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Abstract

This thesis consists of in depth study of spin structure of magnetoelectric Y-type hexaferrite
Ba1−xSrxZn2Fe12O22 system. Magnetoelectric and multiferroic materials are of high in-
terest from information technology point of view, but traditional mechanism of magnetism
and ferroelectricity makes it rare to observe both in single phase materials. One of the
most widely studied non conventional mechanism where cross coupling of magnetism and
ferroelectricity takes place in non-collinear spin systems is spin driven ferroelectricity by in-
verse Dzyaloshinskii-Moriya (IDM) mechanism or spin currect mechanism (SC). The spin
frustration leading to non-collinear spin arrangements also leads to low magnetic ordering
temperature hinders room temperature realization of magnetoelectric coupling effect. Hex-
aferrite systems are an answer to high temperature magnetoelectric behavior in single phase
materials. Y-type hexaferrite with composition Ba1−xSrxZn2Fe12O22 was the first hexafer-
rite to show magnetoelectric behavior, where a 2-fan planar spin structure was proposed, not
compatible with the magnetic field (H) induced ferroelectricity by IDM/SC mechanism. In
depth investigation of the spin structure and its relationship with macroscopic field driven
ferroelectricity was the central point of this thesis.

The widely accepted spin structure of Y-type hexaferrite is a spin block model with large
(L) and small (S) spin blocks, collinear in spin arrangements inside the blocks but between
the blocks arrangements changes from collinear to spiral depending upon the chemical com-
position. With change in the Sr content in the composition Ba1−xSrxZn2Fe12O22 spin struc-
ture was reported to change from collinear to in plane spiral in earlier studies. The change in
spin structures were easily visible in magnetization curves, when magnetic field was applied
perpendicular to c-axis. In three samples with x= 1.4,1.18 and 0.72 grown by flux methods,
our refinement of single crystal x-ray diffraction data shows that Sr substitution causes local
distortion and change in occupancies of Zn in the tetrahedral site which happens to be in
the spin block boundary, accompanying a change in the Zn/Fe-O bond length. We speculate
that the cumulative effect of local distortion, change in occupations of Zn and bond length
change changes the superexchange interaction near the block boundary changing the spin
structure.

The low field spin structure was studied by soft x-ray resonant magnetic scattering mea-
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surements in small horizontal applied field perpendicular to (0 0 1) in horizontal scattering
geometry. The zero and very low field a helical incommensurate phase with circular dichro-
ism in the diffraction conditions in the magnetic satellite was found. First metamagnetic
transition took place from incommensurate to commensurate spin structure when a small
magnetic field (< 100 mT) was applied, characterized by (0 0 3/2) and (0 0 3/4) propaga-
tion. Equal intensity for incoming σ and π polarization for (0 0 3/2) reflection and absence
of circular dichroism in both the satellite reflections leads to a non-chiral 4-fan structure as
reported earlier. By fitting our calculated intensity ratios for linear and circular polarized
x-ray shows coexistence of the 4-fan structure coexisting with the incommensurate low field
phase and high field phase in some field ranges.

The high field phase, i.e.the ferroelectric phase was a commensurate phase character-
ized by presence of only (0 0 3/2) magnetic satellite. Difference in intensity for (0 0 3/2)
reflection with incoming σ and π polarization singles out this phase from the low field 4-
fan phase and circular dichroism in the same satellite reveals vector spin chirality in the
scattering plane. Maps to circular dichroism produces some spin chiral domains with both
chirality, which get inverted upon application of magnetic field in reverse direction. In ver-
tical field perpendicular to scattering plane in horizontal scattering geometry the circular
dichroism disappears establishing the direction of vector spin chirality. In addition a new
phenomena, position dependent linear dichroism appears, which gives same domain config-
uration as that was observed in circular dichroism.

For the high field phase already proposed 2-fan model is non chiral and can neither give
ferroelectric polarization by IDM/SC mechanism nor circular dichroism and new model is
required. Numerical calculations on various probable models to fit our experimental data
established the spin structure is a transverse conical structure with both in-plane and out
of plane components for both the L and S spin blocks. This transverse conical spin struc-
ture with spin chirality in the direction of H can give ferroelectric polarization by IDM/SC
mechanism in the direction perpendicular to c and H. Unpolarized neutron diffraction ex-
periments in our sample in vertical magnetic field are also consistent with the proposed
model.

The ferroelectric chiral phase is separated from the chiral zero field phase by a non chiral
4-fan phase in the magnetization process. The inversion of chirality by reverse magnetic
field can be explained on the basis of absence of non chiral phase in the demagnetization
process, facilitating the linkage between the chiral helical phase and the transverse conical
phases. Inversion of chirality implies the flip of sign of polarization upon reversing magnetic
field direction. Macroscopically no sign flipping was observed in previous reports which we
attribute to the difference in composition of our samples.



9

The chiral transverse conical spin structure was found from low field close to 80 mT
at 100 K predicting H induced ferroelectricity from this field, considerably lower than that
reported by macroscopic measurements. At 300 K similar shape of spin chiral domains
with circular dichroism as well as with linear dichroism also found, suggesting transverse
conical spin structure at room temperature (RT). Presence of (0 0 3/2) propagation was
also verified by in field unpolarized neutron diffraction at 300 K. With input from all the
scattering experiments and macroscopic magnetization measurements a new phase diagram
was constructed which suggested field induced ferroelectricity in this transverse conical spin
structure can be realized at very low H and RT in highly resistive samples.

As a whole this thesis concludes that magnetic field induced ferroelectricity in y-type
hexaferrite of composition Ba1−xSrxZn2Fe12 O22 is by IDM/SC mechanism in a transverse
conical spin structure available at very low H and up to RT.





Zusammenfassung

Diese Dissertation beschreibt eine ausführliche Studie der Spin Struktur des magnetoelek-
trischen Y-Typ Hexaferriten Ba1-xSrxZn2Fe12O22. Magnetoelektrische und multiferrois-
che Materialien sind von hohem Interesse im Hinblick auf Anwendungen in der Informa-
tionstechnologie, aber die traditionellen Mechanismen von Magnetismus und Ferroelek-
trizität führen dazu, dass das simultane Auftreten in einem einphasigen Material selten ist.
Einer der am ausführlichsten studierten nicht-konventionellen Mechanismen, bei dem eine
Kopplung von nicht-kollinearem Magnetismus und Ferroelektrizität auftreten, ist eine spin-
basierte Ferroelektrizität basierend auf dem inversen Dzyaloshinskii-Moriya (IDM) Mech-
anismus, respektive auf dem Spinstrom (SC) Mechanismus. Die Spin-Frustration, welche
die nicht-kollinearen Spin Strukturen veranlasst führt jedoch üblicherweise zu sehr niedri-
gen Ordnungstemperaturen, weit unterhalb Raumtemperatur. Hexaferrite bilden eine Aus-
nahme, die magnetoelektrisches Verhalten bei hohen Temperaturen ermöglichen. Y-Typ
Hexaferrit der Zusammensetzung Ba1−xSrxZn2Fe12O22 war der erste Hexaferrit, in welchem
magnetoelektrisches Verhalten beobachtet wurde. Die vorgeschlagene Magnetstruktur ist
jedoch nicht kompatibel mit Ferroelektrizität hervorgerufen durch den IDM/SC Mecha-
nismus. Die ausführliche Untersuchung der Spin Struktur dieses Materials sowie deren
Verbindung mit der makroskopisch beobachteten magnetfeld-induzierter Ferroelektrizität
war der zentrale Punkt dieser Studie.

Es ist breit akzeptiert, dass die Spin Struktur in Hexaferriten in guter Näherung mit
einem "Block-spin Modell" beschrieben werden kann, mit großen (L) und kleinen (S) Spin
Blöcken, in denen die Spins jeweils kollinear angeordnet sind, wobei die Spins verschiedener
Blöcke je nach chemischer Zusammensetzung nicht kollinear sein können. Mit einer Än-
derung des Sr Gehalts in Ba1-xSrxZn2Fe12O22 ändert sich die Spin Struktur von kollinear
zu spiralförmig, gemäß früheren Studien. Magnetisierungsmessungen zeigen die Exis-
tenz verschiedener metamagnetischer Phasen auf für einkristalline Proben, gezüchtet aus
Hochtemperaturlösungen, mit x = 1.4 und 1.18, nicht jedoch für 0.72. Strukturverfeinerung
von Einkristall-Röntgenbeugungsdaten zeigen, dass die Dotierung mit Sr lokale Verzerrun-
gen sowie eine Änderung der Zn Besetzungen in den tetrahedrischen Plätzen verursacht,
verbunden mit einer Änderung der Zn/Fe-O Bindungslänge. Wir spekulieren, dass der ku-
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mulative Effekt dieser Änderungen zu einer Änderung der Superaustauschwechselwirkung
an den Grenzen der Spin Blöcke führt, was zu den beobachteten Änderungen in der Spin
Struktur führt.

Die Spin Struktur in niedrigen Magnetfeldern wurde mittels resonant-magnetischer Streu-
ung von weichen Röntgenstrahlen untersucht, wobei das Magnetfeld horizontal und senkrecht
zur [001] Richtung angelegt wurde und die Streuebene ebenfalls horizontal war. Die bei
sehr kleinen Feldern stabile helikale Phase ist inkommensurabel moduliert, mit zirkularem
Dichroismus in Streuung. Bereits bei einem kleinen angelegten Feld (<100 mT) tritt ein
metamagnetischer Übergang in eine kommensurable Spin Struktur auf, die durch Propaga-
tionsvektoren von (0,0,3/2) und (0,0,3/4) charakterisiert ist. Anpassung der Intensitätsver-
hältnisse für linear und zirkular polarisierte Röntgenstrahlen ergibt in bestimmten Feldbere-
ichen eine Koexistenz dieser "4-Fächer" Spin Struktur mit der nicht-kollinearen Phase sowie
mit einer weiteren Phase, die in höheren Feldern stabil ist.

Die Hoch Feld Phase, die ferroelektrisch ist, ist eine kommensurable Phase, welche
durch die Präsenz von ausschließlich (0,0,3/2) magnetischen Satelliten charakterisiert ist.
Die Intensitätsdifferenz dieses Reflexes zwischen sigma und pi Polarisierung der eingehen-
den Röntgenstrahlen unterscheidet diese Phase ebenfalls von der "4-Fächer" Spin Struktur.
Des Weiteren wird ein zirkularer Dichroismus beobachtet, welche eine Vektor Spin Chi-
ralität aufzeigt. Rasterung der Proben zeigt, dass Domänen mit umgekehrter Spin Chiral-
ität existieren, welche durch Anlegen eines negativen Magnetfeldes invertiert werden kön-
nen. Der zirkulare Dichroismus verschwindet, wenn das Magnetfeld vertikal (senkrecht zur
Streuebene) angelegt wird. Dies fixiert die Richtung der Vektor Spin Chiralität. In einem
vertikalen Magnetfeld wurde außerdem ein neues Phänomen, positionsabhängiger linearer
Dichroismus, beobachtet. Rasterung ergibt eine Domänenkonfiguration, welche genau der
im horizontalen Feld bestimmten Konfiguration der chiralen Domänen entspricht.

