 128lex,K ×128lex,K simulation
box of 30nm thickness.

2.6 Conclusion

This chapter gave the main concepts of magnetism used throughout this thesis. Two
important remarks should be kept in mind. First, the demagnetizing �eld has a
central role in the formation of domains. Second, micromagnetic simulations enable
one to compute simple magnetic con�gurations provided that the cell size is smaller
than the exchange lengths.



Chapter 3

FePd thin �lms: growth and

characterization

3.1 Introduction

The simulations performed in this thesis aim to determine the structure of the domains
and the domain walls in FePd thin �lms, and understand the underlying physics.
Before that, let us give in this chapter a short introduction on FePd thin �lms.
We �rst present the crystallographic phase that gives rise to perpendicular magnetic
anisotropy (PMA) in FePd. We then show how FePd can be grown with various
degrees of PMA. Finally, some magnetic and structural measurements performed on
real samples by A. Stellhorn [8] are presented.

3.2 FePd in the L10 ordered phase

Depending on the growth method, FePd can be in di�erent crystallographic phases
[28]. The disordered phase is face-centered cubic (FCC) with disordered atom sites
and a lattice parameter of 3.8 Å. The L10 ordered phase is a tetragonal derivative
of the FCC phase with alternating planes of Fe and Pd, as depicted in Fig. 3.1.
The lattice parameters of the 2-atom unit cell are a = b = 2.7 Å and c = 3.7 Å.
An alternative 4-atom unit cell can be obtained with a 45◦ rotation, with the lattice
parameters a′ = b′ =

√
2a and c′ = c. The symmetry breaking in the L10 phase results

in a magnetocrystalline anisotropy with an easy axis along the [001] direction. The
values of the Curie temperature, saturation magnetization and exchange constant for
FePd in the L10 phase are given in Table 3.1. These values will be used for all the
simulations in this thesis, unless stated otherwise. The value of the magnetocrystalline
anisotropy constant Ku will be chosen depending on the quality factor Q (Eq. 2.28).

23
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Figure 5.1: Layered structure of L10-
phase materials with different atoms de-
picted by different colors. The black lines
connect the tP2 unit cell with lattice pa-
rameters a = b 6= c, whereas the tP4 unit
cell is shifted to the tP2 cell by an in-plane
rotation of 45◦ (drawn with VESTA [168]).

The 2-atom unit cell has a Pearson symbol of tP2. The parent fcc structure with

disordered atom sites is based on a larger unit cell with Pearson symbol tP4 (4

atoms per cell) resulting from a 45◦ shift of the tP2 cell and with lattice parameters

a′ = a ·
√

2 = b′ 6= c′. The lattice parameters for both unit cells as well as for the fcc

disordered phase are listed in table 5.1.

lattice parameter tP2 tP4 fcc

a 2.722 3.849 3.807
b 2.722 3.849 3.807
c 3.714 3.714 3.807

Table 5.1: Lattice parameters in (Å) of the tP2 and tP4 unit cells of L10-ordered FePd
and the respective atomically disordered fcc phase [169].

The magnetocrystalline anisotropy in chemically ordered FePd thin films results from

symmetry breaking during the fcc to tetragonal phase transition. The tetragonal crystal

symmetry causes a different magnetization process along the [001] and <100> directions

due to crystal-field interactions as well as the spin-orbit coupling within the alloy [15].

Thin film FePd in the L10-phase breaks into magnetic domains aligned along ±[001]

with a Curie temperature of TC = 723 K, a saturation magnetization of MS ∼ 1 ·106 A/m

[19] and an exchange constant of A =∼ 7 · 10−12 J/m [170]. A reduction of structural

order and/or the Fe content in the compound leads to a lower exchange constant and

hence a lower TC value. The structural long-range order depends the exact growth

conditions which are treated in the following section.

80

Figure 3.1: Structure of the L10 phase for FePd, made of alternating planes of Fe and
Pd. The 2-atom unit cell is drawn with black lines, with the lattice parameters a, b and c.
Figure taken from [8].

Property Symbol Value

Curie temperature TC 723 K
Saturation magnetization Ms 106 A/m
Exchange constant A 7 10−12 J/m

Table 3.1: Magnetic properties of FePd in the L10 ordered phase. Values from [29] and
[30].

3.3 Growth of FePd with various PMA

FePd thin �lms can be grown by Molecular Beam Epitaxy (MBE), a deposition tech-
nique by which oriented growth of a deposit onto a substrate is achieved with atomic
or molecular beams. The beam is produced by evaporation through heating in Knud-
sen e�usion cells or with an electron beam in Electron Beam Evaporators (EBVs).
Each cell can be closed or opened with a shutter.

The strength of the anisotropy is directly linked to the chemical ordering in the L10

phase. With MBE, the long-range order and therefore the degree of PMA can be
tuned by changing the growth mode and the substrate temperature Ts [26, 8]. The
co-deposition growth mode corresponds to evaporating simultaneously the Fe and the
Pd. At elevated substrate temperatures (Ts ∼ 600 K), the di�usion rates are high
enough to produce an ordered L10 phase with high chemical ordering and high PMA.
At room temperature, a disordered FCC structure without PMA is obtained. In the
shuttered growth mode, the Fe and the Pd are evaporated alternatively by closing
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and opening the corresponding shutters. At room temperature (to avoid high dif-
fusion rates), the �lm can then be grown monolayer by monolayer to obtain low or
intermediate chemical ordering.

The samples in A. Stellhorn's work are heterostructure stacks grown by MBE on a
MgO substrate. The thickness of the FePd layer range from 30 to 70 nm. In addition
to the FePd layer, Cr and Pd layers are used for lattice matching and protection.
Some samples also had a superconducting layer of Nb to study the proximity e�ects
between superconductors and ferromagnets.

3.4 Characterization of the FePd thin �lms

3.4.1 Magnetic characterization

A. Stellhorn measured the surface domain pattern at room temperature by Magnetic
Force Microscopy (MFM), as well as the magnetic hysteresis loops in an in-plane
(IP) and out-of-plane (OOP) applied �eld. Since the Curie temperature for FePd is
TC = 723 K, FePd is ferromagnetic at room temperature. Moreover, it has been shown
that the Nb layer at room temperature has no in�uence on the magnetic structure in
the FePd. MFM images in the as-grown state and hysteresis loop measurements for
three samples with di�erent degrees of PMA are shown in Fig. 3.2. Samples high PMA
show out-of-plane magnetic domains with a complex maze-like (or labyrinth-like)
pattern. The slope in the OOP hysteresis loop is higher than for the IP, indicating
an easy axis in the OOP direction. On the contrary, sample with lower PMA present
elongated out-of-plane domains with a stripe pattern. The sample with low PMA has
an easy axis in the IP direction. An in-depth analysis of such hysteresis curves will
be performed in Chapter 5, where the measured hysteresis curves will be compared
with those obtained by simulation.

3.4.2 Surface analysis

The surface of the samples was analyzed by Atomic Force Microscopy (AFM). The
root mean square surface roughness σrms of the FePd layers directly after growth is as
small as σrms < 4 Å. The samples with high PMA show surface terraces, corresponding
to planar defects along the FePd {111} planes. Plane defects inside the FePd layers
are also observed for lower anisotropies. Finally, the samples with a Nb layer exhibit
20 to 30 nm deep voids in the FePd layer, which are �lled with Nb and MgO. The
void to surface ratio is about 1%.
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Figure 3.2: 3µm×3µm MFM top view image in the as-grown state (top) and hysteresis
loops with in-plane (IP) and out-of-plane (OOP) applied �eld (bottom) for three samples
with low (a), medium (b) and high (c) PMA. The computed Q values and the thickness d
of FePd is speci�ed for each sample. MFM images taken from [8]. Hysteresis loop measure-
ments kindly shared by A. Stellhorn [8].

3.5 Conclusion

The structure of the L10 phase gives rise to perpendicular magnetic anisotropy (PMA)
in FePd thin �lms. Depending on the growth method, di�erent degrees of PMA can
be obtained. This results in very di�erent hysteresis loops. Real samples present a
number of defects. As will be shown in Chapter 5, it is crucial to introduce some
defects in the simulation of hysteresis curves.



Chapter 4

Critical thickness and domain-wall

structure

4.1 Introduction

This chapter addresses the �rst goal of the thesis, namely the study of the domain-wall
structure. In order to observe domain walls, it is �rst needed to determine the values
of thicknesses and anisotropies for which out-of-plane domains are present. Indeed,
below a certain critical thickness, the magnetization is forced to be in the plane of
the �lm. The �rst part of this chapter therefore determines the critical thickness
depending on the anisotropy quality factor Q, through simulations with MuMax3. In
the second part, the precise structure of the domain walls is studied as a function of
the thickness d and the quality factor Q. In particular, the size of the Bloch walls
and the Néel closure domains are compared for di�erent values of d/lex,Ms and Q.

4.2 Critical thickness

Let us consider a thin �lm with perpendicular magnetic anisotropy (PMA) and no
external applied �eld. In this case, the micromagnetic energy is given by Etot =

Eex + Ea + Ed, i.e. the sum of the exchange energy, the anisotropy energy and the
magnetostatic (or demagnetizing) energy. For samples with high PMA (Q > 1), the
equilibrium magnetic con�guration is always composed of alternating out-of-plane
(OOP) domains [31]. On the contrary, for samples with low PMA (Q < 1), if the
thickness d of the �lm is small enough, the magnetostatic interaction between the
surfaces would be large if there were OOP domains and the magnetization is therefore
forced to lie in the plane of the �lm. The thickness below which the magnetization
is forced into the plane is called the critical thickness dc. The critical thickness
has been studied in detail in the literature with simpli�ed analytical models for the
magnetization pro�le. However, there are no analytical results for a completely free

27



CHAPTER 4. CRITICAL THICKNESS AND DOMAIN-WALL STRUCTURE 28

magnetization pro�le in 3 dimensions.

4.2.1 Analytical results

Muller [32] studied the exact solution for the nucleation of a stripe pattern result-
ing from an instability of the in-plane magnetization. A modern presentation of the
work is available in the book of Hubert and Schäfer [25]. The work is limited to a
two-dimensional pattern, independent of the coordinate y along the direction of the
stripes. The magnetization then only depends on the coordinates in the cross section,
namely x and z. Initially, the magnetization lies in-plane such that mx = mz = 0 and
my = 1. The thickness dc,1 above which the in-plane magnetization pro�le becomes
unstable is then computed and corresponds to the solid line in Fig. 4.3a.

Virot et al. [31] computed a limit between a strong and a weak stripe pattern char-
acterized by the thickness dc,2. In their work, they consider a one-dimensional mag-
netization pro�le mz(x) and my(x) with mx = 0. In the so-called Kittel's model,
which is used to model thin �lms with high PMA, the magnetization pro�le consists
of alternating out-of-plane domains with mz = ±1 of width w and the width of the
Bloch walls is neglected. Virot et al. proposed a model for a stripe structure, with
again a half-period denoted w, but including the width of the Bloch walls δ, as il-
lustrated in Fig. 4.1. In this model, the inner domains with constant magnetization
mz = ±1 have a width w−δ and the Bloch walls in-between are assumed to exhibit a
linear variation of the angle θ(x) between the magnetization direction and the y-axis.
This results in a sinewave pro�le for mz(x) within the walls, hence the name Sinewave
Wall Model (SWM). The micromagnetic energy is then computed and the equilibrium
con�guration deduced from energy minimization. When the thickness decreases, the
domain width w decreases and the wall width δ increases. Just above the second crit-
ical thickness dc,2, we have δ = w corresponding to a pure sinewave pro�le between
+1 and −1 for mz. Moreover, at dc,2, the total energy of the stripe structure and the
in-plane con�guration are the same. It is then assumed that for thicknesses smaller
than dc,2, the con�guration becomes a stripe pattern with weak PMA in which θ(x)

alternates between θ0 and −θ0 with θ0 < π/2 (whereas θ0 would be π/2 for the strong
stripe pattern in the SWM). The critical thickness dc,2 corresponds to the dashed line
in Fig. 4.3a. The �rst critical thickness dc,1 found by Muller then corresponds to the
limit between the in-plane magnetization and the weak stripe pattern.
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Figure 4.1: Sinewave Wall Model used to compute the second critical thickness dc,2. The
solid black line corresponds to the z component of the magnetization and the dashed red
line to the angle θ with the y axis. Figure modi�ed from [31].

