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1. Motivation 

 Ferromagnetism and conventional superconductivity have long been considered 

as antagonist phenomena. As a matter of fact, the quantum mechanical exchange 

interaction leads to the tendency to parallel alignment of the electron spins in 

neighbouring atoms, whereas electron-phonon interaction in conventional 

superconductors leads to the tendency of antiparallel alignment of electron spins in 

Cooper pairs. 

 Master Thesis and the experiments have been carried out in Germany, Jülich Center 

for Neutron Science with a joint project of the Georgian-German scientific bridge. The 

research has been conducted under the solid state physics such important issues, 

such as Magnetism and Superconductivity. For the implementation of the project, we 

produced and developed ferromagnetic and superconducting thin films by using of 

molecular beam epitaxial machine. The films are periodically measured by X-ray 

refflectivity and diffraction machines, magnetic property measurement system and 

physical property measurement system in order to reach the ultimate goal of sample 

preparation. It should be noted that the sample was made in good order and 

successfully implemented all the planned experiments. The analysis of the data 

obtained and the results of the project to the beginning of the questions. This study is 

an important role in the development of such a big event like Superconductivity. 

 

 

2. Theory  

 

2.1 Magnetism 

2.1.1 Basics to Magnetism  



 Magnetic fields are either caused by currents, or by the intrinsic magnetic moment of 

elementary particles. The simplest case of a charge distribution is a circular closed 

current loop. If there is a current 𝑰 around an elementary oriented loop of area |𝒅𝑺| 

then magnetic moment 𝑑𝜇 is given by: 

 𝑑𝜇 = 𝐼 ∙ 𝒅𝑺                                      (1) 

 

Where 𝑰 is the electrical current and 𝒅𝑺 is equal to the area of the loop and it is oriented 

area enclosed by the current. The unit of magnetic moment is Am2. The direction of 

the vector is normal to the loop and in a sense determined by the direction of the 

current around the elementary loop. The dipolar field it causes is described by the 

following equation: 

 

 𝑩(𝑟) = 
𝜇0

4𝜋
 (

3(𝑟 ∙ 𝑚)𝑟

𝑟5 −
𝑚

𝑟3) (2) 

 

Where, 𝑟 is the position vector in relation to the dipole. The energy of a magnetic dipole 

in a magnetic field 𝑩 is: 

 

𝐸 =  −𝑚 ∙ 𝑩 

 

This shows, that a dipole will always align parallel to an external field 𝑩. 

 Today, it is known that every fundamental particle has an intrinsic magnetic moment, 

which is tightly connected to its intrinsic angular momentum called spin. Therefore, all 

matter is interacting with magnetic fields in some way. 

 In atoms the magnetic moment associated with an orbiting electron lies along the 

same direction as the angular momentum of that electron and is proportional to it. 

Respectively, if there is a case then a single point charge is moving on a circular orbit, 

equation 1 can be reformulated by: 

 

 𝑚 =
𝑞

2𝑚
∙ 𝑳 (3) 

 

Where 𝑞 is the charge and 𝑚 is the mass of the particle and 𝑳 is the angular momentum 

of the particle. All the charges which we will considering are associated with particles 



that have mass. As it turns out, equation 3 does not hold in quantum mechanics and 

has to be generalized. Since both the electrical charge and the angular momentum 

are quantized, for an electron the formula becomes: 

 

 
𝑚 = −𝑔 ∙ 𝜇Β

𝐿

ℏ
 

(4) 

 

Where 𝜇Β is Bohr magneton, defined by 𝜇Β = 
𝑒ℏ

2𝑚𝑒
 

 

Which combines the particle properties from the equation 3, as they are fixed for an 

electron. This is a convenient unit for describing the size of atomic magnetic moments 

and takes the value 9.274 × 10−24 Am2. Note that sign of the magnetic moment in 

equation 4 is negative. Because of the negative charge of the electron, its magnetic 

moment is antiparallel to its angular momentum. The new parameter 𝑔 is 

dimensionless and simply called g-factor. For the orbital movement it is equal to 1, but 

for the spin it roughly equal 2. For other kinds of particles, e.g. nucleons, 𝜇B has to be 

replaced with their respective magnetons. Consequently it only plays a small role in 

the magnetism of solid objects and the magnetic moment of electron is mostly 

responsible for the magnetic moment of an atom.  