Die für die Hochfeldphase früher vorgeschlagene "2-Fächer" Spin Struktur ist nicht chi-
ral und kann weder eine ferroelektrische Polarisation gemäß dem IDM/SC Mechanismus
ergeben noch einen zirkularen Dichroismus in Streuung. Deshalb ist ein neues Modell
nötig. Berechnungen verschiedener möglicher Spin Modelle und Anpassung an die ex-
perimentellen Daten ergeben, dass die tatsächliche Spin Struktur transveral-konisch ist,
mit sowohl in c- als in ab-Richtung modulierten Spin Komponenten in beiden (L und S)
Blöcken. Diese transversal-konische Spin Struktur kann nach dem IDM/SC Mechanismus
eine ferroelektrische Polarisation ergeben, wobei die entsprechende Richtung der Polarisa-
tion mit der makroskopisch beobachteten Richtung übereinstimmt. Beugungsexperimente
mit unpolarisierten Neutronen in vertikalen Magnetfeldern sind ebenfalls konsistent mit
dem vorgeschlagenen Modell.
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Die ferroelektrische chirale Phase ist getrennt von der ebenfalls chiralen Nullfeld Phase
durch die nicht chirale "4-Fächer" Phase im Magnetisierungsprozess. Die Inversion der Chi-
ralität durch Anlegen eines negativen Magnetfeldes kann erklärt werden durch die Absenz
einer nicht-chiralen Phase im Demagnetisierungsprozess, was die Verbindung der chiralen
helikalen Phase und der transversal-konischen Phase ermöglicht. Die Inversion der Chiral-
ität impliziert eine Invertierung der Richtung der ferroelektrischen Polarisation durch Anle-
gen eines negativen magnetischen Feldes. In einer früheren makroskopischen Studie wurde
ein solcher Polarisationsflip nicht beobachtet; wir führen das unterschiedliche Verhalten auf
Abweichungen in der chemischen Zusammensetzung zurück.

Die chirale transversal-konische Spin Struktur wurde bereits bei tiefen Feldern ab ≈ 80
mT (bei 100 K) gefunden, was eine feld-induzierte Ferroelektrizität bereits in Feldern, die
erheblich tiefer sind als aufgrund von makroskopischen Messungen berichtet. Bei 300 K
konnten immer noch chirale Domänen beobachtet werden, mit ähnlichen Domänengren-
zen wie bei tieferen Temperaturen. Des Weiteren wurde die (0,0,3/2) Propagation bei 300
K auch mit Neutronenbeugung verifiziert. Aus den Resultaten der verschiedenen Beu-
gungsexperimente, verbunden mit makroskopischen magnetischen Messungen, wurde ein
neues Phasendiagramm konstruiert, welches in Proben mit genügend hohem Widerstand das
Auftreten von Ferroelektrizität in einem viel größeren Feldbereich sowie bis zu Raumtem-
peratur vorhersagt.

Zusammenfassend schließt die in dieser Dissertation vorgestellte Studie, dass die feld-
induzierte Ferroelektrizität in Y-Typ Hexaferrit durch den IDM/SC Mechanismus in transversal-
konischen Spin Strukturen verursacht wird, welche bereits in tiefen magnetischen Feldern
und bei Raumtemperatur stabilisiert werden.
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Chapter 1

Overview

In condensed-matter physics various ordering phenomena have been studied extensively in
the last two centuries and that led to many milestones in creating numerous novel devices.
Out of all those ordering phenomena, magnetic and ordering of electronic degrees of free-
dom played a crucial role not only in basic science but in many applications. Extensive
research on magneto-resistance, for example, discovered in the last two decades of the 20th
century, in metallic multilayer changed the field of magnetic data storage explosively [1].

Unlike in conductors, in insulators there exists another ordering phenomenon, ordering
of electric dipoles originating from the polar nature of chemical bonds. Materials with or-
dered magnetic properties leading to spontaneous magnetizations are classified as having
ferroic properties (eg. ferro and ferrimagnets). Similarly, materials having ordered electric
properties (spontaneous electrical polarizations) like dipole moments, are also considered
to have ferroic proprieties (eg. ferroelectric or ferrielectric ). These ordering phenomena
are also associated with strain in the lattice which in turn leads to phenomena like magne-
tostriction, piezoelectricity etc.

There are not many materials with both magnetic (spin) and electric dipole orders present
simultaneously in a single phase. This has led to extensive studies on finding materials in
which both orderings are simultaneously present either in single phase material (by uncon-
ventional mechanisms), composites or in thin films.

Unlike electromagnetism, which is a dynamic phenomenon, the electronic ordering phe-
nomena like magnetism and ferroelectric properties, at a first glance, look mutually ex-
clusive in periodically ordered condensed matter single phase systems. In conventional
ferroelectric perovskite oxides such as BaTiO3, the displacement of Ti4+ ions breaks the
centrosymmetry. In other words polar structure needs space inversion symmetry breaking.
This symmetry breaking is caused by the balancing forces due to hybridization of empty
d-orbitals of Ti4+ with p-orbitals of O2− and the short range Coulomb repulsions [2]. As
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the temperature is lowered the bonding forces are stronger than the repulsive forces (ion-
ion interactions), and a non-centrosymmetric phase is favored. Thus, empty d-orbitals are
necessary to show conventional ferroelectric polarization where the space inversion sym-
metry is broken, making the structure non-centrosymmetric. On the contrary, magnetism
is a phenomenon associated with partly filled d-orbitals, where, with reversal of time, the
angular momentum associated with the spin is inverted and hence, time reversal symmetry
is broken. In other words, magnetism requires time-reversal symmetry breaking. But it is
very rare for both time-reversal symmetry breaking and space inversion symmetry breaking
to occur happen simultaneously in conventional systems. This explains why there are only
very few single phase materials containing both the orders [2].

Coexistence and interdependence of both of these orderings, leading to the phenomena
called multiferroics and magnetoelectric, by different non-conventional routes, is discussed
in the Chapter 2. Hexagonal ferrites were used in many permanent magnet applications
for a long time due to their high magnetizations and insulating properties. Y-type hexago-
nal ferrite was the first hexaferrite to show magnetic field induced electrical polarization in
2005 [3], after that almost all the hexaferrites are found to display magnetoelectric behavior
[4]. We synthesized some of these hexaferrite single crystals and used scattering methods to
study the relationship of magnetic structure with already found macroscopic magnetoelec-
tric properties. A brief introduction to crystal and magnetic structures of hexagonal ferrites
and their magnetoelectric properties is also presented in this chapter.

Experiments are essential to understand structure and property relationships. Know-
how of experimental tools for synthesis, macroscopic measurements and scattering studies
are essential to successfully conduct any experiment. In Chapter 3 we review the used lab-
scale as well as large-scale experimental techniques and their principles. Growth results and
lab scale characterization of samples are presented in chapter 4. Based on macroscopic data,
the best samples were chosen for large scale facility experiments.

Y-type hexaferrite Ba2−xSrxZn2Fe12O22 was found to show magnetic field driven elec-
trical polarization in magnetic field greater than 0.3 Tesla [3]. The magnetic structure of it
was reported to comprise of different fan structures with magnetic moment in a plane per-
pendicular to c-axis. The rich meta magnetic phase diagram was studied by both neutron
and soft X-ray resonance magnetic scattering techniques[5–11]. We studied the metamag-
netic phases, both in low H and in H in the range of ferroelectric phase. Low H phases are
presented in Chapter 5 and the magnetic structures in ferroelectric phase are discussed in
chapter 6. We carried out simulations of intensity in our soft X-ray experiments to com-
pare with our experimental data. In field neutron diffraction experiments were carried out
to verify our models. Neutron diffraction results are presented in chapter 6.



Chapter 2

Introduction

Ordering of different degrees of freedom, such as lattice, spin, charge etc gives rise to dif-
ferent interesting physical properties in condensed matter systems. All these orderings are
subjected to thermal energy. Above certain temperature a disordered state is reached. Out
of all these ordering, our main concern is magnetic and ferroelectric ordering and their cross
couplings.

2.1 Magnetic interactions and order
To put it simply, magnetic moment µm is the magnetic dipole moment perpendicular to a
current loop and its direction is given by the right hand thumb rule. In the case of atomic
magnetism, orbital and spin rotation of electrons gives orbital and spin angular momentum.
This angular momentum precesses in a magnetic field to give magnetic moment parallel to
it as shown in Fig. 2.1. This automatically breaks the time reversal symmetry of the system
as the sense of rotation of charge is reversed upon reversing time and so is the angular
momentum and the corresponding magnetic moment.

In a crystalline solid atomic magnetic moments may order in a long range periodic fash-
ion depending upon the exchange energy Eex. This exchange energy is a measure of poten-
tial energy between two adjacent moments. For a one dimensional chain of magnetic atoms’
system, the Hamiltonian for two adjacent atoms can be defined as:

H =− ∑
i,i+1

Ji,i+1Si.Si+1 (2.1)

where Ji,i+1 is the exchange constant, originating from the Pauli Antisymmetry Principle,
stating that the Eigen function of spin 1/2 indistinguishable particles should be antisymmet-
ric with respect to the exchange of particles. Numerically Ji,i+1 is half of the difference
of energies between the singlet and the triplet states (Es −ET )/2 found after exchange of
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particles. In the case of ferromagnetic materials Ji,i+1 > 0 and therefore, singlet state has
higher energy than the triplet state. In a single atom if spin i and i+1 are present, a triplet
state is favored to minimize the Coulomb repulsion. When the spins are in two different
atoms, either of the parallel or anti-parallel configurations may have lower energy (see fol-
lowing sections), as states of individual atoms couple together to give the final state. Nearest
neighbor ferro and anti-ferromagnetic interactions may lead to different anti-ferromagnetic
arrangement (for e.g.in a simple cubic lattice as shown in Fig. 2.2 [12]).

Direct exchange takes place when magnetic orbitals of neighboring atoms have suffi-
cient overlap, but this is very rare in oxides, and in most cases indirect exchange take place.
Exchange interaction mediated by a non magnetic atom, typically oxygen in oxides, bonded
to two magnetic atoms is called super-exchange interaction. In super-exchange interaction
(suppose mediated by O) between two iron atoms Fe3+ in d5 configuration, in an octahedral
crystal field environment, there can be either ferromagnetic or anti-ferromagnetic coupling.
Let us consider two ground states, (a) anti-ferromagnetic and (d) ferromagnetic, as shown in
the Fig. 2.3. Both can mix with the excited states (b) and (e) due to successive hopping pro-
cesses. In case of ferromagnetic ordering, the excited state (e) cannot mix with the excited
states (f) and the excited states are reached only by spin forbidden hopping, which requires
higher energy. Therefore, anti-ferromagnetic configuration has lower energy compared to
ferromagnetic ordering in super-exchange mediated ordering when the bond angle is 180°.
In case of 90° bond angle, where two different p-orbitals are involved, ferro-magnetism may
also occur.

Fig. 2.1 Atomic magnetism (a) Orbital magnetic moment (b) Spin only moment.
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Fig. 2.2 Different types of anti-ferromagnetism in a cubic lattice due to positive and negative
values of J in the nearest and the next nearest neighbors.

Fig. 2.3 Different intermediate steps in super-exchange interactions. Intermediates (d) and
(e) are spin forbidden transitions.