4.2.2 Simulation results

Whereas the critical thicknesses dc,1 and dc,2 computed by Muller and Virot assume
a stripe pattern (magnetization independent of y), we will now look for the critical
thickness for a free 3-dimensional pro�le through micromagnetic simulations. The
procedure is the following. For Q values ranging from 0.1 to 1, the equilibrium con-
�guration is computed for di�erent thicknesses d (more precisely, di�erent values of
d/lex,Ms). The initial magnetic con�guration is a random unit vector for each cell.
This corresponds to the paramagnetic state when the sample is heated above the
Curie temperature TC. The total energy comprises the exchange, the demagnetizing
and the anisotropy energies. The pseudo-dynamic function is then used, followed by
the energy-minimization function to be sure to have a local energy minimum. The
simulation box has in-plane dimensions of 500nm×500nm and periodic boundary con-
ditions are imposed in the x and y directions. This enables one to model a thin �lm
with in�nite In-Plane dimensions. The values for the material parameters are those
given in Table 3.1, which yield a magnetostatic exchange length equal to lex,Ms = 3.34

nm. Since we only consider low anisotropies (Q ≤ 1), the magnetocrystalline length
lex,K = lex,Ms/

√
Q is always larger than lex,Ms . For the x and y directions, we use

Nx = Ny = 256 cells giving cells sizes ∆x = ∆y = 1.95 nm that are smaller than
the exchange lengths. In the z direction, 16, 32 or 64 cells are used depending on
the thickness in order to have ∆z much smaller than the exchange lengths in all cases.

The three types of equilibrium con�guration that were obtained are illustrated in
Fig. 4.2. The �rst one is a homogeneous in-plane (IP) con�guration. The second
one is an intermediate con�guration, where the magnetization is mainly IP, but some
regions with an out-of-plane (OOP) component start to nucleate. The last one is a
maze domain structure, where the OOP component of the magnetization (mz) alter-
nates between positive and negative values. A stripe pattern was never obtained. We
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will see in Chapter 5 that stripe patterns can be obtained after a magnetic �eld has
been applied.

(a) In-plane (IP). (b) Intermediate. (c) OOP domains.

Figure 4.2: Top view at mid-thickness for the 3 types of equilibrium con�gurations obtained
after energy minimization with a random initial con�guration. The OOP component mz is
represented with a black-gray-white color scale in the [−1, 1] range. The IP components are
represented with red arrows. (a) Q = 0.4, d/lex,Ms = 3.33. (b) Q = 0.6, d/lex,Ms = 3.67. (c)
Q = 0.4, d/lex,Ms = 10.67.

The results of the simulations are summarized in Fig. 4.3a where the three types of
con�gurations are distinguished depending on Q and the thickness d. The critical
thickness dc,1 from Muller between the IP phase and the weak stripe pattern, and the
critical thickness dc,2 from Virot between the weak and the strong stripe patterns are
also represented in the �gure. One can see that the transition from the intermediate
state to the OOP-domains state is very close to the �rst critical thickness dc,1, which
will from now be referred to as the critical thickness dc. This indicates that the
stripe model from Muller is very good to compute dc, even in the 3-dimensional
case. It is also important to note that in Fig. 4.3a, the thickness is normalized
with the magnetocrystalline exchange length lex,K =

√
A/Ku, which diverges when

Q = Ku/(
1
2
µ0M

2
s ) tends to zero. Therefore, for Q = 0, the magnetization is in-plane

for any thickness. The critical thickness dc normalized by lex,Ms =
√

A
1
2
µ0M2

s
is given

in Fig. 4.3b.
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Figure 4.3: Critical thickness of a thin magnetic �lm as a function of the anisotropy
quality factor Q. (a) Figure adapted from [31]. The solid line is the thickness dc,1 obtained
by Muller [32, 25] between the in-plane phase and the weak stripe phase. The dashed line
is the thickness dc,2 obtained with the SWM by Virot et al. [31] between the weak and
the strong stripe phases. The results of the simulations are plotted on the same �gure,
distinguishing the IP phase, the intermediate phase and the phase with OOP domains. (b)

Critical thickness dc = dc,1 normalized by lex,Ms =
√

A
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s
.
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4.3 Domain-wall structure

In this section, the structure of the domain walls is investigated for thicknesses
above dc and Q values between 0.5 and 2. The thickness d is chosen to range from
10lex,Ms (= 33.4 nm) to 25lex,Ms (= 83.4 nm). The magnetocrystalline exchange length
lex,K = lex,Ms/

√
Q then ranges from 4.72 nm to 2.36 nm. The simulation box has again

in-plane dimensions of 500nm×500nm with periodic boundary conditions in the x and
y directions. In order to have an accurate description of the domain wall structure,
we use Nx = Ny = 384 cells in the IP directions and Nz = 64 cells in the z direction.
The procedure is then the same as in Section 4.2.2: the total energy comprises the
exchange, the demagnetizing and the anisotropy energies, and the equilibrium con�g-
uration is computed with the pseudo-dynamic and the energy-minimization functions
starting with a random initial con�guration. It is repeated for the di�erent thick-
nesses and Q values represented in Fig. 4.4.

In thin �lms with PMA, the domain walls between the OOP domains are typically of
Bloch type in the middle of the thickness, with Néel closure domains (or Néel "caps")
at the top and bottom surfaces [33, 34]. A simple model is illustrated in Fig. 4.5,
where w is the characteristic size of the domains. In this model, the domain walls
are characterized by three values: the width δB of the Bloch wall at the center of the
thickness, the height tB of the Bloch wall and the width δN of the Néel caps at the
top and bottom.

The domain width w is computed by performing several cuts in the maze pattern,
as illustrated in Fig. 4.6, and taking the average of the domain widths. To compute
the Bloch wall width, we de�ne the angle θ(x) = arctan(my/mz) at mid-thickness
of the �lm, with x the direction perpendicular to the wall plane. The width δB

is then computed by linear extrapolation of the tangent dθ/dx at the center. The
Néel wall width δN is also computed by extrapolation of the tangent, with the angle
φ(x) = arctan(mx/mz) at the top and bottom surfaces. Finally, the thickness of
the Bloch wall tB is de�ned as the thickness for which 50% of the rotation of the
magnetization is completed, using the angle γ(z) = arctan(my/mx). The procedure
to compute the domain wall parameters is illustrated in Fig. 4.7.
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Figure 4.4: Points in the
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the domain-wall structure is
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sponds to the critical thickness
dc.

Figure 4.5: Simple model for the domain-wall
structure between alternating OOP domains. The
black arrows indicate the direction of the magneti-
zation. The domain walls are composed of a Bloch
wall at the center, with closure domains at the sur-
faces. The domain wall dimensions δB, δN, tB and
the domain width w are shown with dashed blue
arrows. The coordinate system is shown in green.

Figure 4.6: Illustration of the procedure used to compute the domain width w. The image
is a top view at mid-thickness of a simulation with Q = 1 and d/lex,Ms = 15. The OOP
component mz is represented with the black-gray-white color scale. The red lines are the
cuts used to compute the average domain width w.
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Figure 4.7: Illustration of the procedure used to compute the domain wall parameters δB,
δN and tB. (a) Domain wall (DW) example for a simulation with Q = 1 and d/lex,Ms = 20.
The black arrows indicate the direction of the magnetization in the xz-plane. The red color
represents the component my. The simple model of a DW is drawn on top, with the values
obtained in the other graphs. (b) Computation of the Bloch thickness tB for which 50% of
the γ-rotation is completed. (c) Computation of the Bloch width δB by linear extrapolation
of θ. (d) Computation of the Néel cap width δN by linear extrapolation of φ.
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The results of the DW structure analysis are summarized in Fig. 4.8. In Fig. 4.8a,
one can see that for a �xed Q, the domain width w increases with the �lm thickness
d. This is in accordance with the result of Gehanno [26]. Gehanno showed with the
Kooy and Enz model [35] (equivalent to Kittel's model, with widths w1 and w2 for
the domains pointing up and down) that for high Q, the size of the domains increases
as
√
d. For Q < 1, Murayama also showed that the domain width increases as

√
d

[36]. We can also see that for Q > 1, at constant thickness, the width w increases
when Q increases. For the thicknesses well above dc that we are considering here,
the increase of w with d and Q can be explained by considering the energy of the
domain walls. Indeed, the energy of the domain walls increases with d and with Q
(see Eq. 2.36). Increasing the domain width w results in a decrease in the number of
domain walls and therefore a decrease in the total energy. For thicknesses closer to
dc, the magnetostatic interaction (demagnetizing energy) between the two surfaces is
larger and the behavior can therefore be di�erent.

In Fig. 4.8b, the ratio tB/d of the Bloch thickness over the �lm thickness is presented.
The Bloch thickness represents 30 to 60% of the �lm thickness. For a �xed thick-
ness, the ratio only slightly increases when Q increases, whereas for a �xed value of
Q, the ratio signi�cantly increases with the �lm thickness d. One must understand
that the Néel caps are a consequence of the demagnetizing �eld. An upward domain
creates positive magnetic charges at the top surface and negative charges at the bot-
tom surface, and the inverse is true for downward domains. A demagnetizing �eld
is therefore produced in the direction opposite to the magnetization in the domains.
On the top or bottom surface at a domain wall, the region with positive charges (e.g.
on the left) is adjacent to a region with negative charges (e.g. on the right). This
gives rise to a demagnetizing �eld from the left to the right. The magnetization in
this region rotates to align with the demagnetizing �eld, forming Néel caps. When d
increases, the thickness of the Néel caps increases, but not as fast as d. As a results,
the ratio tB/d increases with d. For d/lex,Ms = 10, we have tB/d ' 30% whereas for
d/lex,Ms = 25, tB/d ' 55%.

In Fig. 4.8c, one can see that the Bloch width δB is nearly independent of the thick-

ness. Moreover, it is close but slightly smaller than the width δw = π
√

A
Ku

computed
in Section 2.5.4 where only the exchange and anisotropy energies are considered.

Finally, in Fig. 4.8d, one can see that the Néel caps width δN decreases when Q in-
creases. This enables to decrease the high anisotropy energy, while increasing the
exchange and demagnetizing energy. At Q = 0.5, δN corresponds to 80 to 100% of
the domain width w. AtQ = 2, it corresponds to only about 20% of the domain width.
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Those results are illustrated in Fig. 4.9 by drawing the DW model on top of a cross
section for four di�erent simulations. Let us �rst compare the bottom and top images
for a constant Q. One can see that the domain width w and the ratio tB/d increases
when the thickness increases, while the Bloch and the Néel widths δB and δN are
almost unchanged. Comparing now the left and right images for a constant thickness,
one can see that the domain width w increases when Q increases, while δB and δN

drastically decrease.
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Figure 4.8: Results of the domain wall analysis for simulations with the di�erent thick-
nesses d and Q values of Fig. 4.4. (a) Domain width w over exchange length lex,Ms . (b) Bloch
thickness over sample thickness tB/d. (c) Bloch width δB. The dashed line represents the
result δw obtained without demagnetizing �eld (Eq. 2.35). (d) Néel cap width over domain
width δN/w.
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(a) Q = 0.5, d/lex,Ms
= 20 (b) Q = 2, d/lex,Ms

= 20

(c) Q = 0.5, d/lex,Ms
= 10 (d) Q = 2, d/lex,Ms

= 10

Figure 4.9: Cross section with 2 DWs for four di�erent simulations. The blue-white-red
color scale represents the my component in the [−1, 1] range. The simple model of a DW is
drawn on top with the values obtained in Fig. 4.8.

4.4 Conclusion

Below the critical thickness dc, the equilibrium magnetization is forced in the plane of
the �lm due to the magnetostatic interaction between the two surfaces. The critical
thickness diverges to in�nity when the anisotropy factor Q tends towards zero. When
Q increases, dc decreases until zero at Q = 1. For Q > 1, the equilibrium con�gura-
tion is therefore made of out-of-plane domains for any thickness.

The domain walls (DWs) between the out-of-plane domains are of Bloch-type at the
middle of the thickness. On the top and bottom surfaces, Néel closure domains are
formed. The width of the DWs is nearly independent of the thickness, and decreases
when the anisotropy factor Q increases. When the thickness increases, the ratio of
Bloch thickness over �lm thickness tB/d increases. Finally, the width of the domains
w increases with the thickness and with Q.





Chapter 5

Magnetization, hysteresis and

reversal mechanisms

5.1 Introduction

Due to its perpendicular magnetic anisotropy (PMA), FePd is a promising mate-
rial for applications in spintronics, like for example Magnetoresistive Random Acces
Memories (MRAMs) [5]. In order to use this material in applications, it is important
to understand the reversal mechanisms when the magnetization switches from the
saturated state in one direction to the saturated state in the opposite direction. The
reversal mechanisms and the patterns formed by the out-of-plane domains determine
the shape of the hysteresis curves obtained with an in-plane (IP) and an out-of-plane
(OOP) applied �eld.