 

 

2.1.2 Magnetization and Field  

 A magnetic solid consists of a large number of atoms with magnetic moments. The 

magnetization 𝑴 is defined as the magnetic moment per unit volume. Usually this 

vector quantity is considered in the ,,continuum approximation”, i.e. on a length-scale 

large enough so that one does not see the graininess due to the individual atomic 

magnetic moments. Hence 𝑴 can be considered to be a smooth vector field, 

continuous everywhere except at the edges of the magnetic solid. 

 In vacuum there is now magnetization. The magnetic field can be described by the 

vector fields 𝑩 and 𝑯 which are linearly related by 

 

 𝑩 = 𝜇𝟎𝑯 (5) 

 



Where 𝜇0 = 4𝜋 × 10−7 Hm−1 is permeability of free space. The two magnetic fields 𝑩 

and 𝑴 are just scaled versions of each other, the former measured in Tesla and the 

latter measured in A m−1. 

 In a magnetic solid a relation between 𝑩 and 𝑯 is more complicated and the two 

vector fields may be very different in magnitude and direction. The general vector 

relationship is: 

 

 𝐁 = μ0(𝐇 + 𝐌) (6) 

 

In the special case that the magnetization 𝑴 is linearly related to the magnetic field 𝑯, 

the solid is called a linear material, it is in case isotropic and we write 

 

 𝐌 = 𝛘 𝐇 (7) 

 

 

Where 𝜒 is a dimensionless quantity and called the magnetic susceptibility. In this 

special case there is still a linear relationship between 𝑩 and 𝑯, this simplifies the 

above equation to: 

 

 𝑩 = 𝜇0(1 + 𝜒)𝐇 = 𝜇0𝜇𝑟𝐇 (8) 

 

Where 𝜇𝑟 = 1 + 𝜒 is relative permeability of the material. 

The magnetic susceptibility is a material property and characterizes its magnetic 

behavior.  

 

 

2.1.3 Diamagnetism  

 Diamagnetism is a fundamental property of all matter, although it is usually very weak. 

It is due to non-cooperative behavior of orbiting electrons when exposed to an applied 

magnetic field. Diamagnetic substances are composed of atoms which have no net 

magnetic moments. However, when exposed to a field, a negative magnetization is 

produced and thus the susceptibility is smaller than zero. That means, an external 



magnetic field induces a negative magnetic moment. It is a purely quantum 

mechanical phenomenon.  

 

 

2.1.4 Paramagnetism 

 This class of materials, some of the atoms or irons in the material have a net magnetic 

moment due to unpaired electrons in partially filled orbitals. One of the most important 

atoms with unpaired electrons is irons. However, the individual magnetic moments do 

not interact magnetically, and like diamagnetism, the magnetization is zero when the 

field is removed. In the presence of a field, there is now a partial alignment of the 

atomic magnetic moments in the direction of the field, resulting in a net positive 

magnetization and positive susceptibility. For a paramagnet 0 < 𝜒 < 1, meaning that 

an external field gets slightly amplified. Paramagnet materials contain magnetic 

moments that can be caused by the spin of the electrons or their orbital moment. They 

can be modeled as a thermodynamic ensemble of non-interacting magnetic moments 

of equal strength. Their direction is determined by the Zeeman energy, the thermal 

energy and magnetocrystalline anisotropy. Without an external field the moments are 

randomly aligned and the net magnetization is zero. If an external field is applied, the 

moments gradually align more and more as the field strength is increased. As the 

system is in thermal equilibrium, removing the external field will cause the moments 

to disorganize again.  

 

 

2.1.5 Ferromagnetism 

 In a Ferromagnet, the exchange interaction causes the magnetic moments to be 

aligned parallel to each other, which leads to a spontaneous local magnetization even 

without an external field. Ferromagnetism is a kind of magnetism that is associated 

with iron, cobalt, nickel, and some alloys or compounds containing one or more of 

these elements. Unlike paramagnetic materials, the atomic moments in these 

materials exhibit very strong interactions. The thermal excitations are working against 

the ordering of the moments and for high temperatures they overcome the magnetic 

order. Therefore, the average magnetization becomes zero and the material becomes 

paramagnetism. These interactions are produced by electronic exchange forces and 



result in a parallel or antiparallel alignment of atomic moments. Whereas 

paramagnetism and diamagnetism are properties of individual atoms or molecules, 

ferromagnetism is a property of a group of atoms or molecules in a solid crystal or 

lattice. 