There can be different kinds of super-exchange involving Mn as magnetic atoms in some
perovskites like La1/3Sr2/3MnO3 (LSMO) and this mechanism is called double exchange
mechanism [13, 14]. Various exciting phenomena, like metal insulator transition [15], colos-
salmagnetoresistance (CMR)[16] [17] etc, take place near the magnetic ordering tempera-
ture of LSMO type materials. In mixed valence manganites, hopping of the eg electron
between Mn3+ (3d4) and Mn4+ (3d3) electrons takes place with equal energy before and
after the hopping process, but the valence of both the manganites changes after it. During
hopping the spin is conserved and hence, a ferromagnetic ordering takes place as shown in
Fig. 2.4. This real hopping process is different from the super-exchange interactions where
the exchange takes place through hypothetical excited states. Spin dependent hopping pro-
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cess can explain some of the facts like colossal magnetoresistance, metal insulator transition
etc, but is not enough to explain all the exciting phenomena.

Fig. 2.4 Mechanism of double exchange.

2.1.1 Magnetocrystalline anisotropy (MCA)
Magnetocrystalline anisotropy (MCA) originates from coupling between the spin and orbital
motion of electrons in the crystal lattice. As the magnetocrystalline anisotropy is strongly
related to the lattice symmetry, this gives a preferred crystallographic direction to the mag-
netic moment to align. The simplest case of MCA can be considered as uniaxial anisotropy
which can be written in the form of anisotropy energy (up to fourth order terms) as [18]:

Eanis = Ku1 sin2
θ +Ku2 sin4

θ (2.2)

where, θ is the angle between anisotropy axis and magnetization direction. Positive large
values of Ku1 favor easy axis. For hexagonal systems, for positive values of Ku1, if Ku2 >

−Ku1 c-axis is the easy axis and if Ku2 < −Ku1 basal plane is the easy plane. For negative
values of Ku1, if Ku2 < −Ku1/2 basal plane is the easy plane and if 2Ku2 > −Ku1 an easy
cone is observed.

2.1.2 Spin orbit interaction (SOI)
Spin orbit interaction is a relativistic term, originates from the relative motion of electrons
in the lattice, and is the primary contributor to magnetocrystalline anisotropy. We can write
a simple Hamiltonian as:

HSO = λL ·S (2.3)
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Here, λ is the spin orbit interaction coefficient, the strength of which depends upon the
symmetry of the crystal and orbital moment in the crystal. The degeneracy of the term is
given by (2J + 1). In most of the systems orbital angular momentum is not observed and
is said to be quenched. Orbital angular momentum operator is purely imaginary. In the
absence of possibilities of liner combinations of them, mostly orbital angular momentum
is quenched, i.e.the expectation value, ⟨ψ|L|ψ|⟩ = 0. If the crystal field does not remove
the degeneracy completely, there can be linear combinations which give real values of the
expectation value (for e.g.Fe+ in octahedral high spin state). In systems where complete
quenching of orbital angular momentum takes place, SOI can have an effect on higher order
perturbation theory and may lead to new excited states. SOI restores the quenched orbital
moment to some extent, leading to preferred magnetization direction.

Competing interaction In the case of two competing exchange integrals, e.g.nearest
neighbor J1 and next nearest neighbor J2, other non-collinear orderings like screw type,
helical or cycloidal are possible for suitable values of J1 and J2. The total Hamiltonian for
competitive interactions can be written as:

H = ∑
i j
(J1SiSi+1 + J2SiSi+2)

=−2NS2(J1cosθ + J2cos2θ)

(2.4)

Minimizing the energy in Eq. 2.4 we can have the following condition:

cosθ =− J1

4J2
, for |J1| > 4|J2| (2.5)

Depending upon the values of J1 and J2, ferromagnetic, anti-ferromagnetic or helimagnetic
ordering can be found as shown in the Fig. 2.5. The angle θ between the nearest neighbor
spins is given by Eq. 2.5.

2.1.3 Anisotropic exchange interaction

All the exchange interactions described above are isotropic as, with respect to the crystal
axis, they do not depend upon the moments. Spin orbit interaction, when included in the
exchange interaction, becomes anisotropic and the excited states are allowed to mix with
the ground state, which makes them sensitive to the local crystal environment. The total
Hamiltonian for the exchange interactions of two spins in atoms a and b can be written as:

H = ∑
i j

J
(
SiS j

)
+

1
2 ∑

i j
Di j[Sa,iSb, j +Sa, jSb,i]+d[Si ×S j] i, j = x,y,z (2.6)
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Fig. 2.5 Competing ferromagnetic and anti-ferromagnetic interactions between J1 and J2,
leading to helical magnetic order [19].

First term represents the isotropic exchange discussed so far and the remaining two terms
represent the anisotropic exchange interactions. The anisotropic exchange is a small cor-
rection to the isotropic exchange and is often neglected. Physical interpretation of the
anisotropic exchange can be viewed as the change in charge distribution around magnetic
atom as a result of change in spin direction caused by SOI. As a consequence there is a
change in the orbital overlap and this leads to a different strength of exchange interaction
with the direction of spontaneous magnetization [20].

The anisotropic part has a symmetric and an antisymmetric contribution. Symmetric
exchange takes place when the energy of the right-handed (↖↗) and left-handed (↗↖)

magnetic configurations are the same, else it may be antisymmetric exchange. The second
term in Eq. 2.6 represents symmetric anisotropic exchange and the third term represents
the antisymmetric anisotropic exchange interactions. Single on-site excitations due to SOI
contribute the antisymmetric part and two excitations due to SOI contribute the symmetric
part of anisotropic exchange. This is explained in Fig. 2.6 by considering the states for
atoms a as [η , ϕ and ξ ] and for atom for b as [ζ , θ and λ ].

Symmetric anisotropic exchange

This type of exchange interactions are predominant in systems with orbital order and re-
duced dimensionality. Some of the transfer processes due to hopping in symmetric ex-
change are shown in Fig. 2.6(a). Electron from the ground state η is first excited via SOI to
ϕ state and then comes back to the ground state ζ at b. Same thing can happen in atom b.
There exist some other pathways also which are discussed in detail elsewhere [21]. Here the
exchange constant Di j has the same magnitude for processes a→b or the reverse process.
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Fig. 2.6 Schematic of (a) Symmetric anisotropic exchange (b) Antisymmetric anisotropic
exchange interactions. Blue lines represent transitions with the excited state due to SO
coupling while the red arrows represent electron hopping via the transfer integral. There can
be some other excited states also. Only one excited state is represented here. (c) Possible
hopping and transfer processes when two magnetic atoms a and b are connected via a non
magnetic atom c. Redrawn after [21].

Therefore, the process is symmetric.

Antisymmetric anisotropic exchange

Dzyaloshinskii-Moriya interaction

For explaining the weak ferro-magnetism in Cr2O3 type oxides Dzyaloshinskii [22] and
later Moriya [23] used anisotropic exchange interaction (the third term in Eq. 2.6). d is a
constant vector and comes into existence after the spin-orbit-interaction (SOI). Normally the
anisotropic term d is very small compared to isotropic term J (d

J ∼ 10−2). Antisymmetric
exchange is illustrated in Fig. 2.6(b). SOI breaks the degeneracy and the ground states η

and ζ , of the individual atoms a and b respectively, can interact via the excited state θ as
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shown in Fig. 2.6(b) [21]. Electrons excited from the ground state η of one atom a can
be excited to the excited state θ in atom b and then it comes back to ground state ζ of
atom b by transfer integral and finally to the initial state. Hopping and transfer integrals for
two magnetic atoms bonded to a central nonmagnetic atoms are shown in Fig. 2.6(c). The
charge transfer energy from atom a to atom b is very large compared to that from crystal
field splitting or to that from the charge transfer to nonmagnetic atoms in the middle of
magnetic atoms.

The Hamiltonian for DM interaction can be written as:

HDM = ∑
i j

di j.(Si ×S j) (2.7)

The energy HDM depends upon the symmetry of the system, spatial directions of spins i
and j, value and direction of di j depends upon the symmetry of the system. Because of
DM interaction, collinear ferrimagnetic structure becomes unstable and a new non-collinear
canted magnetic structure arises. This may lead to chiral structures with a specific chirality
C given by c = Si ×S j. The chirality can be defined depending upon the sign of c i.e.for
c > 0 it right handed and for c < 0 it is left handed. The canting angle can be estimated from
the two site model:

HDM = JS1 ·S2 +d · (S1 ×S2) (2.8)

The angle θ between the two spins determines the energy E of the system as:

E = JS2 cosθ +dS2 sinθ (2.9)

and the angle θ is given by tan(π −θ) = |d/J|.
Moriya [23] generalized the directions of the vector d after introducing SOI in Ander-

son’s formalism [24]for two atoms in points A and B in a straight line and C is the point
bisecting them. For d = 0 inversion symmetry is present between the interacting atoms or
a mirror plane (⊥ AB). This implies that the interacting atoms must be different or have
different chemical environments. Moriya [23] gave the following rules for determining the
directions of d.

1. when there is an inversion center I at C: d = 0.

2. if a mirror plane exists perpendicular to A and B through C: d∥ mirror plane or d ⊥
mirror plane.

3. if a mirror plane including A and B exists: d ⊥ mirror plane.
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4. a two fold rotation axis C2 ⊥ AB passes through C: d ⊥ two fold axis

5. if an n fold axis Cn along AB exists: d ∥ AB

A necessary condition for d to have a finite value and hence a finite contribution from
DM term to total energy, is the breaking of inversion symmetry. This breaking of space
inversion symmetry may lead to electric polarization, which will be discussed in section
2.3. A small value of d has been measured by [25] very recently using resonance x-ray
scattering technique.

2.2 Polar orders: Ferroelectrics
Ferroelectrics are insulators that have spontaneous polarizations, i.e.they exhibit ordering
of their electrical dipole moments or inducing of new dipole moments even in the absence
of an applied external electric field. Possibility of switching of polarizations by external
electric field is one of the conditions for materials to be called ferroelectrics.

For materials to show polarization primary condition is to have a non-centrosymmetric
structural arrangement. The competition between short range repulsions favoring symmetric
structure and the bonding forces favoring non-centrosymmetric state determines the polar-
ity. A ferroelectric is characterized by an order-disorder transition at Curie temperature
(Tc), above which the short range repulsion is the dominant force favoring symmetric ar-
rangements [2]. Below the ordering temperature the bonding forces dominates the repul-
sive forces and a non-centrosymmetric structure is favored. Local ordering of the dipole
moments can act in a cooperative way to give polar order and thus, a net polarization is
observed.

A common example of ferroelectricity in transition metal systems is BaTiO3 (BTO).
According to the accepted theory, local force causing the off-center distortion of the Ti4+

ion is considered to be due to the hybridization of the empty 3d orbitals and 2p orbitals in
oxygen [2]. In this mechanism d0 state in the transition metal is a necessary condition. There
are other ways to break the inversion symmetry, which will be discussed in the following
sections.

2.3 Multiferroics: Interplay between spin and dipole
As discussed in section 2.1, magnetism is a phenomenon solely by unpaired electrons. In
section 2.2 we found that empty d states are essential for transition metal oxides to show
conventional polar orders. On a first glance, spin and conventional ferroelectric polar orders
appear to be mutually exclusive [2]. Only very few materials exist in which intrinsically
both the orders coexist. Therefore, some alternative mechanisms have been looked for in
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the last decade. The term multi f erroic was coined to define a material that has more than
one ferroic property associated with it [26]. This is pictorially represented in Fig. 2.7.
Multiferroics have been classified into two broad types by Daniel Khomshkii [27].

Fig. 2.7 Multiferroics: coupling between different order parameters.