Hysteresis loop measurements performed by A. Stellhorn (A.S.) on three samples
with di�erent degrees of PMA are shown in Fig. 5.1. For the in-plane (IP) curve, the
in-plane components of the magnetization and the applied �eld are displayed in the
graph, whereas for the out-of-plane (OOP) curve, the out-of-plane components are
displayed. One observes that the lower the anisotropy quality factor Q, the steeper
the IP curve. Moreover, the IP curves exhibit some hysteresis around zero applied
�eld, whereas the OOP curves have hysteresis at the extremities.

In this chapter, the hysteresis curves are reproduced by micromagnetic simulations
using MuMax3 and the reversal mechanisms are analyzed. The method and the
parameters used for the simulations are explained in Section 5.2. The hysteresis
curves and reversal mechanisms are investigated for low and high PMA for an in-
plane applied �eld in Section 5.3 and an out-of-plane applied �eld in Section 5.4.
Conclusions are then drawn in Section 5.5.

39
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Figure 5.1: Hysteresis loops with an in-plane (IP) and out-of-plane (OOP) applied �eld
for three samples with low (a), medium (b) and high (c) PMA. The computed Q values and
the thickness d of FePd layer is speci�ed for each sample. Data shared by A.S. [8].

5.2 Simulation methodology

To compute the initial magnetization curve and the hysteresis curve, the equilib-
rium con�guration is �rst computed using the pseudo-dynamic algorithm (i.e. only
the damping term of the LLG equation) starting from a random con�guration. An
increasing external �eld is then applied with small steps, and the magnetic con�gu-
ration is computed at each step with the pseudo-dynamic algorithm, until complete
saturation. The hysteresis loop is then computed by varying the applied �eld with
small steps from the saturated state in one direction to the saturated state in the
other direction. The energy minimization algorithm is not used in these simulations
because it does not converge e�ciently enough in some of these complex con�gura-
tions.

In a simulation geometry with high symmetry like a thin �lm, one should avoid ap-
plying the �eld in a direction of symmetry. Indeed, if the simulation is perfectly
symmetrical, the solution can be stuck in an unstable, non-physical state. It is there-
fore advised to always tilt the applied �eld with a small angle from the symmetry
axis. In the simulations of this chapter, the in-plane �eld is applied mainly along the
y direction, but with a small tilt of 0.5◦ in the x and z directions. Similarly, for the
out-of-plane case, the �eld is applied mainly along the z direction, with a small tilt
of 0.5◦ in the y direction.

In all the simulations, a box of 500nm×500nm is used with periodic boundary condi-
tions in the in-plane directions (x and y). The domain is discretized with a regular
mesh of 256×256×32 cells in order to have cells smaller than the exchange lengths in
all cases.
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As mentioned in Section 2.4.3, the hysteresis curves depend on defects in the bulk or
at the surface of the sample [10]. To obtain hysteresis curves close to experimental
measurements, it is therefore mandatory to introduce some defects. The speci�c role
of those defects is discussed in the following sections. The two types of defects used
in this work are a distribution of the anisotropy, as suggested by Fallarino et al. [37],
and holes through the sample.

The anisotropy distribution is directly linked to the chemical ordering in the crystal.
For a crystal with low order, the intensity and the axis of the anisotropy is expected
to vary within the sample whereas for a crystal with high order, it is expected to
be almost constant. It can also be seen as a way to model the planar defects ob-
served along the FePd {111} planes in real samples [8, 26] (see Section 3.4.2). The
anisotropy distribution is modeled by de�ning grains of characteristic size rg using a
Voronoi tesselation [38, 39]. The anisotropy constantKu in the grains follows a normal
distribution around its mean value with a standard deviation σKu . The anisotropy
axis deviates from the z direction by an angle η that follows a normal distribution
around 0 with a standard deviation σeu . For the sample with low PMA, it is chosen to
use grains of size rg = 25 nm with σKu = 5% and σeu = 5◦. For the sample with high
PMA, we use larger grains of size rg = 50 nm with much smaller standard deviations
σKu = 0.1% and σeu = 0.1◦.

In order to enable the nucleation of reversal domains for the sample with high PMA
during the OOP hysteresis loop, 3 holes through the thickness of the sample with
diameter Dholes = 10 nm are added. Holes can easily be modeled by de�ning regions
with a zero saturation magnetization (Ms = 0 A/m). These holes can be seen as a
way to model the 20-to-30nm-deep voids observed in the FePd layer in [8] (see Sec-
tion 3.4.2).

Other types of defects could also be used, like surface roughness, thermal �uctua-
tions or dynamic e�ects. Surface roughness can easily be modeled by de�ning grains
with di�erent thicknesses. Thermal �uctuations and dynamic e�ects can be modeled
in MuMax3 by adding thermal noise and integrating the LLG equation (Eq. 2.22).
Thermal �uctuations can indeed trigger nucleation by enabling the magnetization to
jump over energy barriers. However, for the sake of simplicity, it is chosen to only use
holes and anisotropy distribution as defects. These two types of defect are su�cient
to enable reversal, to understand the reversal mechanisms and to show the role of
each defect. Adding other types of defects would only make the simulations more
complex, and would not contribute to the understanding of the mechanisms.
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The parameters used for the two main simulation samples of this chapter are sum-
marized in Table 5.1 and the defects are illustrated in Fig. 5.2.

Low PMA High PMA

sample sample

Width W = 500 nm W = 500 nm
Thickness d

lex,Ms
= 11.53 d

lex,Ms
= 13.71

Quality factor Q = 0.47 Q = 2.0

Saturation magnetization Ms = 106 A/m Ms = 106 A/m
Exchange constant A = 7 10−12 J/m A = 7 10−12 J/m
Anisotropy distribution:
- grain size rg = 25 nm rg = 50 nm
- intensity standard deviation σKu = 5% σKu = 0.1%
- axis standard deviation σeu = 5◦ σeu = 0.1◦

Holes:
- number / nholes = 3

- diameter / Dholes = 10 nm
Discretization 256× 256× 32 256× 256× 32

Table 5.1: Parameters chosen for the two main simulation samples.

−200 −100 0 100 200
x [nm]

−200

−100

0

100

200

y
[n
m
]

0.26

0.28

0.30

0.32

0.34

K
u
[1
06
J/
m

3
]

(a) Low PMA sample.

−200 −100 0 100 200
x [nm]

−200

−100

0

100

200

y
[n
m
]

1.254

1.256

1.258

1.260

K
u
[1
06
J/
m

3
]

(b) High PMA sample.

Figure 5.2: Illustration of the defects chosen for the simulations of the samples with (a)
low and (b) high PMA. The anisotropy constant Ku in the grains is represented with a gray
color scale. The three holes for the sample with high PMA are indicated with red arrows.
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5.3 In-plane magnetic �eld

5.3.1 Low PMA sample

In order to model the reversal during the IP hysteresis curve, it is needed to introduce
some defects such as an anisotropy distribution. Indeed, one can see in Fig. 5.3a that
without anisotropy distribution, the magnetization is stuck in the saturated state
until it switches to the saturated state in the other direction in one single jump.
By introducing 25nm-large grains with an anisotropy distribution, the hysteresis is
reduced and the reversal occurs smoothly. Indeed, introducing defects produces mul-
tiple minimums in the energy landscape, enabling the magnetization con�guration
to jump from minimum to minimum during the reversal. This is analogous to the
Barkhausen jumps observed in real samples (see Section 2.4.4). Increasing the stan-
dard deviations up to σKu = 5% and σeu = 5◦ enables one to obtain a curve close to
the experiment. Increasing further the standard deviations would make the magnetic
con�guration very complex, hiding the main reversal mechanisms. Starting from the
equilibrium con�guration, the initial magnetization curve and the hysteresis loop are
shown in Fig. 5.3b.
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Figure 5.3: (a) Comparison of the in-plane (IP) hysteresis loop for multiple anisotropy
distributions (σKu / σeu) with experimental measurements (Exp.). (b) In-plane initial mag-
netization (magn.) and hysteresis curves (hyst.) for σKu = 5% and σeu = 5◦ compared to
the experimental curve. Experimental data shared by A.S. [8].

The IP magnetization mechanism for the sample with low PMA is shown in Fig. 5.4.
Starting from a maze pattern at µ0Hext = 0 mT, the pattern gradually changes into
a stripe pattern as the IP applied �eld increases. At µ0Hext = 150 mT, the IP com-
ponent is aligned with the applied �eld in the y direction, and the OOP component
alternates between positive and negative values forming a stripe pattern. Increasing
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further the �eld, the IP component increases and the OOP component decrease, until
full IP saturation is reached.

The IP reversal mechanism for the sample with low PMA is illustrated in Figs. 5.5
and 5.6. Starting from the saturated state at 750 mT, the IP component gradually
decreases and the OOP component increases to form a stripe pattern at 150 mT. The
stripes are not perfectly straight and parallel. They indeed exhibit some branching
and oscillations due to the grains used to model the defects. If one uses smaller stan-
dard deviations for the defects, the stripe pattern will be cleaner, but the hysteresis
curve will be further from the experiments. At remanence (0 mT), one observes OOP
stripe domains, with the IP component of all the Bloch walls in the direction of the
initial saturated state. This is illustrated in Fig. 5.6a where all the walls have a pos-
itive y component. These Bloch walls are the origin of the remanent magnetization
Mr ' 0.33Ms. Increasing the �eld in the reverse direction, the IP component of the
Bloch walls �ips for one wall after another, as can be seen in Figs. 5.6b and 5.6c. This
gives rise to the rapid decrease of the IP magnetization visible in Fig. 5.3b. When
half of the walls have �ipped, the average IP magnetization is zero. This is obtained
for the coercive �eld µ0Hc = 28 mT (slightly overestimating the experimental value
of 15 mT). The order in which the walls �ip depends on the defects that can lower
the energy barrier for certain walls more than for the others. For this reason, it is
di�cult to obtain results very close to the measurements for this part of the curve.
Once all the walls have �ipped, when further increasing the �eld in the reverse direc-
tion, the IP component gradually increases and the OOP component decreases until
saturation, with good agreement with the measurements.
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Figure 5.4: Magnetization mechanism from the equilibrium con�guration to IP saturation
for the sample with low PMA. Top view at mid-thickness for di�erent values of the external
applied �eld Hext. Gray color scale: OOP component mz. Red arrows: IP components.
(See Vid01).

https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw?dir=undefined&path=%2FVideos_chapter5%2FIn-plane%2F1-Low_pma&openfile=23777331


CHAPTER 5. MAGNETIZATION, HYSTERESIS AND REVERSAL 45

−200 −100 0 100 200
x [nm]

−200

−100

0

100

200
y
[n
m
]

−1.0

−0.5

0.0

0.5

1.0

m
z

[-
]

(a) µ0Hext = 750mT

−200 −100 0 100 200
x [nm]

−200

−100

0

100

200

y
[n
m
]

−1.0

−0.5

0.0

0.5

1.0

m
z

[-
]

(b) µ0Hext = 150mT

−200 −100 0 100 200
x [nm]

−200

−100

0

100

200

y
[n
m
]

−1.0

−0.5

0.0

0.5

1.0

m
z

[-
]

(c) µ0Hext = 0mT

−200 −100 0 100 200
x [nm]

−200

−100

0

100

200

y
[n
m
]

−1.0

−0.5

0.0

0.5

1.0

m
z

[-
]

(d) µ0Hext = −150mT

Figure 5.5: IP reversal mechanism for the sample with low PMA. Top view at mid-thickness
for di�erent values of the external applied �eld Hext. Gray color scale: OOP component
mz. Red arrows: IP components. (See Vid02).
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Figure 5.6: IP reversal mechanism for the sample with low PMA. Cross section for di�erent
values of the external applied �eld Hext. Blue-white-red color scale: my component. (See
Vid03).

5.3.2 High PMA sample

The IP magnetization and hysteresis curves for the sample with high PMA are shown
in Fig. 5.7, for which much smaller standard deviations are used (σKu = 0.1% and
σeu = 0.1◦) to represent the high chemical ordering. The curves are in good agreement
with the measurements, except again during the switching near coercivity, and also
near saturation. The deviation near saturation results from the di�erence in slope of
the two curves. This could probably be �xed by adjusting the value of Q in order to
have exactly the same slope.