 

 

  

 All ferromagnetic substances have unpaired electron spins that are strongly entwined 

by a quantum mechanical force, exchange interaction. Large groups of atoms in a 

ferromagnetic substance form magnetic domains in which arrays of electron spins 

become locked together in alignment. When heated to a certain temperature called 

the Curie point, which is different for each substances, ferromagnetic materials lose 

their characteristic properties and cease to be magnetic. However, they become 

ferromagnetic again on cooling.  

 

 

2.1.6 Antiferromagnetism 

 If a material has two antiparallel magnetic sub-lattices with magnetic moments of the 

same magnitude, Therefore the material exhibits non spontaneous magnetization. 

This materials are called antiferromagntes. In this type of materials the magnetic 



moments of atoms, usually related to the spins of electrons, align in a regular pattern 

with neighboring spins pointing in opposite direction. 

 

 

2.1.7 Ferrimagnetism 

 Ferrimagnetism is only observed in compounds, which have more complex crystal 

structures than pure elements. Ferrimagnetic materials have two sub-lattices of 

antiparallel magnetic moments that do not cancel each other out and a net 

magnetization can be expected in this case. Unlike ferromagnetic materials, which are 

typically metals, ferrimagnetic materials are ceramics, in particular, ceramic oxides. 

The most widely used ferrimagnets in technological devices are materials known as 

ferrites. 

 Ferrimagnetic materials contains magnetic moments aligned antiparallel to one other, 

similar to the antiferromagnetic materials. However, instead of having a zero net 

magnetic moment, different numbers of unpaired electrons in the component transition 

metals result do not cancel one other out, resulting in a spontaneous magnetization.  

  

 

2.1.8 Magnetic Domains  

 Magnetic domains are regions with the same magnetic ordering in a magnetic 

material. They are separated by domain walls. Magnetic moments within one domain 

align themselves along the same direction, and produce a net magnetization. The 

main implication of the domains is that there is already a high degree of magnetization 

in ferromagnetic materials within individual domains, but that in the absence of 

external magnetic fields those domains are randomly oriented. In different magnetic 

domains, net magnetizations can point into different directions. If an external field is 

applied to a ferromagnetic material, different processes can occur. This depending on 

the field strength. All these effects together produce a dependence of the imminent 

behavior on the history of the material. This is called hysteresis and plot of the variation 

of magnetization with magnetic field is called a hysteresis loop. Figures below shows 

different ferromagnetic materials and hysteresis loops, respectively on the figure 1 and 

figure 2. 

 



 

Figure 1: Different domain structures for ferromagnetic material: (a) single domain state, (b) two 

domains, (c) closure domains state. 

 

 On the Figure 2, there is shown hysteresis loop for ferromagnetic material. 

 

Figure 2: Hysteresis loop. Ref: [http://hyperphysics.phy-astr.gsu.edu/hbase/solids/imgsol/hyloop.gif] 

 

 

2.1.9 Magnetic Anisotropy  

 Ferromagnetic materials exhibit intrinsic easy and hard directions of the 

magnetization and it shows anisotropic behavior which is expressed in terms of a 

magnetocrystalline anisotropy energy. It means that the properties of a material are 



direction dependent. These directions are called easy axis. The spontaneous 

magnetizations are not equivalent in all directions and this effect are called 

magnetocrystalline anisotropy. An example of magnetocrystalline anisotropy is the 

uniaxial anisotropy, which has one single easy axis. The alignment of the 

magnetization along the two opposite directions of the easy axis cost the same amount 

of energy, which is the minimum of anisotropy energy. As the magnetic moment turns 

perpendicular to the easy axis, it costs most energy. 

Here, the energy density can be calculated by following equation as: 

 

𝐸

𝑉
= 𝐾1𝑠𝑖𝑛

2(𝜃) + 𝐾2𝑠𝑖𝑛
4(𝜃) 

 

Where 𝜃 is the angle, between magnetization and easy axis. 𝐾1, 𝐾2 are called 

anisotropy constants.  

 

 

2.2 Superconductivity 

 

2.2.1 Occurrence of Superconductivity 

 When a sample is cooled to a sufficiently low temperature, the electrical resistivity of 

many metals drops suddenly to zero. It means that resistance of certain material 

completely vanishes at low temperatures, which is called as critical temperature. It is 

also occurred when we have alloys of metals, ferromagnetic-superconductor materials 

and so on. This phenomenon is called superconductivity. 