1. Type-I: These are ferroelectrics where ferroelectric property is independent of mag-
netic structure, in many cases origin of both magnetism and ferroelectricity are due
to different atoms. Cross coupling between both the spin and polar orders are not
observed in many cases. A typical example is BiFeO3, where magnetism is due to
3d5 high spin moments of Fe3+ and electric polarization is due to the 6s lone pair
of electrons present in Bi3+, which modifies the hybridization to break the inversion
symmetry. Although both the orderings occur above room temperature, the G-type
anti-ferromagnetic structure (see Fig. 2.2) does not allow net magnetization. This net
magnetization was overcome in thin films and nanostructures [28, 29]. A different
class of materials exists, where ordering of charge in the metal ions can lead to ferro-
electricity. In this case, spins are free [30] with charged valence states to contribute to
magnetism. Very high cross coupling can be expected from this type of materials as a
small change in charge configuration can lead to a considerable change in magnetiza-
tion. However, out of the many predicted charge ordered multiferroics, macroscopic
evidences are not many. LuFe2O4 was proposed to have charge order based ferroelec-
tric ordering [31] but recent works have proved it to be not ferroelectric [32–34]. In
magnetite, although polar structure was found below Verwey transition [35], only re-
cently it has been proved that switching of charge orders can be achieved by applying
electric field [36].
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Fig. 2.8 Mechanism of multiferroicity [37].

2. Type-II: In this type of multiferroics polar order originates from magnetic order-
ing, for example. Certain non-collinear magnetic ordering leads to space inversion
symmetry breaking and a net polarization can be obtained. After the discovery of
ferroelectric polarization associated with a magnetic transition in TbMnO3 [38], the
research area called magneto-electric gained considerable interest [37, 39–43]. For
spin based magneto-electrics, different mechanisms have been proposed as listed be-
low:

(a) Symmetric exchange striction mechanism: In a typical exchange striction
mechanism, ferroelectricity is induced by symmetric exchange interaction. In
Fig. 2.8(a), (b) and (c) the symmetric exchange interaction between down,
down − up, up and up − down, up − down spins Si and S j in two atoms A
and B of different charges leads to displacement of the atoms due to striction
associated with the spin configuration (see Fig.2.8(b) and (c)). Finite electric
polarization in a certain crystallographic direction Πi j can be found from the
following equation:

Pi j ∝ Πi j(Si ·S j) (2.10)

A primary condition for exchange striction mechanism is the requirement of
commensurate spin order [37], so that the displacement due to striction is not
canceled out after summing out over the entire lattice. Magneto-electric effect in
some of the orthorhombic rare-earth manganites RMnO3 (where R is Ho, Y, Tm,
Yb or Lu) can be explained on the basis of this exchange striction mechanism in
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E-type magnetic ordering [44–46].

(b) Inverse DM interaction (IDM): We found earlier (see subsection 2.1.3) that in
anisotropic antisymmetric exchange interaction absence of center of inversion
leads to non zero d vector. In other words, we can say that DM interaction leads
to non-collinear spin arrangement. After formation of a spiral spin structure, for
example, as a result of competitive nearest and next nearest neighbor interaction
(see 2.1.2), as a reaction to it the system can minimize its energy by lattice de-
formation that creates a non zero d vector consistent with the non-collinear spin
order already formed. Therefore, inverse DM interaction can be considered as
the lattice relaxation to minimize the energy by atomic displacement of the cen-
ter atom as a result of DM interaction. This, in turn, results in a net polarization
in the direction as shown in Fig. 2.9.

Fig. 2.9 Inverse DM interaction.

To explain the magnetic structure of Cr2O3 system, Cox introduced some termi-
nology regarding the spiral spin ordering which was later modified by Kimura
[39] and Tokura [37, 40] and is shown in Fig. 2.10. A generalized expression
for the induced polarization in these compounds due to magnetic spiral ordering
was obtained [47, 48] from the Hamiltonian Eq. 2.7. The net polarization is
given as:

P = a ∑
i,i+1

ei,i+1 × (Si ×Si+1) (2.11)

ei,i+1 is the unit vector in the propagation direction connecting the two adjacent
spins.

(c) Spin current mechanism: Similar to the spin polarized current in semicon-
ductors, a new mechanism has been proposed for spin induced ferroelectricity
[49]. This mechanism can be explained with the help of Fig. 2.11 [49]. As can
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Fig. 2.10 Different types of spiral orders.

be seen in the figure, two magnetic atoms M1 and M2, with oxygen in between
them, carry non-collinear moments S⃗1 and S⃗2. A spin current J⃗s is proposed
to exist in the direction shown by the green arrow. This spin current J⃗s is pro-
portional to S⃗1 × S⃗2. The direction of the electrical polarization is proportional
to the vector product of the spin current J⃗s and a unit vector e⃗i j along prop-
agation vector direction. Therefore, the net polarization is given in the same
direction as the polarization by DM mechanism by the same Eq. 2.11. On a
phenomenological level both the mechanisms are equivalent, with the difference
that, in spin current mechanism polarization is from electronic contribution from
spin current (which changes electron density) whereas in DM interaction shift
of nonmagnetic atoms contributes to polarization. Spin current mechanism can
also be called as inverse DM interaction (IDM).

Macroscopic polarization in different spirals Although microscopically lo-
cal breaking of inversion symmetry takes place in IDM interaction, for macro-
scopic polarization different symmetry considerations should be accounted for:

i. Cycloidal spin structure: As can be seen from Fig. 2.10 and Fig. 2.11,
in the cycloidal spin configuration the vector product of the adjacent spin
vectors S⃗i and S⃗ j is not parallel to the unit vector e⃗i j connecting the two
adjacent sites or to the propagation vector direction. Therefore, a net polar-
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Fig. 2.11 Spin current mechanism of multiferroicity after [49].

ization can be realized according to Eq. 2.11 in a direction perpendicular to
both the propagation vector and the cross product of the spins.

ii. Proper screw structure (helical): In the proper screw structure, according
to IDM or spin current mechanism, net polarization is zero. The vector
product of two adjacent spins is always parallel to the propagation vector
direction.

iii. Longitudinal conical structure: In longitudinal conical spiral also, like
proper screw spiral, net polarization is zero.

iv. Transverse conical spiral: In transverse conical spiral the vector product
of the spins is not parallel to propagation direction and so, a nonzero final
vector product can be reached according to Eq. 2.11. Therefore, macro-
scopically, polarization is possible. Transverse conical structure can be
decomposed into ferromagnetic and cycloidal structure. In our compound
of interest Y-type hexaferrite with composition Ba(2− x)SrxZn2Fe12O22 a
proper-screw magnetic structure was reported. Magnetic field driven ferro-
electric polarization was found in this compound. So, according to above
rules it can not be due to IDM mechanism. Therefore, we investigated
the magnetic structure using several scattering techniques and macroscopic
measurements.

(d) The p-d hybridization mechanism: In this mechanism a single magnetic site
coupled with a ligand atom can produce a local dipole moment. Via SOI, the
ionic character of the covalent bond between the metal and ligand is modulated
depending upon local spin moment direction. This produces a dipole moment
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in the bond direction. This mechanism is very rare and is found only in some
selective compounds like CuFeO2 [50], MnI2 [51] etc.

2.4 Hexaferrites
In the previous chapter we have discussed about different spin based magneto-electric mate-
rials. When we compare different spin based multiferroics, it can be seen that most of them
have either of the ferroic ordering temperatures far below room temperature. For example,
orthorhombic manganites have spin based ferroelectricity only below 28 K [52]. Transverse
conical spin spiral CoCr2O4 has magnetic field driven ferroelectricity below 26 K [53]. In
case of cycloidal MnWO4 the ferroelectricity is observed below 12.5 K [42]. In case of CuO
relatively high temperature (230 K) ferroelectricity is observed in the spiral phase because
of the high super-exchange interaction near 180° bond angle [54]. To explore the magneto-
electricity in single phase oxides the super-exchange interaction should be strong enough
to have a magnetic order at room temperature that favors the magneto-electric coupling.
Mostly spiral order is due to the nearest neighbor and next nearest neighbor competitive
super-exchange interaction, causing the frustration, which lowers the magnetic transition
temperature. Therefore, strong super-exchange interaction is a necessary step for material
design for multiferroics based on spin order at room temperature. An overview of materials
showing spin based multiferroics can be found in ref. [37, 39, 40].

2.4.1 Magnetoelectric hexaferrites
Hexaferrites are one of the oldest and the most extensively used magnetic materials in
permanent magnet applications. In the last decade hexaferrites have been found to show
promise for tuning magneto-electric coupling to room temperature. In fact, this class of
materials are the only materials having magnetic ordering above 100 K with spiral spin
based multiferroicity. Moreover, high magnetic moments are observed in all the classes
of hexaferrites (see following sections for various classes of hexaferrites), high ferrimag-
netic moments are observed which favor practical applications. In the year 2005, a class
of hexaferrite, called ’Y-type’ hexaferrite, was found to display magnetic field driven ferro-
electricity below 130 K and the maximum of the field-driven polarization was near 1 Tesla
[3]. In the year 2008, low field (±30 millitesla) magneto-electric coupling was found in
Mg and small amount of Al substituted ’Y-type’ hexaferrite [55, 56]. In the year 2010,
Sc and Mg substituted for Fe in another class of hexaferrite, the ’M-type’ hexaferrite, was
found to show magnetic field driven ferroelectricity [57]. In the same year, room temper-
ature magneto-electric coupling was demonstrated in the class called ’Z-type’ hexaferrite
[58, 59] powders. These hexaferrites are difficult to classify in a generalized way on the
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basis of their magnetic structures as they range from proper screw to longitudinal conical,
transverse conical and ferrimagnetic spin structures. With little modification in the tran-
sition metal site (by substituting other magnetic or nonmagnetic ions) and in the alkaline
earth metal site (by the same group elements of different sizes), magnetic structures can be
changed from one to another. Magnetic field driven ferroelectricity is observed in almost
all of the hexaferrite structure types. Most importantly, spontaneous magnetization is found
near room temperature and above it. Therefore, hexaferrites are one of the most promising
materials for room temperature applications.

2.4.2 Crystal structure of hexaferrites
Hexaferrites are known by different names such as Feroxdure, Barium Hexaferrite, Barium
Ferrite etc. and are used extensively for permanent magnet applications. All the hexaferrites
crystallize in hexagonal structures with hexagonal or rhombohedral space group. In table
2.1 different types of hexaferrites are shown. There are different ways to classify all the
hexaferrites, one of them is based on the three constituent blocks: spinel, M-type and Y-
type hexaferrite. All other hexaferrites are constituted with these three units, as shown in
table 2.1. Other classifications are discussed in successive sections.