The IP magnetization mechanism for the sample with high PMA is shown in Fig. 5.8.
Starting from a maze pattern at 0 mT, it gradually elongates in the y direction as the
�eld increases. The IP component increases until full saturation is reached. Since the
PMA is high, a large in-plane �eld is needed to saturate the sample. This explains
why the IP curve for high PMA is less steep than for low PMA.

https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw?dir=undefined&path=%2FVideos_chapter5%2FIn-plane%2F1-Low_pma&openfile=23777323
https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw?dir=undefined&path=%2FVideos_chapter5%2FIn-plane%2F1-Low_pma&openfile=23777378
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The IP reversal mechanism is illustrated in Figs. 5.9 and 5.10. The mechanism is
comparable to the one for the sample with low PMA, with a few di�erences. A stripe
pattern is also obtained, exhibiting branches and with pinning at the 3 holes. At
remanence, as illustrated in Fig. 5.10b, all the Bloch walls have their IP component
in the direction of the previous saturated state, yielding a remanent magnetization
Mr ' 0.086Ms. The main di�erence is for the switching around coercivity. Due to the
narrow anisotropy distribution in this simulation, the Bloch walls do not switch one
after another as it was the case for the sample with low PMA with a lot of defects.
On the contrary, as can be seen in Fig. 5.10c, the magnetization gradually rotates,
alternatively at the top and bottom surfaces. This gives rise to the gradual decrease
of the IP magnetization after remanence in Fig. 5.7, before the Bloch walls start to
�ip at the coercive �eld µ0Hc = 100 mT (highly overestimating the experimental
value of 31 mT). Since the di�erence with the measurements is high, the real sample
probably contains more defects than what was used in the simulation, with a reversal
mechanism closer to the one described for low PMA.
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Figure 5.7: In-plane magnetization and hysteresis curves for the sample with high PMA
with σKu = 0.1% and σeu = 0.1◦ compared to the experimental curve. Experimental data
shared by A.S. [8].
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Figure 5.8: Magnetization mechanism from the equilibrium con�guration to IP saturation
for the sample with high PMA. Top view at mid-thickness for di�erent values of the external
applied �eld Hext. Gray color scale: OOP component mz. Red arrows: IP components.
(See Vid04).
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Figure 5.9: IP reversal mechanism for the sample with high PMA. Top view at mid-
thickness for di�erent values of the external applied �eld Hext. Gray color scale: OOP
component mz. Red arrows: IP components. (See Vid05).

https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw?dir=undefined&path=%2FVideos_chapter5%2FIn-plane%2F2-High_pma&openfile=23777880
https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw?dir=undefined&path=%2FVideos_chapter5%2FIn-plane%2F2-High_pma&openfile=23777893
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Figure 5.10: IP reversal mechanism for the sample with high PMA. Cross section for
di�erent values of the external applied �eld Hext. Blue-white-red color scale: my component.
(See Vid06).

5.4 Out-of-plane magnetic �eld

5.4.1 Low PMA sample

The OOP magnetization and hysteresis curves for the sample with low PMA are
given in Fig. 5.11. The agreement with the experimental measurements is not per-
fect and could be enhanced by adjusting some parameters like the thickness or the
Q value. However, the shape is precisely the same as in the measurements, which
indicates that the reversal mechanism is correctly modeled. The curve for the ini-
tial magnetization is not visible because it coincides with the straight hysteresis curve.

The OOP magnetization mechanism for the sample with low PMA is illustrated in
Fig. 5.12. Starting from a maze pattern at 0 T, when the applied �eld increases,
the domains with a magnetization in the direction of the applied �eld expand, at the
expense of the domains in the reverse direction. The domains in the reverse direction
then start to divide into cylindrical domains (or "bubble domains") [25]. Those cylin-
drical domains then decrease in size until they completely disappear at saturation at
µ0Hsat = 0.86 T.

The OOP reversal mechanism is presented in Fig. 5.13. Starting from saturation at 1
T, reverse cylindrical domains start to nucleate at the nucleation �eld µ0Hn ' 0.69 T.
The reverse domains do not nucleate at µ0Hsat = 0.86 T because of a potential barrier
that prevents the nucleation. Nucleation is only possible when the �eld is decreased
until 0.69 T. This is the origin of the hysteresis at the two extremities of the loop.

https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw?dir=undefined&path=%2FVideos_chapter5%2FIn-plane%2F2-High_pma&openfile=23777919
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The nucleation of the reverse domains induces some little jumps in the curve. When
a certain amount of domains have nucleated, no more domains nucleate and the ex-
isting domains start to grow, which results in a straight line in the hysteresis loop.
The growth of the reverse domains gives rise to a maze patter around 0 T. When the
�eld is increased in the reverse direction, the domains in the direction of the previous
saturated state decrease in size, then divide in bubbles and disappear, resulting in
a linear variation of the magnetization until saturation in the reverse direction [25, 26].
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Figure 5.11: Out-of-plane magnetization and hysteresis curves for the sample with low
PMA with σKu = 5% and σeu = 5◦ compared to the experimental curve. Experimental data
shared by A.S. [8].
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Figure 5.12: Magnetization mechanism from the equilibrium con�guration to OOP sat-
uration for the sample with low PMA. Top view at mid-thickness for di�erent values of
the external applied �eld Hext. Gray color scale: OOP component mz. Red arrows: IP
components. (See Vid07).

https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw?dir=undefined&path=%2FVideos_chapter5%2FOut-of-plane%2F1-Low_pma&openfile=23777966
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Figure 5.13: OOP reversal mechanism for the sample with low PMA. Top view at mid-
thickness for di�erent values of the external applied �eld Hext. Gray color scale: OOP
component mz. Red arrows: IP components. (See Vid08).

5.4.2 High PMA sample

In the case of high PMA, a distribution of anisotropy even as high as σKu = 5% and
σeu = 5◦ is not enough to enable the nucleation of reverse domains. Due to the high
anisotropy energy, the potential barrier for the nucleation is too high, and the con�g-
uration stays stuck in the saturated state until it switches to the saturated state in
the reverse direction. Another type of defect is therefore needed for this simulation.
Since holes have been observed in the samples of A. Stellhorn [8], it is chosen to
introduce holes in the simulation, which will act as nucleation points.

The �rst part of the OOP reversal curve is given in Fig. 5.14 with 3 holes for di�erent
hole diameters Dholes. Diameters below 6 nm are too small to enable nucleation.
One can also see that when increasing Dholes from 6 to 12 nm, the nucleation �eld
increases. Indeed, the larger the holes, the smaller the potential barrier for nucleation,
which results in a larger nucleation �eld. It is chosen to use holes with Dholes =

10 nm because the nucleation �eld does not increase drastically for higher diameters.
Even though after the nucleation the curve from the simulations coincides with the
measurements, one observes that during the nucleation, the agreement is not perfect.
The nucleation mechanism is therefore not exactly modeled, but the growth of the
reverse domains once nucleated is close to the experiments.

https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw?dir=undefined&path=%2FVideos_chapter5%2FOut-of-plane%2F1-Low_pma&openfile=23778126
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Figure 5.14: OOP reversal curves for the sample with high PMA with 3 holes for di�erent
hole diameters Dholes. Experimental data shared by A.S. [8].

The OOP reversal for di�erent numbers of 10nm-diameter holes is illustrated in
Fig. 5.15. The holes are positioned with a uniform probability in the simulation
domain using a random-number generator. The top view is given at µ0Hext = 0.34 T
and µ0Hext = 0 T for 1 to 50 holes. At 0.34 T, for 1 to 5 holes, one can see that
reverse domains have nucleated at each defect. By increasing the number of reverse
domains, the total energy of the domain walls increases, but the demagnetizing en-
ergy can be reduced over the whole sample. For a higher number of holes, one can
see that reverse domains do not grow from all the defects, with approximately the
same number for 20 and 50 holes. Increasing the number of reverse domains would
decrease the demagnetizing energy more uniformly over the sample, but the increase
of domain wall energy would be too high.

At remanence (0 T), for 1 hole, one can see that multiple concentric domains have
grown from the same defect. This behavior is due to the high symmetry resulting
from the unique hole with periodic boundary conditions in the IP directions. For 3
and 5 holes, the reverse domains grow, �rst in a cylindrical shape, then in elongated
shapes when they come closer to each other. The elongated shapes enable to obtain
domains with widths roughly uniform over the whole sample, giving rise to a maze
pattern close to the one observed in the experiments. For 20 to 50 holes, the reverse
domains grow in a more "bubble-like" shape, less elongated. This results from the
larger number of reverse domains that already cover the sample in a uniform way,
and the pinning from the defects where no reverse domains have grown.

Half of the OOP hysteresis curve for di�erent numbers of holes is shown in Fig. 5.16.
For 0 holes, the behavior corresponds to a hard ferromagnet, where the magnetization
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is stuck in the saturated state until it switches directly to the saturated state in the
reverse direction. Adding one hole is su�cient to drastically decrease the hysteresis
by enabling the nucleation of a reverse domain. Increasing the number of holes to 50
changes the shape of the curve. For 50 holes, the nucleation �eld is the highest, and
the curve is made of a large number of small jumps corresponding to the nucleation
of multiple reverse domains. Once the nucleated domains start to grow, the curve is
roughly the same in all the cases, but the remanence and coercivity are slightly larger
for a large number of holes. This is probably due to the number of reverse domains
and the pinning at the defects that hardens the magnet compared to the maze pat-
tern. Finally, at the end of the reversal, close to saturation, the curve for 50 holes is
once again made of a large number of small jumps resulting in a roughly linear curve.
On the contrary, for a smaller number of holes, the curve deviates from the linear
behavior and is made of a few large jumps. This is due to the pinning of the domains
in the direction of the previous saturated state, as can be seen in Fig. 5.19f. The pin-
ning at the small number of defects produces elongated domains, that will disappear
in several jumps. This behavior is di�erent from the one observed for the sample
with low PMA, where the cylindrical domains gradually decrease in size, resulting
in a linear behavior of the magnetization. When the elongated domains are pinned
between a larger number of holes, they can disappear fragment by fragment, resulting
in a large number of small jumps and a close to linear behavior in the hysteresis curve.

The initial OOP magnetization curve and the complete hysteresis for 3 holes are com-
pared to the experimental measurements in Fig. 5.17. The agreement is not perfect,
but the mechanisms taking place in the real sample can be understood considering
the previous discussion. First, the large hysteresis at the two extremities of the curve
is due to the energy barrier for the nucleation of reverse domains. Then, the linear
behavior until saturation in the reverse direction is due to, �rst, the growth of reverse
domains towards a maze pattern, and then to the shrinking of the remaining domains
in the direction of the previous saturated state. The deviation in the simulation is
due to the pinning at the small number of defects. Finally, the hysteresis near 0 T is
very small, with Mr ' 0.012Ms (0.019Ms in the experiment) and µ0Hc ' 10 mT (6
mT in the experiment).

The initial magnetization and reversal mechanisms for the sample with 3 holes are
illustrated in Figs. 5.18 and 5.19.
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(a) 1 hole
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(b) 3 holes
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(c) 5 holes
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(d) 20 holes

−200 −100 0 100 200
x [nm]

−200

−100

0

100

200

y
[n
m
]

−1.0

−0.5

0.0

0.5

1.0

m
z

[-
]

(e) 50 holes

Figure 5.15: Top view at mid-thickness during the OOP reversal at µ0Hext = 0.34 T
(top) and µ0Hext = 0 T for di�erent numbers of holes. All the holes have a diameter
Dholes = 10 nm. Gray color scale: OOP component mz. Red arrows: IP components.
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Figure 5.16: OOP hysteresis curves for the sample with high PMA with di�erent numbers
of holes. All the holes have a diameter Dholes = 10 nm.
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Figure 5.17: Out-of-plane magnetization and hysteresis curves for the sample with high
PMA with σKu = 0.1% and σeu = 0.1◦ and 3 holes of 10 nm diameter compared to the
experimental curve. Experimental data shared by A.S. [8].
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(b) µ0Hext =0.250T
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(c) µ0Hext = 0.500T
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Figure 5.18: Magnetization mechanism from the equilibrium con�guration to OOP sat-
uration for the sample with high PMA. Top view at mid-thickness for di�erent values of
the external applied �eld Hext. Gray color scale: OOP component mz. Red arrows: IP
components. (See Vid09).

https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw?dir=undefined&path=%2FVideos_chapter5%2FOut-of-plane%2F2-High_pma&openfile=23778154
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(a) µ0Hext = 1T
−200 −100 0 100 200

x [nm]

−200

−100

0

100

200

y
[n
m
]

−1.0

−0.5

0.0

0.5

1.0

m
z

[-
]

(b) µ0Hext =0.457T
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(c) µ0Hext =0.325T
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(d) µ0Hext = 0T
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(e) µ0Hext = −0.325T
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(f)µ0Hext =−0.650T
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(g) µ0Hext = −1T

Figure 5.19: OOP reversal mechanism for the sample with high PMA. Top view at mid-
thickness for di�erent values of the external applied �eld Hext. Gray color scale: OOP
component mz. Red arrows: IP components. (See Vid10).