 In the early 1900s, Kamerlingh Onnes had begun an investigation concerning the 

electrical resistance of very pure metals at low temperatures. At that time, the purest 

metal mercury was available. In 1911, he was measuring electrical resistance of pure 

mercury as a function of temperature when he discovered that the mercury’s 

resistance suddenly dropped to zero below critical temperature 4 K. It is very important 

to know that the critical temperature for superconductors is the temperature at which 

the electrical resistivity of a metal drops to zero. Some of superconductors are: 

Aluminum, niobium, mercury, gallium and alloys of some materials. Figure 3 shows a 

measurement results of Onnes experiment.  



 

Figure 3: Plot of resistance versus temperature for a mercury. Note that the resistance of mercury 
follows the path of a normal metal above the critical temperature, Tc , and then suddenly drops to zero 
at the critical temperature, which is 4.15 K for mercury. Ref: Raymond Serway modern physics chapter 
12_page486 

 

 That means, the sample undergoes a phase transition from a state normal electrical 

resistivity to a superconducting state.  

 

 

2.2.2 Meissner Effect  

 In 1933, Walter Meissner and Robert Ochsenfeld discovered a magnetic 

phenomenon that showed that the superconductors are not just a perfect conductors. 

When a sample is cooled below critical temperatures in the presence of a magnetic 

field, these materials lost their superconducting behavior above a certain critical 

temperature-dependent critical magnetic field. This magnetic phenomenon means 

that, the magnetic flux is expelled from the interior of the superconductor. Figure 4 

illustrates the difference between ideal conductor and superconductor material in the 

case than 𝑩 field is applied. Idea is that, both are above their critical temperature 𝑻𝒄. 

This means that, both are in normal conducting state and have electrical resistance. 

After, both materials are cooled so that the ideal conductor now has zero electrical 



resistance. It is found that the superconductor expels the magnetic field from inside it, 

while the ideal conductor maintains its interior field. 

 

 

 

Figure 4: Schematic behavior of applied field Ha and magnetic flux density B in field-cooled and zero-
field-cooled experiments on a type I superconductor and non-superconducting material with perfect 
conductivity. 
Adapted from Rose-Innes and Rhoderick (1978, pp. 18 and 20).  
 

 

2.2.3 Two Types of Superconductors  

 There are two types of superconductors, as shown Figure 5. Type I superconductors 

display the normal phase and the Meissner phase. Type II superconductors also 

display the normal and Meissner phase. However, at intermediate temperatures and 

magnetic fields, they are in a mixed state. In this case, the magnetic field penetrates 

in a material in the form of vortices. This is called Abrikosov vortex. The graph shows 

internal magnetic field strength behavior in type I and type II superconductors. 



 

Figure 5: Phase diagram of type I and type II superconductors. Ref: Hays, Aryn M.; Bechtel, Lindsay; 
Turbeville, Colton; Johnsen, Anthony; and Tanner, Chris A. (2013) "Electrical and Magnetic Properties 
of High Temperature Superconductors Using Varying forms of Data Acquisition," Journal of the 
Advanced Undergraduate Physics Laboratory Investigation: Vol. 1: Iss. 1, Article 3.  
 
For Type I superconductor, at temperatures above 𝑇𝑐 and magnetic fields above 𝐵𝑐 the 

material is normal the normal state, while at temperatures below 𝑇𝑐 and magnetic fields 

below 𝐵𝑐 the material is normal the Meissner phase. For Type II, at temperatures 

above 𝑇𝑐 and magnetic fields above 𝐵𝑐2 the material is in the normal state. At 

temperatures below the 𝑇𝑐 and magnetic fields between 𝐵𝑐1 and 𝐵𝑐2 the material is in 

the Mixed state, while at temperature below 𝑇𝑐 and magnetic fields below 𝐵𝑐1 the 

material is in the Meissner phase. 

 High magnetic fields destroy superconductivity and restore that normal conducting 

state. Depending on the character of this transition, we may distinguish between type 

I and II superconductors. The graph shown in Figure 6 illustrates the internal magnetic 

field strength 𝑩𝒊 with increasing applied magnetic field for the both cases. 