Table 2.1 Different hexaferrites with their structural blocks

Name Molecular formula Molecular units Blocks C Å(Approx) Space group
S MeFe2O4 S 1/2S
M RFe12O19 M SR 23.2 P63/mmc
W RMe2Fe16O27 M+2S SSR 32.8 P63/mmc
X R2Me2Fe28O46 2M+2S SRS∗S∗R∗ 84.1 R3̄m
Y R2Me2Fe12O22 Y STSTST 43.5 R3̄m
Z R3Me2Fe24O41 Y+M STSR 52.3 P63/mmc
U R4Me2Fe36O60 Y+2M SRS∗R∗S∗T 38.16*3 R3̄m

M-type hexaferrite

Apart from simple spinel, the least complex structure is M-type hexaferrite. To understand
the structure let us start from a layer of oxygen called layer-A as shown in Fig. 2.12. There
are two ways in which the next layer of oxygen is placed: one is layer-B as shown by blue
triangle and the other is layer-C as shown by the red triangle in the Fig. 2.12. There are
four oxygen atoms per projected unit cell in the layers B and C. One of these four oxygen
atoms is replaced by an alkaline earth metal ion, such as Ba or Sr, to form the B′ and C ′

layers. These layers A, B, C, B′, and C′ can be organized in different ways to form different
hexaferrites [60].
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Fig. 2.12 Different close packed layers in hexaferrite. Gray colored atoms are oxygen,
greens are alkaline earth metals and brown are transition metals.

M-type hexaferrite crystallizes in P63/mmc (194) space group. The first layer (the B-
layer of oxygen) starts at z = 0.05 and the sequence goes on as: BAB′ABCAC′AC.

The B1S4 model for M-type hexaferrite

In the nomenclature for this hexaferrite, a single barium containing layer is called as B1-
layer as shown in Fig. 2.13. The B1-layer is sandwiched between the ABCA type cubic
blocks called the S4-blocks and contain four layers of oxygen. This B1-layer shows a three
fold symmetry between two spinel plates. Apart from the Ba atom, the other oxygen atoms
form two triangles as shown in blue lines in the right side of the Fig. 2.13. The Ba atom
marked X in yellow is above the plane and the one opposite to it is below the plane. Spinel
planes can be reflected through this B1 layer.

The R-S model for M-type hexaferrite

In this widely accepted form of nomenclature, R refers to the hexagonal packing such as
AB′AB′ or AC′AC′ and S is the cubic packing such as ABC. This is a much superior way
compared to B1S4 model to define the hexaferrite, as each block contains distinct magnetic
characteristics which gives rise to saturation magnetization.

The S-block consists of two ABC type oxygen layers having spinel units with unit for-
mula Me2Fe4O8. In between the oxygen layers there are four octahedral sites and two
tetrahedral sites with coordination numbers 6 and 4 respectively with oxygen co-ordination
environment.
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Fig. 2.13 B-S and RS blocks in M-type hexaferrite.

The R-block (rhombohedral) consists of three layers of oxygen but the middle layer
is a B1 layer as discussed in B1S4 model, with a formula unit of BaFe6O11. There is an
asymmetry in the co-ordination environment of the transition metal ions in the R-block
because of the Ba2+ ion and therefore, a 5 co-ordinated trigonal bi-pyramidal site exists in
the R-block with Fe(2) ions in it (as can be seen in Fig. 2.14(b)).

There are different types of voids in the closed packing, like tetrahedral, octahedral,
trigonal bipyramidal etc. Iron atoms Fe(1), Fe(4) and Fe(5) with Wyckoff positions 2a, 4f2

and 12k occupy the octahedral sites as shown in Fig. 2.14(b). Fe(3) with Wyckoff position
4f1 has a tetrahedral ligand environment. Fe(2) with Wyckoff position 2b goes to the trigonal
bi-pyramidal site as shown in Fig. 2.14(c).

Y-type hexaferrite

Y-type hexaferrites, which constitute the main topic of research in this thesis, like M-type,
have distinct features. Using various combinations of Y-type and M-type hexaferrite and
spinel type structures all the other hexaferrites can be built. Y-type hexaferrite crystallizes in
R3̄m space group. Y-type hexaferrites have a general formula of Ba2Me2Fe12O22 where Ba
can be substituted by similar sized alkaline earth metal ions and Me is a bivalent transition
metal ion.
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Fig. 2.14 Polyhedra in M-type hexaferrite.

B2S4 model for Y-type hexaferrite

The crystal structure of Y-type hexaferrite can be described similar to that of M-type hex-
aferrite in light of the S4 blocks sandwiching barium containing layers. The S4 layer in
Y-type hexaferrite is also a 4-layered ABCA type spinel layer. The Ba containing layer has
two layers of oxygen, where one out of four oxygen is replaced by a Ba or any other alkaline
earth metal ion (as shown by the green layer in Fig. 2.15).

The T-S model for Y-type hexaferrite

Similar to M-type hexaferrite with R-S model, Y-type hexaferrites can be modeled by TST-
STS blocks (se Fig. 2.15). The spinel blocks are same as in M-type but the T-block contains
four layers of oxygen of ABAB types, where, in the central two layers one of the four
oxygen anions is replaced by an alkaline earth metal ion. T-block has a general formula
Ba2Fe8O14. One major difference in the transition metal sites in the T-block, compared to
R-block in M-type hexaferrite, is that the trigonal bi-pyramidal site is absent in T-block (see
Fig. 2.16).

Other hexaferrites

Other hexaferrites can be constructed with the help of spinel blocks, M-type and Y-type
hexaferrites as shown in Table 2.1. For example, Z-type hexaferrite is a stacking of 1/2 M-
type and 1/3 Y-type hexaferrites. In terms of blocks it can be considered as RSTSR∗S∗T∗S∗

as shown in Fig. 2.17. Similarly, U-type hexaferrite also can be constructed by using M and
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Fig. 2.15 B2S4 and T-S model for Y type hexaferrite.

Y-type hexaferrites.

2.4.3 Proposed spin structure of Y-type hexaferrite
Ba(1−x)SrxZn2Fe12O22 A planar proper screw spin structure was proposed [3, 5, 7, 8, 61]
for intermediate values of x for all fields applied perpendicular to c axis. The crystal is
divided into two spin blocks, large spin blocks and small spin blocks.

Magnetic structures of [Ba(1−x)Srx]2Zn2Fe12O22, depending upon x, were studied by
Utsumi et al.[62]. A unit cell contains 6 different types of Fe atoms as shown in Table 2.2.
Zn2+ ions are located at the two tetrahedral (6c) sites. We will use the formalism used by
Utsumi et al.[62]. A variable γ is defined where, occupation of Zn(1) is γ and that of Zn(2)
is (1− γ), however, total occupation of Zn2+ does not add up to 2 in stoichiometric formula
for different values of x [63, 64]. We also carried out refinement of single crystal X-ray
diffraction data and found the same and these results are presented in Chapter-3. For x = 0
individual spin directions of Fe3+ atoms in the 6c sites are opposite in direction to that of
3b, 18h and 3a sites.

Let us consider the first 12 layers of atoms, from height z = 0 of the unit cell, along
[001] as shown in Fig. 2.18(b). The most widely accepted spin structure [5] is of block
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Fig. 2.16 Transition metals sites in Y-type hexaferrite.

spin models which turns from helical to cycloidal [56, 65, 66] to ferrimagnetic structures
depending upon the composition and H. Based on refinements of single crystal neutron
diffraction data the boundary (T1/2ST1/2) between the blocks were proposed by Momozawa
et al.[7]. Within each block collinear ferrimagnetic ordering was proposed. This block
model makes it easier to model the magnetic structure. The spin structure in between the
blocks changes depending upon composition. For Ba(1−x)SrxZn2Fe12O22, it changes from
proper screw to collinear ferrimagnetic [3, 5, 7, 8, 61] depending upon x. In the available
model for describing the magnetic structure based on spin block model, the whole unit cell
is divided into two types of spin blocks along [001] as small S and large L (in later sections S
represents small spin blocks rather than spinel structural blocks, unless specified otherwise),
stacked one over the other alternately. These spin blocks are of two distinct configurations
as shown in Fig. 2.18(a). The boundary between the spin blocks are in the middle of the
tetragonal T crystallographic block and a large spin block can be called (T1/2ST1/2) [7]. In
terms of layer number, boundary between the spin blocks is found to be between j = 4 and
j = 5 layers as shown in Fig. 2.18(b) [5]. Values of γ were found to vary with x, which has
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Fig. 2.17 Crystal structure of Z-type and U-type hexaferrite.

an important role in determining whether the structure will be ferrimagnetic or non-collinear
[62].

Table 2.2 Different types of Fe3+/Zn2+ in unit cell of Ba2Zn2Fe12O22

Atom (label) Wyck structural block Magnetic block spin CFe Coordination
Fe(1) (Zn(1)) 6c T µS ↑ γ Td
Fe(2) (Zn(2)) 6c S µL ↑ 1− γ Td
Fe(3) 6c T µL ↑ 1 Oh
Fe(4) 3b S µL ↓ 1 Oh
Fe(5) 18h T,S µL ↓ 1 Oh
Fe(6) 3a T µS ↓ 1 Oh
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Table 2.3 Superexchange interaction in the first 12 layers of the unit cell from z = 0, for
x = 0. Numbers in superscript represent the layer number and that in parentheses represent
Wyckoff positions.

Fe j-O j-Fe j Exchange integral [62] Strength [67]
Fe1(6)-O2(3)-Fe4(1) very strong
Fe4(1)-O2(3)-Fe5(3) -0.365 weak
Fe4(1)-O6(1)-Fe8(5) -0.503 medium
Fe5(3)-O7(4)-Fe8(5) -1 strong
Fe8(5)-O10(5)-Fe11(2) medium
Fe11(2)-O10(5)-Fe12(4) medium

Fig. 2.18 (a) Crystal and spin structure of [Ba(1−x)Srx]2Zn2Fe12O22 in the ferrimagnetic
phase. On the left side of the structure, crystallographic T and S blocks are shown as dis-
cussed in 2.4.2. On the right side, small S (red) and large L (blue) spin blocks are shown.
(b) First 12 layers of atoms along [0 0 1]. (c) Expanded region of the boundary between
spin blocks. (d) Enlarged view of the boundary region without the spins.

Table 2.3 shows some super-exchange interactions and their strength. It is seen that
the ferromagnetic Fe4-O2-Fe5 super exchange interaction is weak. Fe4 is not pure Fe3+

but partially substituted by Zn2+. A close look at the spin structure reveals that all the



26 Introduction

super-exchange interactions lead to anti-ferromagnetic ordering, except Fe4-O2-Fe5 which
is shown by dotted ellipse in Fig. 2.18(a) and (c). Bond length between Fe/Zn4(1)—O3(3)
(blue) and Fe5(3)—O3(3) (brown) is modified by γ . The bond length O2(3)-Fe5 is much
longer compared to that of average Fe-O bond length. This will be discussed in detail in
Chapter-3. Change in bond length modifies the strength of the concerned super-exchange
interaction. This change in super-exchange interaction can explain the transition from fer-
rimagnetic to the non-collinear spin structure. This can also be viewed as a competing
exchange interaction between nearest neighbor Fe4-O2-Fe5 ferromagnetic and next nearest
neighbor anti-ferromagnetic Fe5-O7-Fe8.