5.5 Conclusion

The discussions in this Chapter provide explanations for the available hysteresis mea-
surements on FePd thin �lms. Most importantly, defects are crucial for the reversal.
The main results are reminded below.

The �nal hysteresis curves obtained by simulation for low and high PMA with the pa-
rameters of Table 5.1 are shown in Fig. 5.20. The agreement between the simulations
and the measurements is not perfect, but good enough to understand the reversal
mechanisms taking place in the real sample, as well as the origin of the hysteresis.

https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw?dir=undefined&path=%2FVideos_chapter5%2FOut-of-plane%2F2-High_pma&openfile=23778192
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Figure 5.20: Final in-plane (IP) and out-of-plane (OOP) hysteresis loops for the sample
with (a) low PMA and (b) high PMA, and comparison with experimental measurements.
Experimental data from A.S. [8].

For both samples, the IP reversal mechanism is roughly the same, except that the
curve is much steeper for low PMA. Starting from saturation in one direction, stripes
with alternating OOP components gradually appear when the �eld decreases. This
enables to decreases the anisotropy energy by increasing the OOP component at the
expense of the IP component. Instead of changing uniformly within the sample,
the OOP component oscillates between positive and negative values to decrease the
demagnetizing energy, giving rise to the stripe pattern. At remanence, the OOP do-
mains are separated by domain walls with an IP component in the direction of the
previous saturated state, giving rise to a remanent magnetization and some hysteresis.
When increasing the �eld in the reverse direction, the domain walls �ip depending
on the defects. Once all the walls have �ipped, the stripe pattern gradually changes
toward full saturation as the �eld is increased.

The OOP reversal mechanism is also comparable for the low and high PMA. Start-
ing from saturation, when the �eld is decreased, domains nucleate at a �eld smaller
than the �eld needed to saturate the sample, because of the energy barrier for the
nucleation. For the sample of low PMA, the energy barrier is smaller and grains with
an anisotropy distribution are enough to enable nucleation. For the sample with high
PMA, the barrier is higher and holes are needed to enable nucleation. Once multiple
reverse domains have nucleated, they grow and become elongated until they form a
maze pattern at remanence. This results in a linear variation of the magnetization.
Increasing the �eld in the reverse direction, the domains in the direction of the pre-
vious saturated state shrink and separate into cylindrical domains. Those cylindrical
domains then shrink until they completely disappear, resulting in a linear variation
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until saturation in the reverse direction.

The hysteresis is therefore due to the presence of energy barriers during the reversal
mechanism. For the IP loop, the switching of the domain walls gives rise to some
hysteresis around zero �eld. On the contrary, for the OOP loop, the energy barrier
for the nucleation of reverse domains gives rise to some hysteresis at the extremities
of the curve.

The exact choice of defects will a�ect the hysteresis curve by modifying the energy
landscape. Adding some thermal �uctuations may help to jump over the energy
barriers, but the mechanisms should remain the same.





Chapter 6

Chirality and link to neutron

scattering

6.1 Introduction

In Chapter 4, the structure of the domain walls (DWs) between the out-of-plane
(OOP) magnetic domains in thin �lms with perpendicular anisotropy has been stud-
ied. The domain walls have a Bloch structure in the middle of the thickness, where
the magnetization rotates in planes parallel to the plane of the wall. Néel closure
domains are formed at the top and bottom surfaces, where the magnetization rotates
in a plane perpendicular to the plane of the wall. The direction of the magnetization
in the Néel closure domains (or "Néel caps") is imposed by the demagnetizing �eld.
It is oriented such that it closes the loop between the OOP domains, reducing the
demagnetizing energy. On the contrary, the orientation of the magnetization in the
Bloch part depends on the magnetic history and the domain pattern, as explained in
Chapter 5. During the in-plane reversal, stripes are formed and the magnetization
in all the Bloch walls is in the direction of the previous in-plane saturated state,
before they switch when the applied �eld increases in the reverse direction. During
the out-of-plane reversal, after cylindrical domains have nucleated and grown, a maze
pattern is formed. The direction of the magnetization in the Bloch walls has not been
analyzed in this case and is the topic of this chapter.

As illustrated in Fig. 5.19, when a domain nucleates at a defect, the magnetization
in the Bloch wall forms a closed loop around the reverse domain, either in the clock-
wise (CW) or the counterclockwise (CCW) direction. Since all the energy terms are
symmetric (exchange, anisotropy, demagnetizing energy), it is expected that none of
those two directions is preferred, leaving them equiprobable.

The clockwise or counterclockwise direction of the domain walls is directly linked to

59
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the chirality of the Bloch wall. Chirality refers here to the handedness of the helix
formed by the Bloch wall and it should be noted that the handedness of the helix
does not depend on the direction in which one looks at it. A right-handed helix is
right-handed independently of the position of the observer. While one would expect
that the CW and CCW direction are equiprobable, and that therefore the number of
right and left-handed DWs should be equal, it seems that this is not the case in ex-
perimental observations. More precisely, neutron scattering measurements performed
in [8] suggest that the average chirality of the domain walls is not zero. This chapter
aims to understand how this can be deduced from neutron scattering measurements,
as well as the possible origins of those observations.

In Section 6.2, the Grazing-Incidence Small-Angle Neutron Scattering (GISANS) mea-
surement technique is presented. Results from [8] are shown and we explain how one
can deduce from them information on the chirality of the domain walls. In Sec-
tion. 6.3, another scattering technique, namely Magnetic Small-Angle Neutron Scat-
tering (MSANS) is presented. A simple Python code has been written to compute
the results of MSANS for the magnetic con�gurations obtained with MuMax3. The
results for a stripe and a maze con�guration are then analyzed. In Sections 6.4 and
6.5, two hypotheses to explain the experimental observations are investigated. The
�rst one is that they result from statistical �uctuations of a non-chiral system. The
second one is that there exists a chiral interaction.

6.2 GISANS measurements

6.2.1 Unpolarized GISANS

Grazing-Incidence Small-Angle Neutron Scattering (GISANS) is a measurement tech-
nique where a neutron beam, well collimated in both directions perpendicular to the
beam, impinges the surface of the sample with a very small angle and is scattered
to be collected on a two-dimensional detector. The small incidence angle αi enables
one to be close to the total re�ection and therefore increases the sensitivity to the
layer. By using a beam well-collimated in both directions perpendicular to the inci-
dent wavevector ki, depth-resolved information on the lateral magnetic pro�les can be
retrieved. The typical geometry of a GISANS measurement is depicted in Fig. 6.1 (in
reality, this �gure illustrates the geometry for Grazing-Incidence Small-Angle X-ray
Scattering, or GISAXS, but the principle is the same). The incident wave vector ki
impinges the surface at an angle αi. The X direction coincides with the projection
of ki on the surface of the sample. The Y direction is the in-plane direction per-
pendicular to X, and Z is the out-of-plane direction. The re�ected neutrons have a
wavevector kf , which direction is de�ned by the angles αf and θ. With the assump-
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tion that the angles αi, αf and θ are small, the scattering wavevector q = kf − ki is
given by

qX = k(α2
i − α2

f − θ2)/2, qY = kθ, qZ = k(αi + αf ), with k =
2π

λ
(6.1)

where λ is the wavelength of the neutron. Each pixel on the detector is de�ned by
the values of αf and θ, or equivalently by qY and qZ . A map of the scattered neutron
intensity as a function of qY and qZ can therefore be drawn. On this map, the line for
which αf = αi is called the GISANS line and corresponds to the neutrons re�ected
in a specular manner. Any domain pattern with a periodicity in the y direction gives
rise to scattering intensities in qY along the GISANS line. The intensities above or
below this line correspond to o�-specular scattering.

Figure 6.1: Geometry of a GISAXS experiment (similar to a GISANS experiment). Figure
taken from [40].

An example of GISANS measurements for a sample with a stripe pattern is shown
in Fig. 6.2. The direct beam produces a spot at qY = qZ = 0 nm−1 whose intensity
is reduced with a beam stop. On the GISANS line (at qZ = 0.165 nm−1), spots can
be observed for qY 6= 0 nm−1 when the sample is oriented with the stripes along X,
yielding a �nite period of the pattern in the Y direction. On the contrary, no spots
for qY 6= 0 nm−1 are observed when the stripes are aligned with Y because it yields an
in�nite period in the Y direction. A specular spot at qY = 0 nm−1, qZ = 0.165 nm−1

is present in both cases.
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q q

qq

Figure 6.2: Schematic of a sample with magnetic stripes aligned along X (a) or along
Y (b). (c,d) qY − qZ maps of a GISANS measurement corresponding to the geometry (a)
and (b) respectively. The horizontal line at qZ = 0.165 nm−1 is the GISANS line. Figure
adapted from [8].

6.2.2 Polarized GISANS

GISANS measurement can also be combined with polarization analysis. Since neu-
trons are fermions, they have a spin s = 1/2 and only 2 spin states are possible
(2s+ 1 = 2), either up (+) or down (-) relative to a guide �eld H0. By using a polar-
izer and a spin �ipper before the sample, as well as a spin analyzer after the sample,
4 channels can be distinguished: the Non-Spin-Flip (NSF) channels I++ and I−−,
and the Spin-Flip (SF) channels I+− and I−+, where the exponents correspond to
the spin state of the incident neutrons and the scattered neutrons, respectively. The
polarization axis P is always parallel to the guide �eld H0 which is used to maintain
the direction of the spin and the polarization of the neutron beam. It can be shown
that the NSF channels are sensitive to the nuclear �uctuations and the magnetiza-
tion M// parallel to the guide �eld H0 whereas the SF channels are sensitive to the
magnetization M⊥ perpendicular to H0. Note that the intensity (or cross section)
for unpolarized GISANS simply corresponds to I = I++ + I−− + I+− + I−+.
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Polarized GISANS measurements have been performed in A. Stellhorn's thesis. The
sample exhibited high PMA, had been saturated with an OOP �eld and then the �eld
was ramped down to 2.6 mT and used as guide �eld. By using a polarization guide
�eld perpendicular to the sample surface, the NSF channels are sensitive to the OOP
domains whereas the SF channels are sensitive to the IP components, namely the
closure domains and the Bloch walls. Note however that in reality, the polarization
was not perfectly perpendicular to the sample, making a certain angle α with the
normal to the surface. The results for the 4 channels are shown in Fig. 6.3. In the
NSF channels, the GISANS peaks are hidden due to surface and interface roughness
whereas in the SF channels, they can be clearly distinguished. Moreover, there is
an asymmetry between the intensity of the right and the left peak, termed spin-�ip
splitting (SFS). For I+− the right peak is more intense than the left, and the opposite
behavior is observed for I−+.

q q

qq
q q

Figure 6.3: qY − qZ maps of the four channels of a polarized GISANS measurement for
a sample with high PMA, exhibiting a maze pattern at nearly zero �eld after having been
saturated out-of-plane. Figure adapted from [8].
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6.2.3 Spin-�ip splitting and chirality

The spin-�ip splitting (SFS) in the polarized neutron scattering measurement is linked
to the chirality of the magnetic con�guration in the sample. In magnetism, chirality
is linked to the cross product S1 × S2 between two adjacent spins S1 and S2. The
chirality vector is de�ned as c = S1×S2

‖u12‖ where u12 is the vector between the lattice
sites 1 and 2. In the case of the helix structure, taking u12 in the propagation direc-
tion of the helix, we de�ne the helicity p = S1×S2

‖u12‖ ·
u12

‖u12‖ . The helix is right-handed
for p > 0 and left-handed for p < 0, and ‖p‖ corresponds to the frequency of the
helix. In the case of a planar Bloch wall, the structure is not exactly a helix since the
rotation angle does not vary linearly. The value of p therefore changes through the
Bloch wall, but its sign still indicates the handedness.