 Type II superconductors are characterized by two critical magnetic fields. When the 

external magnetic field is less than the lower critical field 𝐵𝑐1, the material is fully 

superconducting. It means that, there is now flux penetration. When the external field 

exceeds the upper critical field 𝐵𝑐2, the flux penetrates completely and the 

superconducting state is destroyed. As on the picture is shown, there is also mixed 

state in the case when fileds lying 𝐵𝑐1 and 𝐵𝑐2.  



 

Figure 6: Two type of superconducting materials, according to the behavior in the presence of a 

mangnetic field. Ref: http://www.materia.coppe.ufrj.br/sarra/artigos/artigo10114/ 

 

 

2.3. Scattering Theory 

 

2.3.1 Basic of Scattering 

 Scattering methods are widely used as a non-destructive method to study materials 

in condensed matter physics. 

 Magnetic nanoparticles and assemblies thereof exhibit correlations in a wide size 

range that can be investigated by various scattering techniques. The nanoparticle 

morphology can be investigated in the lower nm size range by small-angle scattering 

methods. Conventional powder diffraction gives insight into a possible long-range 

order of the atomic structure. Whereas Bragg diffraction gives information on the 



averaged long range atomic order, the atomic Pair Distribution Function (PDF) 

provides insight into the local structure in real space and is complementary to X-ray 

absorption techniques, which probe mainly the first coordination sphere of a chosen 

element. Figure 7 shows schematic condition of Bragg scattering. 

 

 

Figure 7: Schematic of Bragg scattering condition. Picture taken from http://hyperphysics.phy-

astr.gsu.edu/hbase/quantum/bragg.html 

 Bragg scattering occurs when a crystalline arrangement of atoms is irradiated with an 

X-ray or Neutron beam of wavelengths comparable to the atomic distances. When the 

incident beam is scattered from a set of lattice planes with a distance 𝑑ℎ𝑘𝑙, the scatter 

beams interfere constructively for a difference in path lengths of 𝒏𝝀. Figure 8 shows 

that Bragg reflections are observed for constructive interference of the scattered 

beams at scattering angles 2𝜃 according to Bragg’s law.  

 

 2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝝀  

 

For elastic scattering the energy of incident and scattering waves is identical to this 

formula:  

 

|�⃗� 𝑖|= |�⃗� 𝑓| =
2𝜋

𝜆
  

 

The scattering vector �⃗�  is defined as the difference vector between wave vectors of 

the incident and scattered beams: 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html


�⃗� =  𝑘𝑓
⃗⃗⃗⃗ − 𝑘𝑖

⃗⃗  ⃗ 

 

With a magnitude of  

 

|�⃗� |= 𝑄 =
4𝜋

𝜆
𝑠𝑖𝑛𝜃 

 

From this equation we can calculate 𝑄 

 

𝑄 =
2𝜋

𝑑
 

 

As we explained 𝑑 is a distance between the lattice planes. 

 

Figure 8: Simulation of a reflectivity measurement of a multilayer Fe/Cr-system. Picture taken from [2] 

 

 

2.3.2. X-ray Reflectometry 



 In order to characterize the sample there is possibility to use X-ray reflectometry. It is 

very suitable for the investigation of thin films like grown with the MBE. It has X-ray 

source and wavelength is 1.54 Angstrom. With the X-ray reflectometer you have 

access to depth resolved information on layer thickness, roughness and the periodicity 

of your layer system. The following steps show you how to use the reflectometer to 

determine the layer thickness.  

 

 

Figure 9. X-ray Diffractometer in Juelich Research Centre  

 

 

2.3.2 X-ray Diffraction 

 X-ray diffraction technique is one of the best tool to characterize the solid state 

materials. Its analysis is a powerful tool for measuring crystallinity and orientation of 

thin film samples. 

 The scheme of a typical scattering experiment can be described by following way: A 

monochromatic beam, defined by a plane wave with wavelength 𝜆, momentum ℏ𝑘, and 

wave number 𝑘 which equals to 
2𝜋

𝜆
 hits the sample. The term diffraction distinguishes 

those scattering experiments, in which the scattered waves are detected without any 

analysis of the energy. In general, the information of static structure is given by elastic 

scattering. For Bragg scattering of an ideal crystal, constructive interference only 

occurs under the Bragg condition.  



There are many possibility to use X-ray diffraction technic for another type of 

investigation also. Many of them are: Thin film diffraction and grazing incidence X-ray 

diffraction may be used to characterize the crystallographic structure and preferred 

orientation of substrate-anchored thin films. High-resolution X-ray diffraction is used 

to characterize thickness, crystallographic structure, and strain in thin epitaxial films. 