Chapter 3

Experimental techniques

3.1 Sample synthesis

3.1.1 Powder synthesis
Solid state synthesis is one of the most widely used techniques, where reactants are mixed in
solid state and heated to high temperatures, very often above 1000° C. Both thermodynamic
and kinetic aspects are important in solid state reactions [68]. Decrease in the Gibbs free
energy favors the reaction to occur, which is determined by thermodynamic factors, whereas
the rate at which the reaction will occur is determined by the kinetic aspects. Solid state
reaction between two reactant species A and B to a thermodynamically stable species C
takes place via diffusion of reactants to the interfaces where nucleation of C takes place
as schematically shown in Fig. 3.1 (a). This process requires higher temperatures as the
crystal structure of the reactants and products in most cases are not similar and a lot of bond
breaking and making takes place. The rate of diffusion can be obtained from Fick’s first law
as:

J =−D
(

∂c
∂x

)
(3.1)

Here, D is the diffusion coefficient, J is flux of diffusing species and dc
dx represents the

concentration gradient. The average distance that a species will be able to travel is given by:

⟨x⟩= (2Dt)1/2 (3.2)

For a reaction to occur in a given time and at a particular temperature, therefore, average
crystallite size of the reactant should be smaller than ⟨x⟩. The rate of a solid state reaction
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can be controlled by controlling the following aspects:

• Grinding the reactants to smaller particles. In case of smaller particles, the reaction
rate is enhanced in two ways: first, the species have to travel shorter distance for
completion of reaction and second, higher surface area is provided.

• Proper mixing and pelletization of the reactant mixture is helpful for efficient reaction.

• Rate of diffusion depends upon temperature. Therefore, elevated temperature is re-
quired for a solid state reaction to take place.

3.1.2 Single crystal growth
The availability of good quality single crystals is essential in understanding many proper-
ties of matter, most importantly the tensor properties. Single crystals also help in avoiding
any effects arising from grain boundaries. Crystal growth can be considered as a phase
transformation from either liquid, solid or gas phase to solid phase. Solid-solid phase trans-
formation is a rare practice but gas to solid and liquid to solid are well established methods
for crystal growth. There are different methods of crystal growth. Therefore, in our work
we used optical floating zone and flux method of crystal growth. There are three basic steps
for crystal growth [69]:

• Supersaturation or supercooling.

• Nucleation.

• Growth of a particular phase of single crystal favoring the above two aspects.

Flux growth method Flux growth is primarily characterized by crystal growth from
high temperature solutions. In flux growth, initial task is to melt the constituents. Many
of the reactants have very high congruent melting points and very often melt incongruently
at low temperatures. Therefore, in flux growth they are melted with the help of a binary,
ternary or higher mixture, where one or more constituents is the flux. The mechanism
of melting materials, whose melting points are individually high, at lower temperature is
explained in Fig. 3.1(b). Practically, phase diagrams are more complex. For example, a
more complex phase diagram can be seen in [70]. Fluorides and oxides are commonly used
as flux for preparing oxide materials. Some examples are, PbO, PbF2, BaO, BaF2, Bi2O3,
Li2O, Na2O, K2O,KF, B2O3, P2O5, V2O5, MoO3 etc or mixtures of these.

In flux growth, nucleation may take place at the wall of the crucible or a seed crystal
can also be used instead. The molten flux can be decanted or the crystals can be removed
from the cold solid mixture by using suitable chemicals like acids which can dissolve the
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Fig. 3.1 (a) Mechanisms of solid state reactions (b) Lowering of melting point on mixing
different constituents (c) Temperature profile in the crystal growth, and (d) Schematics of
crystal growth inside a platinum crucible.

flux and other reactants [69]. Sometimes, to avoid some phases, some temperature recy-
cling processes are adopted which suppress the crystallization of that phase [71]. A typical
temperature recycling process is shown in Fig. 3.1(c).

Floating zone crystal growth Optical floating zone method compared to flux growth
is a faster method. In floating zone method, at 10 atm O2 pressure M-type hexaferrite
was prepared [57, 72] and in a recent report Y-type hexaferrite [73] was synthesized. A
schematic of optical floating zone method is shown in Fig. 3.2. Two sintered ceramic rods
of desired composition, one feed at top and other seed at bottom (see Fig. 3.2) are mounted
in a way such that their tips meet at the heating zone. Elliptical mirrors focus heat from
halogen lamps to the heating point to melt both the rods in the floating zone. After melting
in the zone the rods are moved either up or down in a controlled way and the the melt
cools down to form the single crystal. Rods are rotated in same or opposite direction during
growth to avoid nonuniform heating. Our trial on Y-type hexaferrites produced M-type
hexaferrite. Our speculation is that this may be due to nonavailability of 10 atm of oxygen
pressure. Therefore, in this thesis all the samples were prepared by flux method.
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Fig. 3.2 Scematics of an optical floating zone crystal growth chamber from [69].

3.2 Measurements of Macroscopic properties

3.2.1 DC magnetization
Macroscopic magnetization of the samples was performed using SQUID (Superconducting
Quantum Interference Device) magnetometer (Quantum Design Magnetic Property Mea-
surement System MPMS) and VSM (Vibrating Sample Magnetometer) options of a Quan-
tum Design PPMS (Physical Property Measurement System). Either the temperature or the
magnetic field is varied in the measurement while keeping the other constant.

SQUID magnetometer Underlying principle of a SQUID is a loop with two Joseph-
son junctions, as shown in Fig. 3.3(c), which act as a magnetic flux-to-voltage transducer.
The sensitivity is defined by the magnetic flux quantum. In a magnetic property measure-
ment instrument, a SQUID does not determine the magnetic moment directly. The sample is
allowed to pass through a series of detection coils of superconducting wires and the current
from the detection coils is coupled to the squid sensor, as schematically shown in Fig. 3.3(a)
[74]. This type of coil is called second order gradiometer coil, which excludes flux contribu-
tions that are constant, and is thus more sensitive to localized moment (i.e., the sample’s). A
second order gradiometer is more sensitive than a first order gradiometer coil with two coils
but is less sensitive than a third order gradiometer coil where four coils are used. A SQUID
sensor works as a linear current to voltage converter: change is current in the detection coil
is proportional to the change in SQUID output voltage which in turn is proportional to the
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magnetic moment in the sample.

Fig. 3.3 (a) Configuration of SQUID detection coils in a SQUID magnetometer (b) SQUID
output voltage as a function of scan length of the sample and (c) DC SQUID with two
Josephson Junctions.

As the sample is scanned through the detection coil the magnetic flux changes, and
hence the voltage through the detection coil changes. This can be traced as a function of the
sample position. The sample moment is then obtained by fitting the response as point-like
dipole moments. The SQUID magnetometer used in this study is made by Quantum Design
Inc [75]. and is capable of measuring magnetic properties in the temperature range 1.8 K
to 400 K in standard setting and up to 800 K with oven option. Magnetic field range is ±7
Tesla. Two different options are available: one is DC and the other is RSO (Reciprocating
Sample Transport Option). DC measurement is characterized by sample transport in discrete
steps while RSO motor oscillates the sample rapidly with a small amplitude of 5 mm. The
RSO option is helpful when a very fast measurement is required. SQUID is a very sensitive
magnetometer with sensitivity of the order of 5× 10−8 emu. Samples are mounted to the
sample rod by glues with negligible magnetic moment and this does not effect our results as
the samples measured have comparatively high magnetic moments.

VSM option in PPMS Compared to DC measurement in SQUID magnetometer, Vi-
brating sample magnetometer (VSM) is a faster measurement option. The sample to be
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measured is mounted in between two pick-up coils by a linear motor head. The sample is
vibrated with 40 Hz in vertical direction. Change in magnetic moment with vibration in-
duces an electric current in the pick up coil. Lock in technique is used to separate the sample
moment from the electrical noise. The instrument used has a sensitivity of about 10−6 emu.

3.2.2 AC magnetic susceptibility

AC magnetic measurement (ACMS) is a tool to study the magnetization dynamics where
the induced moment is a time dependent phenomenon. We used the ACMS option in PPMS,
where the sample is centered within the coil and a small external AC field is superimposed
on the DC field. This produces a change in moment in the detection coil. The AC moment
is given by:

MAC(t) =
dM
dH

HAC sin(ωt) (3.3)

where, HAC is the amplitude of the driving field, ω is the driving frequency, χAC = dM
dH is the

slope of the M-H curve and is called AC susceptibility.

From ACMS measurement, information about relaxation process, relaxation time and
spin glass nature of the magnetic systems can be studied. The AC susceptibility, χAC, is a
complex quantity and can be written as: χAC = χ − iχ ′. The real part, χ , is related to the
reversible magnetization process with oscillating magnetic field H(t) = H0 + Acos2πωt
and the imaginary part, χ ′, is the irreversible magnetization process, which corresponds to
energy absorbed from the field. For phase shift θ , magnetization is given as:

M(t) = M0 + cos(2πωt −θ) (3.4)

Thus, we can write the values of χ and χ ′ as:

χ = mcosθ/A (3.5)

and χ
′ = msinθ/A (3.6)

χ and χ ′ of a sample depend mainly upon the temperature, frequency ω and amplitude A of
the driving field. Other parameters such as static bias, applied pressure and other external
parameters may also influence it. Compared to DC susceptibility, temperature dependent
AC susceptibility gives sharp transition temperature values and it separates out the order
disorder transitions from the local short range orderings [76] (which will be discussed in
Chapter4).
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3.3 Scattering theory

Scattering methods of characterization are unique tools to determine the microscopic char-
acteristics of a sample, which in turn give valuable correlation to the macroscopic proper-
ties of interest. Scattering theory provides a background to understand the actual scattering
process and design experiments. A scattering event is a quantum mechanical event and so
should be treated quantum-mechanically. A scattering event for a particular scattering probe
with wave function ψ can be described by the following Hamiltonian, considering only the
elastic scattering and ignoring the spin (for details see ref [77]):

ih̄
dψ

dt
=

[
− h̄2

2m
∆

2 +V (⃗r)
]

ψ

V (⃗r) = 0 except inside the target.
(3.7)

For an incoming plane wave ψk(⃗r) = eikr, the time independent stationary Schroedinger
equation can be written as:[

− h̄2

2m
∆

2 +V (⃗r)
]

ψ (⃗r) = Eψk(⃗r) (3.8)

The energy E is given by the plane wave energy Ek =
h̄2

2mk2. We can introduce the Green
function Go to Eq. 3.8 by defining:[

h̄2

2m
∆

2 +E
]

Go(⃗r,⃗r′ | E) = δ (⃗r− r⃗′) (3.9)

We can consider the function ψo equal to the incoming wave to be the solution for V (⃗r) = 0
i.e., ψ

′(0)
k = ψk(⃗r) = eikr. This equation can now be transformed to an integral equation, as

given below and is called the Lippmann-Schwinger equation:

ψ
′
k(⃗r) = ψ

(0)
k (⃗r)+

∫
d3r′G0(⃗r,⃗r′ | E)V (⃗r′)ψ ′

k(⃗r
′) (3.10)

By defining the boundary condition such that ψ ′
k(⃗r) is the outgoing scattered wave, Green

function is:

Go(⃗r,⃗r′ | E) =−2m
h̄2

1
4π

eik|⃗r−⃗r′|

|⃗r− r⃗′|

where k =

√
2m
h̄2 E

(3.11)
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Since the Lippmann-Schwinger equation contains ψ ′
k on both the sides, we make a few

approximations for getting non-trivial solution. Let us consider the scattered wave function
for zeroth order (V = 0) be a plane wave ψ

′(0)
k (⃗r) = eik⃗r. So the Eq. 3.10 can be written as:

ψ
′(n+1)
k (⃗r) = eik⃗r +

∫
d3⃗r′G0(⃗r⃗r′ | E)V (⃗r′)ψ

′(n)
k (⃗r′) (3.12)

Now, by Born expansion, we get:

ψ
′
k = ψ

′(0)
k +ψ

(1)
k +ψ

(2)
k +ψ

(3)
k + · · ·· (3.13)