It is shown in [41] and [42] that an asymmetric contribution to the cross section is
induced by the helix structure if c (the chirality vector in the direction of the helix
propagation direction) has a component in the direction of the polarization axis P.
More precisely, when q ‖ c, the contribution is of the form

(q̂ ·P)(nL − nR) (6.2)

with q̂ the unit scattering vector, and nL and nR the population numbers of the left
and right-handed helices. For a sample with Bloch walls between the out-of-plane
domains, c is in the plane of the sample. On the GISANS line, q is also in the plane,
and spin-�ip splitting will be observed only if the P has a component in the plane of
the sample (i.e. the direction of propagation vector of the helix of the Bloch walls).
This was indeed the case in the measurements of Fig. 6.3, where P was not perfectly
in the Z direction, having a tilt α in the Y direction.

The spin-�ip splitting observed in Fig. 6.3 was reproduced in [8] by simulations of
GISANS measurements using the Distorted Wave Born Approximation (DWBA) [43].
The simulations were based on a simpli�ed model for the domains and domain walls
structure, with only right-handed Bloch walls. SFS was then observed only if P was
tilted in the Y direction.

In order to better understand the origin of the spin-�ip splitting, a Python code has
been written to obtain the cross section by Magnetic Small-Angle Neutron Scattering
(MSANS) for the magnetic con�gurations obtained by micromagnetic simulations.
This is discussed in the next section.
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6.3 MSANS simulations

The formalism of the DWBA based on quantum mechanical perturbation theory for
simulations of GISANS is complicated to implement. On the contrary, the cross
section for Magnetic Small-Angle Neutron Scattering (MSANS), i.e. transmission
neutron scattering, is much easier to compute since it is a combination of the Fourier
transforms (FT) of the 3 components of the magnetization. The typical MSANS
geometry corresponds to a neutron beam directed perpendicular to the sample surface
(normal incidence), with a 2-dimensional detector after the sample. The polarization
axis is either perpendicular or parallel to the neutron beam. In order to obtain
results comparable to the pro�le on the GISANS line, the MSANS cross section will
be computed with an in-plane neutron beam in the X direction, with a polarization
axis perpendicular to the beam. Performing transmission neutron scattering in the
plane of a thin �lm is not realistic. It is indeed unlikely that neutrons can transmit
through the whole width of the sample together with a small scattering angle. It is
however still interesting because it will give results comparable to those of Fig. 6.3.
The formalism used to compute the MSANS cross section is explained in Section 6.3.1.
The Python code is described in Section 6.3.2 and the results are presented in Sec-
tions 6.3.3 and 6.3.4.

6.3.1 Formalism for MSANS

The formalism used to compute the MSANS cross section is the one reviewed by
Mühlbauer et al. [44] with a guide �eld for the polarization perpendicular to the
neutron beam (H0 ⊥ ki). This formalism is adapted here to take into account a tilt
of the polarization axis.

Three systems of coordinates are de�ned in Fig. 6.4. (x, y, z) are the axes linked to
the sample, with x and y the in-plane directions and z the out-of-plane direction.
(X, Y, Z) are axes parallel to (x, y, z), but where X is the direction of the neutron
beam, which can be along any of the 3 principal axis of the sample. In order to enable
a tilt of the polarization axis with respect to Z, a third system of axes (x′, y′, z′) is
de�ned by a rotation of an angle α around the X axis.

The Fourier transform M̃(qX , qY , qZ) of the magnetization M(X, Y, Z) (from which
the mean value has been subtracted) is computed in the axes (X, Y, Z) and de�ned
as

M̃(qX , qY , qZ) =
1

(2π)3/2

∫ ∫ ∫
M(X, Y, Z) exp [−i(qXX + qY Y + qZZ)] dXdY dZ.

(6.3)



CHAPTER 6. CHIRALITY AND LINK TO NEUTRON SCATTERING 66

1

2

3

Figure 6.4: Geometry for the MSANS formalism. (x, y, z) are the principal axes of the
sample. The neutron beam (doted lines) is either in the x (1), y (2) or the z-direction (3).
(X,Y, Z) are parallel to (x, y, z) but with X aligned with the neutron beam. (x′, y′, z′) are
obtained by a rotation of an angle α about X. The polarization axis is along z′. The three
rectangles represent the 2D detectors.

The components of M in the (x′, y′, z′) axes are obtained from the components in the
(X, Y, Z) axes with

Mx′ = MX ,

My′ = MY cosα +MZ sinα,

Mz′ = −MY sinα +MZ cosα (6.4)

and the same holds for the components of the Fourier transform M̃.

In small-angle scattering, the component of q along the incident neutron beam is
neglected, i.e. qX = qx′ = 0. The scattering vector is then de�ned by its norm q and
the angle θ it makes with the z′ axis, such that

q =



qx′

qy′

qz′


 = q




0

sin θ

cos θ


 . (6.5)

The cross section depends only on the component of the magnetization that is per-
pendicular to q. It is therefore useful to de�ne the magnetic-interaction vector [44]

Q = q̂
[
q̂ · M̃(q)

]
− M̃(q) =



Qx′

Qy′

Qz′


 =




−M̃x′

−M̃y′ cos2 θ + M̃z′ sin θ cos θ

M̃y′ sin θ cos θ − M̃z′ sin
2 θ


 . (6.6)
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Neglecting the nuclear scattering, the non-spin-�ip (NSF) cross sections dΣ++

dΩ
and

dΣ−−

dΩ
are given by [44]

dΣ±±

dΩ
∼ |Qz′ |2 (6.7)

whereas the spin-�ip (SF) cross section dΣ+−

dΩ
and dΣ−+

dΩ
are

dΣ±∓

dΩ
∼ |Qx′ |2 + |Qy′|2 ± 2=

{
Qx′Q

∗
y′

}
(6.8)

where ={·} denotes the imaginary part and (·)∗ the complex conjugate. One can see
that the component Qz′ gives rise to NSF scattering whereas the components Qx′ and
Qy′ give SF scattering.

6.3.2 Python code for MSANS

The Python code msans.py computes the MSANS cross section for the con�gurations
obtained by micromagnetic simulations with MuMax3. It is available on the follow-
ing link by downloading the entire "msans" folder. The cross section for di�erent
simulations and di�erent parameters can then be computed by changing the values
in the "User choices" part.

The beam axis can be chosen to be in either the x, y or z direction. The α angle
can also be varied. The polarization is along the Z axis for α = 0, along the Y axis
for α = π/2 and tilted for any intermediate value. For the computation of the 3D
Fourier transforms, it can be chosen, for each direction x, y and z, to either consider a
periodic signal (which corresponds to repeating the simulation box in that direction),
or to consider a signal on a compact domain given by the simulation box. The sec-
ond option is implemented using zero-padding. The periodic condition seems a good
choice for the x and y directions, whereas the compact domain seems appropriate for
the z direction (�nite thickness). Note however that performing MSANS in the plane
of a thin �lm is not realistic. The results obtained in this case will therefore only be a
mean to understand the GISANS measurements, and the two options for the Fourier
transforms in the z direction must be tested.

Finally, it can be chosen to compute the cross sections for the 3-dimensional sample
(in the qY − qZ plane) or for a z-slice of the sample (as a function of qY only). The
second option enables one to select one slice along the thickness of the sample and to
consider that the con�guration is independent of z in order to ignore the e�ect of the
�uctuations in that direction.

https://iffcloud.fz-juelich.de/s/eyHJ72ta7w9Bbzw
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6.3.3 Results for a stripe pattern

Let us �rst analyze the results in the case of a simple stripe pattern as shown in
Fig. 6.5. This pattern is obtained for a sample with Q = 2.17 and d = 54 nm
during the in-plane reversal at remanence (µ0Hext = 0 T). The stripes are nearly
perfect in this case, contrary to the simulations of Chapter 5, because only 3 holes
are used as defects, without any anisotropy distribution. The pattern has a period
P = 2w ' 71.4 nm in the x direction (where w is the domain width). As can be seen
in Fig. 6.5b, the magnetization in all the Bloch walls is in the same direction. This
results in a succession of left and right-handed walls, with the same amount of each.
Since adjacent walls have always opposite chiralities, they are said to be heterochiral
and the average chirality is exactly zero.
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Figure 6.5: Top view at mid-thickness of a sample with Q = 2.17 and d = 54 nm during
the in-plane reversal, at remanence. The only defects are three holes of 10 nm in diameter.
(a) OOP component mz with a gray color scale revealing the domains. (b) IP component
my with a blue-white-red color scale revealing the domain walls (DWs). The direction of the
magnetization in the domains and the walls is indicated in black. R, L: right and left-handed
DWs.

The MSANS cross section for a neutron beam in the z direction with α = 0 (i.e.
P ‖ Ẑ = −ŷ) are shown in Fig. 6.6. The NSF channel is only sensitive to the
magnetization with a component parallel to the polarization. It corresponds to the
magnetization into the plane of the sample in this case. Since the domain walls are
all in the same direction, the my component has a period P/2 = w ' 35.7 nm in
the direction perpendicular to the polarization P (qY ). This gives rise to two peaks
at qY = ±2π/35.7 ' 0.18 nm−1 for the NSF channel. On the contrary, the SF
channels are sensitive to the magnetization perpendicular to the polarization. The
OOP domains, with a period P = 2w ' 71.4 nm in the qY direction, give rise to
peaks at qY = ±2π/71.4 ' 0.09 nm−1.
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(a) (b) (c)

Figure 6.6: MSANS cross sections for the sample of Fig. 6.5 with a stripe pattern for a
beam in the z direction with α = 0. (a) dΣ±±

dΩ , (b) dΣ+−

dΩ , (c) dΣ−+

dΩ .

The cross sections for a neutron beam in the x direction with α = 0 (i.e. P ‖ Ẑ = ẑ)
are shown in Fig. 6.7, where the pro�le is assumed to be repeated periodically in the
z direction. The NSF channel is now sensitive to the OOP domains. However, since
the stripes are aligned with the Y direction, there is no periodicity in that direction.
The intensity for the NSF channel is therefore nearly zero, with remaining peaks at
qY = ±2π/500 ' ±0.013 nm−1 resulting from the periodicity of the simulation box.
The SF channels, sensitive to the in-plane magnetization, exhibit no peaks in the qY
direction. The periodic repetition of the pro�le along the z direction gives rise to
peaks at qZ = ±2π/d ' ±0.12 nm−1. This is however not physical since in reality,
the pro�le is not repeated along z.

(a) (b) (c)

Figure 6.7: MSANS cross sections for the sample of Fig. 6.5 with a stripe pattern for a
beam in the x direction with α = 0. (a) dΣ±±

dΩ , (b) dΣ+−

dΩ , (c) dΣ−+

dΩ .

In order to be sensitive to the periodicity of the stripes, it is needed to align the
beam in the y direction. The results with α = 0 (i.e. P ‖ Ẑ = ẑ) are shown
in Fig. 6.8, where the periodic and compact domain options for the z direction are
compared. In both cases, the NSF channels, sensitive to the OOP domains, have
peaks at qY = ±2π/71.4 ' ±0.09 nm−1. The SF channels, along the line qZ = 0

nm−1, are sensitive to my and therefore exhibit peaks at qY = ±2π/35.7 ' ±0.18
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nm−1. For qY 6= 0 and qZ 6= 0, the SF channels are sensitive are also sensitive to mx

and mz. Additional stripes are therefore visible at qY = ±2π/71.4 ' ±0.09 nm−1.
By comparing the results for a periodic pro�le along z and a compact domain along
z, one can see that the zero-padding increases the qZ resolution. The peaks along
qZ are also higher and at lower qZ values. This can be explained by comparing the
Fourier transforms for a signal repeated periodically and for the signal on a compact
domain. This is illustrated for mx along the thickness for a domain wall in Fig. 6.9.

(a) z-periodic (b) z-periodic (c) z-periodic

(d) z-compact (e) z-compact (f) z-compact

Figure 6.8: MSANS cross sections for the sample of Fig. 6.5 with a stripe pattern for
a beam in the y direction with α = 0. Top row: pro�le repeated along z. Bottom row:
compact domain along z (zero-padding). (a,d) dΣ±±

dΩ , (b,e) dΣ+−

dΩ , (c,f) dΣ−+

dΩ .

Let us now consider the e�ect of a tilt of the polarization axis. The results with
α = 15◦ are shown in Fig. 6.10. By tilting the polarization in the Y direction, the
NSF cross sections barely change. On the contrary, the SF channels become now
sensitive to the OOP component mz, which has a period of 71.4 nm, giving rise to
peaks at qY ' ±0.09 nm−1. Finally, the peaks in the case of a z-compact domain are
on a line tilted by an angle α w.r.t. the qZ = 0 line.
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Figure 6.9: mx(z) pro�le along the thickness for a domain wall (a) and its Fourier transform
m̃x(qz) (b) when the signal is repeated periodically or when the domain is compact.