It employs parallel-beam optics. X-ray pole figure analysis enables one to analyze and 

determine the distribution of crystalline orientations within a crystalline thin-film 

sample. X-ray rocking curve analysis is used to quantify grain size and mosaic spread 

in crystalline materials. Thin film diffraction and grazing incidence X-ray diffraction may 

be used to characterize the crystallographic structure and preferred orientation of 

substrate-anchored thin films. 

 The schematic illustration of X-ray diffraction is shown on the Figure 10.  

 

 

 

 

Figure 10: X-ray diffraction scheme. This shows that the difference in path length between X-ray beams 

incident on a stack of atomic planes is 2d sinθ. The condition for constructive interference of two waves 

is that they must be shifted by an integral number of wavelengths. Picture taken from 

http://ssp.physics.upatras.gr/x-ray diffraction. 

 

http://ssp.physics.upatras.gr/x-ray


 

2.3.3 Grazing Incidence Small Angle X-ray Scattering  

 By grazing incidence small-angle scattering (GISAXS), a third dimension of the 

scattering vector is investigated as for each defined incident angle, a full 2D GISAS 

pattern is measured with 𝛼𝑖 ≠ 𝛼𝑓 and 2𝜃𝑓 ≠ 0. In order to achieve a good resolution in 

all directions, an incident beam collimated in two dimensions is required. For 

measurement of a full 2D pattern, also a position sensitive 2D detector is useful. For 

these reasons GISAS experiments are usually performed on small-angle scattering 

instruments. The 2D GISAS pattern can be described by the 2𝜃𝑓 and 𝛼𝑓 contributions 

measured in direction of the x and y axis of the detector image, respectively. The 

specular reflection is detected at 𝛼𝑖 = 𝛼𝑓 and 2𝜃𝑓 = 0. 

 In case of neutron scattering, the transmission is often large enough to allow for 

detection of the transmitted beam, which is located below the sample horizon. Both 

reflections are located on the off-specular scattering line at 2𝜃𝑓 = 0 and can thus also 

determined by a single off-specular scan. This is useful because in many GISAXS 

measurements a beam stop is located at this high intensity line, in order to allow for 

longer exposure times and thus better statistics in the lower intensity regions. The 

GISAXS structure is shown on the Figure 11.  

 GISAXS does not require any specific sample preparation other than thin film 

deposition techniques. Film thicknesses may range from a few nm to several 100 nm, 

and such thin films are still fully penetrated by the x-ray beam. The film surface, the 

film interior, as well as the substrate-film interface are all accessible. By varying the 

incidence angle the various contributions can be identified. 

  

 



 

 

Figure 11: Structure of GISAXS. Picture taken from [ ] 

 

 

3. Experimental Methods  

 

3.1 Sample Preparation  

 In this chapter, a review of the various experimental techniques used in the work is 

made. The first section deals with sample preparation methods, whereas the second 

one introduces the utilized characterization techniques. 

 The sample under investigation is a typical hybrid of Superconductor-Ferromagnetic 

(S/F) layer and basically it is alloy of thin film compounds. In order to carry out research 

according to the project, we started to growth Iron and Palladium (FePd) thin film layers 

as a compound of ferromagnetic alloy. As for superconductor thin film, we chose to 

produce material Niobium (Nb), which is type II superconductor material and we had 

started to prepare Nb thin film. The basic idea is that a superconducting Nb film is 

placed on top of the ferromagnetic (F) substrate with the easy axis of magnetization in 

the Z direction. 



 For the implementation of this research, as I noted, main was to prepare thin film 

multilayers and we used Molecular Beam Epitaxy machine (MBE). It is process, in 

which one or more materials are heated up and hence are evaporated and finally re-

condensed on a substrate. Depending on the material substrate combination the 

crystal grows layer by layer. In general this is very slow process but it has many 

advantages. For instance you can develop multilayers of different materials which 

change from layer to layer. On the picture 12 is shown Molecular Beam Epitaxy 

machine, which is located in Juelich center neutron science, it is which I used during 

the working period.  

 

 

 

3.2 Thin Film Techniques  

 Producing of thin films is very importance and necessary for research in Solid-state 

Physics. It is highly important if techniques have to be fast in order to keep cost law. 

MBE machine is very slow technique to work in research but it has variety of methods 

to use. This including sputtering, spin coating, pulsed laser deposition and so on. Here 

I tried to introduce shortly most useful method sputtering.  