The first term in the Eq. 3.13 stands for no scattering event, second term represents single
scattering event and the rest of the terms represent multiple scattering. The second term is
called the first Born approximation. In a real scattering event, the distance between scatter-
ers (⃗r′) is much smaller than the distance (R⃗) of detectors from the sample. This condition is
the Fraunhofer Approximation. Experimentally, this far field limit is a good approximation
as we place the detector and source at a distance much larger than the volume of the sam-
ple. For small volumes of samples multiple scattering can be neglected. Moreover, in soft
X-ray resonance diffraction, which is extensively used in our experiments, multiple scatter-
ing can be potentially neglected as the scattering is observed from only a few unit cells on
the surface. Neglecting multiple scattering from first Born approximation and Fraunhofer
approximation for

∣∣∣R⃗∣∣∣= ∣∣∣R⃗− r⃗′
∣∣∣ and Q⃗ = k⃗′− k⃗, we can approximate Eq. 3.10 as:

Ψ
(
k1)(⃗r) =

Incoming︷︸︸︷
ei⃗kR⃗ +

Scattered︷ ︸︸ ︷
−2m

h̄2
1

4π

eikR

R

∫
eiQ⃗⃗r′V (⃗r′)d3r′ (3.14)

The second term in Eq. 3.14 represents the scattered wave in the direction of k⃗′. The
intensity, collected in the detector place in the direction of k⃗′, is a square of the absolute
value of it and is given as:

I(Q⃗) ∝

∣∣∣F(Q⃗)
∣∣∣2 = ∣∣∣∣ m

2π h̄2

∫
V (⃗r)eiQ⃗r⃗′d3r′

∣∣∣∣2 = |F [V (⃗r)]|2 (3.15)

F is the Fourier transform of the scattering potential. In most experiments the intensity of
the scattered beam is measured and phase information is not measured. Therefore, obtaining
scattering potential from the simple inverse Fourier transformation is not possible, and this
is referred to as the famous phase problem.

Replacing r⃗′ to single scattering particles in spatial distribution, we can rewrite Eq. 3.15
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Fig. 3.4 Diffraction [78].

as:

∫
V (⃗r)eiQr′d3r′ =

N

∑
j=1

eiQ⃗r⃗ j

∫
V (⃗r′)eiQ⃗r⃗ j ′d3r′ (3.16)

The scattering potential V (⃗r′) depends upon the probed material and the radiation used.

Bragg scattering For a periodic crystal, the scattering potential is to be invariant under
the translation vector t⃗ = ua⃗1 + va⃗2 +wa⃗3, where u, v and w are integers and a⃗i are funda-
mental lattice vectors. Therefore, the scattering potential V (⃗r) = V (⃗r+ t⃗) can be expanded
as a Fourier series as:

V (x) = ∑
t

Vtei⃗t⃗x (3.17)

We can introduce the reciprocal lattice vector G⃗ = hb⃗1 + kb⃗2 + lb⃗3 and G⃗ ·⃗ t = 2πn (where,
n is an integer). h, k and l are integers such that they satisfy for all t⃗, producing plane waves
having the same periodicity as that of the concerned Bravais lattice.

The distance between two planes defined by Miller indices (hkl) is related to G as fol-
lows:

d(hkl) =
2π∣∣∣G⃗(hkl)

∣∣∣
The situation G⃗(hkl) = Q⃗(hkl), known as Laue Condition, states that scattered intensity
can be observed only if the scattering vector Q⃗ is equal to a reciprocal lattice vector, and
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otherwise averages to zero due to destructive interference from high number of scatterers.
For an observed reflection, the scattering amplitudes interfering constructively along the
direction of k⃗′, means that the phase factors of the waves scattered at lattice points of the
crystal differ only by a factor e2πin along k⃗′ (where n is an integer). Mathematically, we
have the famous Bragg equation as follows:

2d(hkl) sinθ = nλ

where, 2θ is the angle between the incident and the scattered wave, and n is the order of
reflection.

Ewald sphere The condition for appearance of a Bragg reflection can be determined
by an Ewald Sphere. An Ewald sphere is a imaginary sphere drawn with radius equal to
the wave vector |k| = 2π/λ and the origin of the crystal as origin of the reciprocal space
(as shown in Fig. 3.4(d)). Only those reciprocal lattice points which coincide with the
surface of the Ewald sphere give constructive interference and hence, only those reflections
are observed.

In a good approximation, the scattered intensity can be calculated by putting atoms in
the respective lattice points x, y and z. The amplitude of the scattered beam can be calculated
as a combination of the scattering potential and the atomic position as:

F(hkl) = ∑ fa(Q)e−2πi(hx+ky+lz)

where, t = xa⃗1 + ya⃗2 + za⃗3
(3.18)

fa(Q) is the atomic scattering factor. This atomic scattering factor is different for different
probes as explained in the following sections.

3.4 X-ray scattering

Before going to details of x-ray scattering, let us define the scattering geometry and various
co-ordinate systems used as shown in Fig. 3.5. The three Cartesian coordinates are along U1,
U2 and U3 as shown in the Fig. 3.5. Linear polarization in the scattering plane, i.e.U1 −U3

plane, is defined as π and that perpendicular to the scattering plane is defined as σ . This
geometry and nomenclature will be followed in rest of this thesis. Now, we can see the
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following relations for the scattering geometry:

Û1 = (⃗k+ k⃗′)/|⃗k+ k⃗′|= (k̂+ k̂′)/2cosθ

Û2 = (⃗k× k⃗′)/|⃗k× k⃗′|= k̂× k̂′/sin2θ

Û3 = (⃗k− k⃗′)/|⃗k− k⃗′|= (k̂− k̂′)/2sinθ

and

σ = Û2 σ
′ =−Û2

π = Û1 sinθ −Û3 cosθ π
′ =−(Û1 sinθ −Û3 cosθ)

Fig. 3.5 Scattering geometry, coordinate system with polarization.

3.4.1 Thomson scattering

The common scattering of x-rays on matter, at not too high energies, can be well described
within a simple classical picture called the Thomson scattering. Oscillating electric fields,
perpendicular to the propagation direction in electromagnetic radiations, can polarize elec-
trons bound to atoms, in the direction of the electric field of the incoming radiation. This
oscillatory motion of the electrons causes emission of electromagnetic radiation with elec-
tric field perpendicular to the oscillation of charge (see Fig. 3.6(b)). This type of scattering
events are called the Thomson Scattering.

Total cross section for the elastic Thomson scattering is found as:

σT =
8π

3
r2

0
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where, r0 is the classical electron radius. Polarization dependence of Thomson scattering is
given by the first term in equation 3.25. Intensity is observed in only the σ → σ and π → π

channels and in the later channel intensity is reduced by a factor of cos2θ .

Fig. 3.6 (a) Schematic of Thomson scattering and (b) X-ray resonance scattering.

3.4.2 Crystal structure determination: single crystal X-ray diffraction
In any study with single crystals, the preliminary experiment is to solve the crystal structure.
Intensity of a reflection (hkl) can be calculated by squaring the absolute value of amplitude
in Eq. 3.18 by putting atoms in the lattice points. However, for intensity in the detector, we
use particle nature of the radiation and the phase information is lost, which is the famous
phase problem. The phase problem does not allow us to go back directly from the intensity
to crystal structure. Therefore, intensities calculated from a structural model are compared
to the experimentally measured intensities and parameters such as atomic positions (x, y ,z),
lattice parameters, isotropic (U) and anisotropic (Ui j) are varied for χ2 minimization. χ2 is
given by:

χ
2 = ∑

i
w(hkl)(F2

obs −F2
calc) (3.19)

The quality of the solution is defined by values of the parameters R1, wR2 and Goo f which
are defined below.

R1 =
∑ ||Fobs|− |Fcalc||

∑ |Fobs|
(3.20)

wR2 is square of F values convoluted with refining weighting scheme w. It is in most
cases about double the value of R1. Goo f is the goodness of fit for the solution which uses
difference in R values, number of reflections observed and the number of parameters used.
Goo f value ideally approaches 1 at the end of refinement.
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3.4.3 X-ray magnetic scattering

Magnetic scattering by X-rays are of two types based on the principle of interaction. First
one is non resonant magnetic scattering, and in the second one the energy of the X-rays
used is tuned to the energy required to knock out one electron from a core shell to a shell
that contains magnetic information. In non-resonant magnetic scattering, weak ≈ 10−6

(compared to Thomson scattering or charge scattering) magnetic signal is overcome by
using high brilliance of synchrotron radiation [79–88].

We used resonant magnetic scattering so we will confine our discussion with the reso-
nant process only.

Resonant magnetic X-ray scattering

In the photoelectric effect, an electron from core state is excited to an unoccupied state above
the Fermi level by tuning the X-ray energy to the corresponding energy difference. The core
hole can be filled by various processes, such as fluorescence, or the excited electron can fall
back to its original place. This later process, which is coherent, as the state of the atom is
unchanged, is called resonant X-ray scattering and is shown in Fig. 3.6(c). In the case of
magnetically ordered materials, this resonant scattering may carry the magnetic information
as the unoccupied states are spin polarized. To determine the cross section, let us write the
total elastic scattering amplitude as:

f = f0 + f ′+ i f ′′+ fspin (3.21)

where, f0 ∝ zr0 is the Thomson charge scattering amplitude, (z) is the atomic number. At
the resonance energy, electric dipole (∆l = 1) and multiple transition (∆l > 1) contribute
through the f ′ and f ′′ terms. For the dominant electric dipole, E1 transition in the magnetic
ion, the coherent resonant elastic scattering amplitude f e

EL can be written after [82, 85] as:

f e
EL(ω) =

4π

k
fD

L

∑
M=−L

[
ε̂
′∗.Y (e)

LM (⃗k′)Y (e)∗
LM k⃗.ε̂

]
F(e)

LM(ω)

where,

Y (e)
LM = vector spherical harmonics

fD = Debye-Waller factor and

F(e)
LM = ∑

a,n

[
pa pa(n)Γx(aMn;EL)/Γ (n)

x(a,n)− i

]
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ε̂ and ε̂ ′ are the unit vectors in polarization directions of electric field for incoming and
scattered photons. F(e)

LM determines the strength of resonance. pa is the probability of an ion
to exist in an initial state |a⟩ and pa(n) is the probability of transition to a final state |n⟩.
F(e)

LM depends upon probability of transition Pa(n) from initial state |a⟩ to a final state|n⟩ and
probability pa of the ion existing in the initial state, which in turn depends upon the overlap
integral between both the states (for details see [85]).

The ratio Γx/Γ is the partial line width of the excited state due to a pure electric dipole
radiative decay for all radiative and non-radiative processes. The Debye-Waller factor fD

is the Q dependent thermal parameter. These transitions are magnetically sensitive because
of the difference in occupation of the minority and majority bands in exchange split bands,
where the excited state |n⟩ lies. Resonance occurs at the absorption edges of the elements
and this enhances the intensity of magnetic reflections. The strength of the enhancements
are tabulated in Table 3.1 [82, 89, 90].