(a) z-periodic (b) z-periodic (c) z-periodic

(d) z-compact (e) z-compact (f) z-compact

Figure 6.10: MSANS cross sections for the sample of Fig. 6.5 with a stripe pattern for
a beam in the y direction with α = 15◦. Top row: pro�le repeated along z. Bottom row:
compact domain along z (zero-padding). (a,d) dΣ±±

dΩ , (b,e) dΣ+−

dΩ , (c,f) dΣ−+

dΩ .
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6.3.4 Results for a maze pattern

Let us now analyze the results in the case of the maze pattern obtained in Chapter 5
for the sample with high PMA (Q = 2.0 and d = 44 nm) during the OOP reversal of
Fig. 5.19. The pattern at remanence is given in Fig. 6.11. Since 3 reverse domains
have nucleated from the 3 holes, and since periodic boundary conditions are applied
in the x and y directions, the period is actually �xed by these simulation parameters
at Px = Py = 2w = 500/3 ' 166.7 nm. When the reverse domains nucleate around
each hole, the Bloch component of the wall forms a loop either in the clockwise (CW)
or the counterclockwise (CCW) direction. This property is conserved during the
growth of the reversal domains and determines the chirality (left or right-handed) of
the domain walls (DWs) for each reverse domain. Since only symmetric energy terms
have been included in the simulations so far, it is expected to have equal probabilities
of 1/2 for CW and CCW reverse domains. In the present simulation, as can be seen in
Fig. 6.11b, two reverse domains are counterclockwise and the third one is clockwise.
This implies that two domain walls are right-handed and the third one is left-handed.
The population of left and right-handed domain walls being unequal, it is expected
to observe spin-�ip splitting for this simulation. Note that since only three reverse
domains have nucleated, it is impossible to have the same amount of CW and CCW
reverse domains.
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Figure 6.11: Top view at mid-thickness of the sample with high PMA of Chapter 5 during
the out-of-plane reversal, at remanence. (a) OOP component mz with a gray color scale
revealing the domains. (b) IP component mx with a blue-white-red color scale revealing the
domain walls (DWs). The direction of the magnetization in the domains and the walls is
indicated in black. R, L: right and left-handed DWs.

The MSANS cross section for a neutron beam in the z direction with α = 0 (i.e.
P ‖ Ẑ = −ŷ) are shown in Fig. 6.12. The my component having roughly a period of
250 nm gives rise to peaks at qY = ±2π/250 ' ±0.025 nm−1 for the NSF channels.
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The mz component having a period of 166.7 nm in the in-plane directions gives rise
to a circle of radius 2π/166.7 ' 0.038 nm−1 for the SF channels. Since the pattern is
not perfectly isotropic, the circle has some peaks of higher intensities indicating the
preferred directions.

(a) (b) (c)

Figure 6.12: MSANS cross sections for the sample of Fig. 6.11 with a maze pattern for a
beam in the z direction with α = 0. (a) dΣ±±

dΩ , (b) dΣ+−

dΩ , (c) dΣ−+

dΩ .

The cross sections for a neutron beam in the x direction with α = 0 (i.e. P ‖ Ẑ = ẑ)
are shown in Fig. 6.13, where the periodic and compact domain options for the z
direction are compared. The OOP domains give rise to peaks at qY = ±2π/166.7 '
±0.038 nm−1 for the NSF channels. For the SF channels, the pattern along the z
direction of the in-plane components gives rise to peaks for qZ 6= 0. There is an
asymmetry in the qZ direction, but not in the qY direction.
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(a) z-periodic (b) z-periodic (c) z-periodic

(d) z-compact (e) z-compact (f) z-compact

Figure 6.13: MSANS cross sections for the sample of Fig. 6.11 with a maze pattern for
a beam in the x direction with α = 0. Top row: pro�le repeated along z. Bottom row:
compact domain along z (zero-padding). (a,d) dΣ±±

dΩ , (b,e) dΣ+−

dΩ , (c,f) dΣ−+

dΩ .

In order to be sensitive to the chirality of the Bloch walls, it is needed to tilt the
polarization in the Y direction. The results with α = 15◦ are shown in Fig. 6.14. As
expected, an asymmetry between the peaks in the SF is observed whereas the peaks
in the NSF are still symmetric. The asymmetry is in opposite directions for the "+-"
and the "-+" channels. The same behavior is observed when considering a z-compact
domain, but with the peaks on a line tilted by an angle α.



CHAPTER 6. CHIRALITY AND LINK TO NEUTRON SCATTERING 75

(a) z-periodic (b) z-periodic (c) z-periodic

(d) z-compact (e) z-compact (f) z-compact

Figure 6.14: MSANS cross sections for the sample of Fig. 6.11 with a maze pattern for
a beam in the x direction with α = 15◦. Top row: pro�le repeated along z. Bottom row:
compact domain along z (zero-padding). (a,d) dΣ±±

dΩ , (b,e) dΣ+−

dΩ , (c,f) dΣ−+

dΩ .

The asymmetry between the two peaks in the SF channels can be characterized by

C =
I1 − I2

I1 + I2

(6.9)

where I1 and I2 are the intensities of the two peaks. In Fig. 6.15, the asymmetry
is given as a function of the tilt α of the polarization axis. One can see that for
α = 0, there is no asymmetry. When α increases, C increases until reaches a maxi-
mum before converging to a smaller value at α = 90◦. This can be understood with
Fig. 6.16, where the symmetric and antisymmetric parts of the SF cross section along
the qZ = 0 line are shown for 3 di�erent values of α. For α = 0, the antisymmetric
part is zero. When α increases, the sensitivity to the chirality increases giving rise
to an antisymmetric part. However, the symmetric part becomes more and more
sensitive to the OOP component mz. The amplitude of the symmetric part increases
faster than the antisymmetric part, resulting in a maximum of the asymmetry for the
total cross section for a certain value of α. Note that the maximum value of C and the
angle α at that maximum depend on the exact pattern and the direction of the beam.
The maximum C increases when the imbalance between left and right-handed DWs
increases and when the number of domain walls aligned with the beam axis increases.
Di�erent patterns were obtained when the position of the three holes was changed.
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For patterns where all the DWs have the same handedness, and where a large amount
of DWs were aligned with the beam axis, asymmetries as high as C = 0.98 could be
observed.

In the next two sections, two possible explanations for the asymmetry observed in
the measurements of Fig. 6.3 are investigated.
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Figure 6.15: Asymmetry C = (I1 − I2)/(I1 + I2) between the peaks in the SF channels
as a function of the tilt α of the polarization axis. Example for a neutron beam in the x
direction for the sample of Fig. 6.11 with a maze pattern.
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Figure 6.16: Symmetric part |Qx′ |2 + |Qy′ |2 and antisymmetric part =
{
Qx′Q

∗
y′

}
of the

cross section dΣ±∓

dΩ for the SF channels, for three values of the tilt α of the polarization
axis. Example for a neutron beam in the x direction for the sample of Fig. 6.11 with a maze
pattern.
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6.4 Hypothesis 1: �uctuation of a non-chiral system

The �rst hypothesis to explain the asymmetry is a statistic �uctuation of a non-chiral
system due to �nite sampling. This hypothesis is supported by the notion of coher-
ence volume. The coherence volume describes the maximum size of a structure that
is observable by neutron scattering, as a consequence of the imperfect collimation and
monochromatization of the beam. The collimation of the beam gives rise to coherence
lengths in the two transverse directions, after which the waves are completely out of
phase. The imperfect monochromatization gives rise to a spread of the wavelength,
de�ning a longitudinal coherence length. Those three coherence lengths de�ne a co-
herence volume from which the waves are scattered coherently and can interfere. The
observed cross section is therefore not the one obtained from the whole sample con-
sidering an incoming plane wave. The resulting cross section is an independent sum
of all the cross sections obtained from all the coherence volumes of the sample. This
is called incoherent superposition.

If we consider a coherence volume with a relatively small number of reverse domains,
the probability that the number of right-handed and left-handed walls are di�erent is
high. This was obvious in the previous section, where it was impossible to have the
same amount of left and right-handed walls since there were only 3 reverse domains.
This would give rise to spin-�ip splitting for the scattering of one coherence volume.
Incoherent superposition of the intensities of all the coherence volumes would decrease
the asymmetry, but still a non-zero asymmetry could remain, even though the system
is perfectly non-chiral with equal probabilities for left and right-handed walls.

To investigate this hypothesis, let us consider that the sample is composed of N
independent coherence volumes. We suppose that for each coherence volume, the
asymmetries can take the values ±C0 with equal probability. Approximating the
incoherent superposition from all the possible coherence volumes by a sum on the N
independent coherence volumes, the observed value of C is given by

C = C0
1

N

N∑

n=1

εn (6.10)

where εn are independent random numbers taking values +1 or −1 with equal prob-
ability 1/2. The average value of C is zero and its variance is

〈
C2
〉

= C2
0/N. (6.11)
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For N large enough, one can rely on the central-limit theorem and assume that
C
√
N/C0 follows a normal distribution with zero mean and unit variance. The �uc-

tuations of C therefore satisfy

Prob

(
C
√
N

C0

∈ [−x, x]

)
= erf

(
x√
2

)
(6.12)

⇐⇒ Prob

(
|C|
√
N

C0

> x

)
= 1− erf

(
x√
2

)
(6.13)

where erf is the error function.

The asymmetry in the measurements of Fig. 6.3 is C = 0.076. The sample size
is 1 cm2 and the neutron beam covers the whole sample. In GISANS, the typical
resolution is such that 2π/qX ranges from 1 to 20 µm and 2π/qY ranges from 1 to
300 nm. Neglecting the e�ect of the coherence along the thickness, the ratio N of
irradiated sample volume to one coherence volume is approximated by

N ' 1cm2

20µm× 300nm
=

108µm2

6µm2
' 107. (6.14)

The number of coherence volumes in the sample is extremely large and the probability
to observe the value C = 0.076 simply due to statistical �uctuations is extremely
small. Even with C0 = 1.0, the probability to obtain a value of C higher than 0.076
is much smaller than 10−16. Even with N = 104, the probability is 10−14. If the
sample was made of N = 1000, the probability is 0.16 and this hypothesis could be
considered. But still, since the coherence volume of 6 µm2 is already large, the value
of C0 is expected to be much smaller than 1. And since N ' 107, the hypothesis
that the spin-�ip splitting results from a �uctuation of a non-chiral system, within
the assumptions stated in this section, can be rejected.

6.5 Hypothesis 2: chiral interaction

A second hypothesis to explain the spin-�ip splitting for a macroscopic sample is
that there exists a chiral interaction that favors one handedness for the domain walls
over the other. The Dzyaloshinskii-Moriya interaction (DMI) [12, 13] introduced
in Chapter 2 with Eq. 2.15 is an example of antisymmetric interaction that favors
magnetization rotations with a �xed chirality. This interaction originates from the
combination of large spin-orbit coupling and a lack of symmetry. It exists in bulk
materials lacking space inversion symmetry or at the interface between a magnetic
layer and a high spin-orbit coupling adjacent layer (typically a heavy metal) where
the symmetry breaking originates from the interface.
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Interfacially-induced DMI for a stack of magnetic layers of thickness tFM separated
by non-magnetic layers of thickness tNM has the form [45]

EDMI,ind =
∑

i

∫ ∫
dxdy

[
Dx
i · (mi × ∂xmi) + Dy

i · (mi × ∂ymi)

+
1

tFM + tNM

Dz
i · (mi ×mi+1)

]
(6.15)

where i is the layer index in the z direction and Dx,y,z
i are the DMI vectors. The

�rst two terms of Eq. 6.15 describe intralayer coupling (i.e. inside a magnetic layer)
whereas the third term describes interlayer coupling (i.e. between two magnetic
layers). Both intralayer and interlayer coupling can create a favored chirality of the
Bloch walls, as illustrated in Fig. 6.17. Considering a wall parallel to the yz-plane,
intralayer coupling with Dx

i ‖ x̂ favors one chirality for the Bloch wall. For the
interlayer coupling, the e�ect of the demagnetizing �eld that induces Néel closure
domains on the top and the bottom must be taken into account. The orientation of
the magnetization in the Néel caps being �xed by the demagnetizing �eld, the third
term with Dz

i ‖ ẑ favors one chirality in the z direction. Consequently, one chirality
for the Bloch wall in the x direction is also favored. Pollard et al. [45] showed that
interlayer coupling for a stack of Co and Pd layers was the origin for a preferred Bloch
wall chirality. The layers of Co and Pd could be compared to the layer of Fe and Pd
of FePd in the L10 phase. However, the layers in [45] are several atoms thick, whereas
the layers in the L10 phase are monoatomic.