 

Figure 12: Molecular Beam Epitaxy Machine for Sample Preparation in Juelich Researh Centre 

 



 The term sputtering refers to a variety of methods. The most common technique is 

magnetron sputtering. A strong magnetic field is placed around a target made of the 

material you want to evaporate. Applying of high voltage, depending on the 

conductivity of the target will ionize the gas and accelerate it towards the target. After 

this process, the collisions of the gas with the target will break out atoms, molecules 

or clusters which can then move to the substrate.  

 A special technique used for oxides is high pressure sputtering. Here the sputter gas 

is Oxygen at pressures around one milibar. The substrate is placed in close proximity 

to the target. The high oxygen pressure minimizes re-sputtering on the substrate as 

the mean free path is very short. Additionally the high oxygen pressure minimizes 

oxygen deficiency. 

 Good vacuum is the prerequisite for thin film growth with MBE and most of the other 

techniques. You cannot grow a clean thin film if your surface is contaminated with "dirt" 

from the air. 

 Magnesium oxide is used in the preparation of the surface layer of sandwich whose 

thickness is 0.5 mm and the surface layer was prepared at 550 ° C. After the buffer 

layer, we prepared layer of palladium and iron compound for this buffer layer is 

chromium and palladium, and appropriate thickness of 2 nm and 60 nm, while the 

temperatures have trained at room temperature. Then we prepared a sample of 

ferromagnetic compound as iron and palladium thin films consisting of the compound. 

With a thickness of 50 nm is prepared and 430 ° C. As for the second type of 

superconducting layer we put niobium, thickness of 50 nm which is composed of 

niobium and 50 ° C. Thus the end we got the alloy under study. Which is pretty good 

and the status of invisible information is shown below the images. Sample size was 

10 mm x 10 mm and a thickness of 0.2 cm. It is shown on the picture below. 



 

 

3.3 Measurements  

 We used X-Ray diffraction measurement method to determine the planes conducted 

which clearly showed that the intensity of both the plane in case of an equal. The 

experiment is shown in the picture below. Total we were prepared 4 different layer. A 

Photo shows that the temperature increase of more and better structures have 

received the order. The intensity was not good, however, several layers of production 

test, we have achieved the desired result.  

 



 We also conduct measurement for Superconducting layer, dependent of the 

magnetization on the magnetic field. Whereby the magnetic field is perpendicular to 

the sample's own magnetic moment. The measurement was performed in 5, 7, 9 and 

11 Kelvin temperatures. Estimated that 9 and 11 Kelvin temperature superconducting 

niobium became paramagnetic. And 5 Kelvin temperature during its magnetization 

was bigger than 7 Kelvin temperature. The measurements are shown in the picture 

below. Magnetic measurement systems used in the data set. 

 

 

At the same time, we have met resistance temperature dependence for the 

superconducting layer, at the physical property measurement systems. The 

measurement was quite determined and fruitful. Chart is shown in the picture below. 

 

   

 

   

  

 

 

  

  



 

Also, we also performed the magnetization measurements in ferromagnetic 

compounds in two different cases, depending on the direction of the magnetic field. In 

the first case, the field is perpendicular to the magnetic moment of a sample of its own, 

and in the second case it was a concurrent design their own magnetic moment. The 

first case the measurement was performed at a temperature of 5 K, 300 K and the 

other in case of temperature. Chart is shown in the picture below. 

 



This time showing the same kind of measurement, but as mentioned above are 

compatible with the magnetic field and the magnetic moment of the sample for the 

measurement was performed at a temperature of 300 Kelvin. Bear in mind that in both 

cases the magnetic field of 7 tesla and 5 respectively. 

 

Last, the measurement was performed in which the project period, the temperature 

dependence of the resistivity measurement in the study design and the temperature 

varied from 10 K in the range of 5 Kelvin. The measurement results are shown in the 

picture. 

 



4. Results 

Such measurements and analysis of the data, given the different types of results 

based on which it has been determined that the magnetic moment is greater than 

the superconducting layer of ferromagnetic materials, iron and palladium 

compounds. Impedance critical temperatures obtained niobium layer lower than 

the massive niobium samples. As for the particular sample, which is a pretty good 

line of prepared for it, we got a much wider transitions than only in a thin layer of 

niobium than specifically. It is caused by iron and palladium ferromagnetic 

properties. 
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