Figure 6.17: Illustration on how interfacially-induced DMI can favor one chirality for the
Bloch wall. For intralayer coupling, if Dx lies in the x-direction, the handedness indicated
with the curved arrow is favored. For interlayer coupling, if Dz lies in the z-direction,
the rotation direction indicated by the curved arrow is favored. Since the magnetization
direction in the Néel caps is preferentially in the �ux-closure state, the preferred rotation
direction along z induces a preferred handedness for the Bloch wall (in the x-direction).
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Interfacially-induced DMI is implemented in MuMax3 [16] with an energy density of
the form [46]

eDMI,ind,MuMax = Dind [mz(∇ ·m)− (m · ∇)mz]

= Dind

[
mz

∂mx

∂x
+mz

∂my

∂y
−mx

∂mz

∂x
−my

∂mz

∂y

]
. (6.16)

This expression contains only part of the terms of Eq. 6.15 and is equal to zero for a
Bloch wall in the yz-plane. This expression is therefore unlikely to favor the chirality
of the Bloch walls in our case.

Bulk DMI is implemented in MuMax3 under the form

eDMI,bulk,MuMax = Dbulk [m · (∇×m)] . (6.17)

One can show that −m ·(∇×m) corresponds to the helicity p (de�ned in Section 6.2)
in the continuous case. Bulk DMI can therefore favor one chirality over another de-
pending on the sign of Dbulk.

FePd in the L10 possesses inversion symmetry. Therefore it should not exhibit bulk
DMI. Nevertheless, let us consider bulk DMI in order to see the e�ect of an antisym-
metric interaction on the chirality of the domain walls. The results when bulk DMI
is added to the sample of Fig. 6.11 are shown in Fig. 6.18. While typical values of
Dbulk are of the order of 0.1 mJ/m2 [47], one can see in Fig. 6.18 that the chirality of
the Bloch walls can be controlled with interactions as weak as Dbulk = 0.05 mJ/m2

(or even weaker), while the domain pattern remains unchanged. Without DMI, we
observe left and right-handed DWs. For Dbulk = +0.05 mJ/m2, all the DWs are
right-handed whereas for Dbulk = −0.05 mJ/m2, they are all left-handed. The cor-
responding results for the MSANS SF channels are also given in Fig. 6.18. The
asymmetry is indeed increased when all the walls have the same chirality, and is in
opposite directions for left and right-handed chiralities. This shows that a weak chiral
interaction can favor one chirality for the DWs, without a�ecting the domain pat-
tern. This results in an unbalance between the left and right-handed DWs and could
explain the spin-�ip splitting observe for macroscopic samples.
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(b) Dbulk = 0 mJ/m2
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(c) Dbulk = +0.05 mJ/m2
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(f) Dbulk = +0.05 mJ/m2

Figure 6.18: (a,b,c) Top view at mid-thickness of the sample with high PMA during the
out-of-plane reversal, at remanence, for several values of the bulk DMI parameter Dbulk. IP
component mx with a blue-white-red color scale revealing the domain walls (DWs). The
direction of the magnetization in the domains and the walls is indicated in black. R, L: right
and left-handed DWs. (d,e,f) SF cross section dΣ+−

dΩ for a neutron beam in the x direction
with α = 15◦ corresponding to the samples of (a,b,c).

6.6 Conclusion

Neutron scattering with polarization analysis is a useful measurement technique to
obtain information on the magnetic con�guration in a sample. In GISANS, the neu-
tron beam impinges the surface at a very small angle close to total re�ection. When
the polarization axis is perpendicular to the sample surface, the non-spin �ip (NSF)
channels are sensitive to the out-of-plane component of the magnetization. On the
contrary, the spin-�ip (SF) channels are sensitive to the component of the magne-
tization perpendicular to the polarization axis, which corresponding to the in-plane
component. In experimental measurements performed on an FePd thin �lm with high
PMA and exhibiting a maze pattern, an asymmetry between the two peaks in the
SF channel is observed, called spin-�ip splitting (SFS), is observed when the polar-
ization is tilted. This indicates that the average chirality of the Bloch walls is nonzero.
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In Magnetic Small-Angle Neutron Scattering (MSANS), the neutron beam is usually
directed perpendicular to the sample surface. The formalism to compute the cross
sections in MSANS is much simpler than for GISANS, since it is a combination of
the Fourier transforms of the 3 components of the magnetization. This has been
implemented in a Python code to compute the cross sections for the con�gurations
obtained by micromagnetic simulations. The results for a stripe pattern and a maze
pattern are analyzed, with a neutron beam at normal incidence, as well as in the
plane of the sample. The latter is not feasible in practice, since it is unlikely that
the neutrons can transmit through the whole width of the sample. Moreover, the
assumption of a small scattering angle would not be valid in this case. Nevertheless,
it remains interesting because spin-�ip splitting is obtained in this case only when the
average chirality is nonzero, meaning that there is an imbalance between the popula-
tions of left and right-handed walls. This supports the idea that the spin-�ip splitting
observed in the GISANS measurements is due to a nonzero chirality.

Finally, two hypotheses to explain the observed SFS are investigated. The �rst one,
namely that it is a consequence of statistical �uctuations of an inherently non-chiral
system, can be rejected because the neutron beam covers a very large area compared
to the domains. The second one, namely that a weak chiral interaction can favor one
handedness for the Bloch walls, is plausible. A weak antisymmetric interaction like the
Dzyaloshinskii-Moriya interaction (DMI) can indeed create an unbalance between the
left and right-handed walls, without perturbing the domain pattern. This is however
not a proof that DMI exists in FePd thin �lms. Even if such a chiral interaction could
be induced by the growth methods, by interfaces or by the defects, other physical
sources of chirality in the system should be investigated. These questions about the
physical origin of chirality suggest interesting research for the future.



Chapter 7

Conclusion and outlook

7.1 Conclusions

The emerging �eld of spintronics o�ers the prospect of lower power consumption
and higher performances for future technologies. Extensive research is therefore car-
ried out on magnetic materials. Materials with perpendicular magnetic anisotropy
(PMA), like FePd, are used in spintronic devices for memory and logic applications.
Research on this type of materials includes the study of the magnetic con�guration
in thin �lms, how it can be controlled and how it switches. Research must be carried
out experimentally, in order to observe and understand how those materials behave in
real life. In parallel, micromagnetic simulations enable one to support experimental
results and to understand the physics underlying those results. For these reasons,
the objective of this thesis was to study the domain-wall structure and the reversal
mechanisms in FePd thin �lms, by means of micromagnetic simulations. The simula-
tions performed in this thesis also provide support and explanations to experimental
results obtained in Annika Stellhorn's PhD thesis [8]. The three main goals of this
thesis are reminded below, together with a summary of the important conclusions.

Goal 1: study of the domain-wall structure.

Below a critical thickness dc, the equilibrium magnetization con�guration lies in the
plane of the �lm due to the magnetostatic interaction between the bottom and top
surfaces. dc is a function of the anisotropy quality factor Q = Ku/(

1
2
µ0M

2
s ) where Ku

is the anisotropy constant and Ms the saturation magnetization. The critical thick-
ness diverges to in�nity when Q tends to zero. When Q increases, dc decreases and
is zero for high anisotropies (Q > 1).

For thicknesses above dc, out-of-plane magnetic domains are formed, with alternating
up and down magnetization, separated by domain walls (DWs). The DWs are of

83
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Bloch type in the middle of the thickness and Néel closure domains are present at
the top and bottom surfaces. The width of the DWs is nearly independent of the
thickness of the �lm, but decreases when the strength of the anisotropy increases.

Goal 2: understand the hysteresis and reversal mechanisms.

The reversal mechanisms for an in-plane (IP) and an out-of-plane (OOP) applied �eld
have been studied.

For an IP �eld, starting from saturation, a stripe pattern with alternating up and
down magnetization is gradually formed when the �eld decreases. All the Bloch walls
are in the direction of the previous saturated state, giving rise to a remanent magne-
tization when the applied �eld is zero. Increasing the �eld in the opposite direction,
the Bloch walls switch and a saturated state is gradually obtained. This results in
some hysteresis around zero applied �eld and no hysteresis at higher �elds where the
magnetization changes gradually. The smaller the degree of PMA, the steeper the
slope, since in-plane magnetization is energetically favorable.

For an OOP �eld, starting from saturation, cylindrical domains in the reverse di-
rection nucleate when the �eld decreases. They then grow until they form a maze
pattern. When the �eld increases in the opposite direction, the domains in the previ-
ous saturated direction shrink, until they are separated into cylindrical domains and
�nally disappear. This results in some hysteresis at high �elds, and less hysteresis
around zero applied �eld.

Interestingly, for both the IP and OOP cases, the hysteresis curve depends critically
on the defects in the sample. Defects are central to enable the nucleation of domains
and must therefore be included in the simulations.

Goal 3: interpret neutron scattering measurements in terms of chirality of

the domain walls.

Neutron scattering with polarization analysis is a useful measurement technique to
obtain information on the domain pattern and even the structure of the domain
walls. Grazing-Incidence Small-Angle Neutron Scattering (GISANS) measurements
have been performed on a real sample in [8], during the out-of-plane reversal. When
the polarization axis in tilted in the in-plane direction, an asymmetry is observed
between the peaks in the spin-�ip (SF) channels, termed spin-�ip splitting (SFS).
This suggests that the population numbers of left-handed and right-handed domain
walls are unequal, leading to a nonzero average chirality.
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A Python code has been written to compute the result of Magnetic Small-Angle
Neutron Scattering (MSANS) for the con�gurations obtained by micromagnetic sim-
ulations. Spin-�ip splitting is also observed when there exists a nonzero average
chirality, con�rming the explanation for the real measurements.

The hypothesis that the nonzero average chirality is a result of statistical �uctuations
of an inherently non-chiral system can be rejected due to the large number of domain
walls in a sample. This suggests that there exists a physical source of chirality in
the system. An example could be a chiral interaction like the Dzyaloshinkii-Moriya
interaction (DMI). By changing the sign of this interaction, the handedness of the
domain walls can be changed, without a�ecting the domain pattern.

7.2 Outlook

Future possible works include the following topics.

A more extensive study of the types of defects present in FePd thin �lms as a function
of the growth method and the e�ect on the reversal mechanisms should be carried
out. Defects are indeed central in the reversal mechanisms, and di�erent types of
defects may allow one to tune the material's magnetic behavior.

Software exists to simulate the cross sections for GISANS measurements using di�er-
ent models for the magnetic con�guration as input [48, 43, 49]. One could implement
the option to compute the cross sections directly for the con�gurations obtained by
micromagnetic simulations, using the Distorted Wave Born Approximation (DWBA).
This would provide a direct comparison between the results obtained experimentally
and by simulation.

The physical origin of the chirality observed in FePd thin �lms should be investigated.
It could be induced by a special type of defect, by the growth method, or by coupling
e�ects with adjacent layers.





Appendix A

CGS and SI units

In magnetism, two main systems of units are currently used: the Centimeter-Gram-
Second System of Units (CGS) and the International System of Units (SI) (meter-
kg-second-Ampère). The �rst one is used a lot in textbooks and scienti�c litera-
ture because it simpli�es the writing of the equations. However, only the SI is used
throughout this thesis for two reasons. First, because it is an international convention,
also used in all the other branches of physics. Second, since the magnetic permeability
of vacuum µ0 is much small than one in the SI (on the contrary to the CGS in which
it is one), the B and H have very di�erent values and units, preventing any confusion
between those di�erent �elds.

A conversion table between the CGS and SI units for the physical quantities relevant
in this thesis is given in Table A.1.

Physical quantity Symbol CGS SI

or constant

Magnetic �eld H 1 Oersted 103/4π A m−1

Magnetic �ux density B 1 Gauss 10−4 T
Magnetization M 1 emu cm−3 103 A m−1

Magnetic moment µ 1 emu 10−3 A m2

Exchange constant A 1 erg cm−1 10−5 J m−1

Anisotropy constant Ku 1 erg cm−3 10−1 J m−3

Length d 1 cm 10−2 m
Energy per unit volume e 1 erg cm−3 10−1 J m−3

Vacuum permeability µ0 1 [-] 4π 10−7 T m A−1

Table A.1: Conversion table between the CGS and SI units for the quantities relevant in
this thesis. Inspired from [26].
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