Table 3.1 Resonance enhancement of scattering amplitude for some elements. Weak =1,
medium = 102 and strong > 103

Elements Edge Transition
Energy
range(KeV)

Resonance
strength Comment

3d K 1s→ 4p 5-9 weak small overlap

3d LI 2s → 3d 0.5-1.2 weak small overlap

3d LII , LIII 2p → 3d 0.4-1.0 strong
dipolar, large overlap,
high spin polarization of 3d

4f K 1s→ 4p 40-63 weak small overlap

4f LI 2s → 5d 6.5-11 weak small overlap

4f LII , LIII
2p → 5d
2p → 4f 6-10 medium dipolar, quadrupolar

4f MI 3s → 5p 1.4-2.5 weak small overlap

4f MII , MIII
3p → 5d
3p → 4f 1.3-2.2

medium
to strong dipolar, quadrupolar

4f MIV , MV 3d → 4f 0.9-1.6 strong
dipolar, large overlap,
high spin polarization of 4f

5f MIV , MII 3d → 5f 3.3-3.9 strong
dipolar, large overlap,
high spin polarization of 5f

From the Table 3.1, following broad observations about resonant enhancement can be
made:

1. Resonance enhancement depends upon the magnitude of the transition matrix ele-
ments. ∆l = 1 dipole transitions are stronger than the ∆l = 2 quadrupole transitions.
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Transitions from s-core levels to non-s higher levels exhibit small resonance as the
overlap between the wave functions are small.

2. Differences between occupations of the majority and minority carriers in the exchange
split bands above Fermi level also influence resonance enhancement. For example, in
first rare earth elements, because of small exchange splitting in the spin polarized
5d bands compared to 4 f bands, 2p → 5d dipole transition is weaker than that of
2p → 5 f quadrupole transition.

3. Spin orbit coupling strength in ground and excited states.

Let us consider the L3 edge of Fe3+ high spin ion, i.e.2p3/2 → 3d transition. Vector
spherical harmonics can written as [85]:

For L = 1 and M =±1[
ε̂
′∗ ·Y (e)

1±1(k̂
′)Y (e)∗

1±1 (k̂)ε̂
]
= (3/16π)

[
ε̂
′.ε̂ ∓ i(ε̂ ′× ε̂).ẑn − (ε̂ ′.ẑn)(ε̂.ẑn)

]
For L = 1 and M = 0[

ε̂
′∗ ·Y (e)

10 (k̂′)Y (e)∗
10 (k̂)ε̂

]
= (3/8π)

[
(ε̂ ′.ẑn)(ε̂.ẑn)

]
(3.22)

Here ẑn is a unit vector in the direction of magnetic moment of the nth atom. So, by com-
bining both these equations and for charge scattering we can write the amplitude as:

f XRMS
nE1 =

[
(ε̂ ′ · ε̂)F0 − i(ε̂ ′× ε̂) · znF(1)+(ε̂ ′ · ẑn)(ε̂ · ẑn)F(2)

]
(3.23)

Here, F0 term is the charge scattering term as defined earlier. The second term F(1), which
is linear in magnetic moment component, contributes towards the first harmonic magnetic
satellite and the second term F(2), which is quadratic in magnetic moment component, con-
tributes towards the second harmonic magnetic satellites. We can define three unit vectors
z1, z2 and z3 parallel to the Cartesian co-ordinate axes U1, U2 and U3 representing magnetic
moment component of the nth atom. Now we can write the terms of Eq. 3.23 in a 2×2
matrix as follows:

f XRMS
nE1 →

∣∣∣∣∣σ → σ π → σ

σ → π π → π

∣∣∣∣∣
In the following equation all the terms in the matrices are of this above mentioned format
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e.g. σ → π represents incoming σ polarized photon and scattered π polarized photon.

f XRMS
nE1 = F(0)

∣∣∣∣∣1 0
0 cos2θ

∣∣∣∣∣− iF(1)

∣∣∣∣∣ 0 z1 cosθ + z3 sinθ

z3 sinθ − z1 cosθ −z2 sin2θ

∣∣∣∣∣ (3.24)

+F(2)

∣∣∣∣∣ z2
2 −z2 [z1 sinθ − z3 cosθ ]

z2 [z1 sinθ + z3 cosθ ] −cos2 θ
[
z2

1 tan2 θ + z2
3
]∣∣∣∣∣

The first sub matrix, as discussed earlier, represents charge scattering and the other two
matrices contain magnetic information. Following observations can bemade on the above
equation:

• Linear in the components of magnetization term, i.e.the second term contributes to-
wards the magnetic satellite τ⃗ . It produces the first harmonic satellite. Second quadratic
in magnetic moment component term F(2) contributes towards second harmonic satel-
lite as well as towards the charge Bragg peak. For ferromagnets, both the terms con-
tribute to allowed charge reflections.

• With the help of linearly polarized synchrotron radiation and careful selection of scat-
tering geometry, magnetic moments in all directions can be probed.

• Scattering angle depends on Bragg angle, therefore, by analyzing different reflections
(if accessible) validity of a particular model can be tested.

Let us now consider the magnetic structure factor for dipole resonant magnetic scattering
for the first harmonic satellite:

FXRMS = ∑ f XRMS
nE1 eiQr (3.25)

Intensities can be calculated by taking the absolute square value of the structure factors
FXRMS.

Circular dichroism The intensity in circular polarization without polarization analy-
sis of outgoing beam is given by [9] by the following equation:

IXRES
χ =

1
2
[Iσ→σ + Iσ→π + Iπ→σ + Iπ→π ]+χIm [Fπ→σ ]

∗[Fσ→σ ]+ [Fσ→π ][Fπ→π ]
∗(3.26)

where, χ is ±1 for P and M polarizations.
This intensity is measured when we use either of the P and M polarizations of the incom-

ing beam. This intensity contains the contribution from the intensities in the linear channels
also. The difference between these two intensities gives the absolute circular dichroism.
To normalize it, we divide it by the sum. The difference of P and M corresponds to only
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the imaginary part of the cross terms
[
Fπ→σ ][Fσ→σ ]+ [Fσ→π ][Fπ→π

]
, whereas their sum is

independent of the cross terms and is the total intensity in the linear channels, as can be seen
from the following equation:

I(p)− I(M) = 2∗ Im([Fπ→σ ]
∗[Fσ→σ ]+ [Fσ→π ][Fπ→π ]

∗

= 2∗ Im[Fσ→π ][Fπ→π ]
∗ ;since [Fσ→σ ] = 0

After separating out only the imaginary part, we have:

I(p)− I(M) = 2∗ ([Fσ→π ][Fπ→π ]
∗− [Fσ→π ]

∗[Fπ→π ]) (3.27)

Now we define the relative circular dichroism (Rel_Circ) as follows:

Rel_Circ = Irel
χ =

(I(p)− I(M))

(I(p)+ I(M))

=
2∗ ([Fσ→π ][Fπ→π ]

∗− [Fσ→π ]
∗[Fπ→π ])

[Iσ→σ + Iσ→π + Iπ→σ + Iπ→π ]

(3.28)

This equation 3.28 will be used for the calculation of circular dichroism.

Linear dichroism For the calculation of linear dichroism we used the following equa-
tion:

Rel_lin =
Iπ→σ − Iσ→π

Iπ→σ + Iσ→π

(3.29)

Experimentally, we measured the following parameters:

IL
in,π,σ =

(Iπ→σ + Iπ→π)− Iσ→π

Iπ→σ + Iσ→π + Iπ→π

(3.30)

3.4.4 Different scans used
In a typical X-ray diffraction experiment we look through the reciprocal space and collect
the intensity in the detector. The intensity detected in the detector depends upon the type of
scans we used. We used the following rotational degrees of freedom in our experiments and
these are depicted in Fig. 3.7:

• ω −2θ scans: It is also the (0 0 l) scan in our experiment, where we scan through the
specular line along Q, moving both ω and the detector angle 2θ proportionally and
simultaneously. This is longitudinal scan and probes reciprocal space parallel to Q.

• 2θ scan: In this scan, at a particular value of ω , detector angle is scanned for a
particular Q.
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Fig. 3.7 (a) Different scans used to measure the reciprocal lattice vector length and intensity
(b) Two permanent end-stations, the XUV diffractometer and the high-field diffractometers
in the UE46_PGM-1 beamline.

• Rocking curve: Here, ω is scanned keeping the detector angle constant.

• Energy scan at fixed Q: Here, energy is scanned, with the value of Q fixed, by
simultaneously moving the ω and 2θ corresponding to the Q.

In the low Q l-scans polarization dependence of specular reflectometry contribution may be
significant, which in turn depends upon the magnetization components in plane and out of
plane.

3.5 Experimental set-up for soft X-ray diffraction
Experimental set up for soft X-ray resonance diffraction used is the UE46_PGM-1 beamline
of BESSY-II (Helmholtz Zentrum Berlin), which is one of two beamlines situated at the
elliptical undulator UE46 of BESSY-II. It has the capability of tuning the polarization of
the incoming beam, the linear as well as circular, in the energy range 120 eV to 2000 eV.
Polarization analysis of scattered beam is not performed in any of the experiments. Two
permanent end-stations, the XUV diffractometer and the high-field diffractometer, are used
in our experiments (see Fig. 3.7(b)).

Most of the zero field diffraction studies were carried out in the XUV diffractometer.
The XUV diffractometer end-station is a UHV-compatible two-circle diffractometer with
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horizontal scattering geometry and permits movement of ω and 2θ with the highest accuracy
and stability. It is versatile for high quality diffraction experiments over the entire angular
range of the detector in the temperature range from 4 K to 320 K. A XUV100-type photo-
diode point detector is used with a set of changeable slits in the front for optimizing the
q-resolution. The detector can be scanned in vertical direction also to compensate possible
Chi-misalignment. The beam spots used are varied from experiment to experiment and is
mentioned in respective sections.

Fig. 3.8 Left: Schematic of high field chamber with the openings of the magnets. Right:
Schematic of permanent magnet assembly in the zero field chamber.

The high-field diffractometer end-station is equipped with a horizontal magnet capable
of generating fields up to 7 Tesla and temperatures down to 4 K. Therefore, it is a suitable
source to study metamagnetic transitions in solids. In the end-station there is a supercon-
ducting coil for magnetic field that can be rotated independent of the sample. Out of the
dark angles in the magnet, there are four openings which cover detector angles 66° and 12°
in 2θ . The magnet can be rotated by 33° to use this whole 66° of detector angles (see Fig.
3.8).

In the XUV diffractometer we used two permanent magnets as shown in the right side
of Fig. 3.8. In this case, the sample is mounted in between two permanent magnets with an
applied strength of 0.3 Tesla at the center of the sample and it is fixed by screw assembly.
Diffractions are performed through the openings of the screw assembly.

3.6 Neutron scattering
Neutrons are subatomic elementary particles with mass mN = 1.675×1024 kg, whose wave
length (λ ) is given by de Broglie wave particle duality (λ = h/

√
2mE); E is the kinetic
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energy. A neutron is a spin 1/2 particle with magnetic moment -1.91 µN making it addi-
tionally sensitive to magnetic environment in the sample. The scattering potential Vn(⃗r) for
a neutron can be expressed as a sum of nuclear (VN (⃗r)) and magnetic (VM (⃗r)) contribution.

Nuclear scattering For a neutron of ≈25 meV kinetic energy and mass mN the wave
length is ≈1 Å. In Nuclear scattering neutrons interact with the nucleus of the atoms via the
nuclear forces. The potential VN (⃗r) is Fermi pseudo potential. For a single particle it can
be written as b jδ (r− r j). Here, for a nucleus j, located at position r j, b j is the scattering
length of the nucleus and δ is the Dirac delta function. Using Fermi pseudo potential for a
crystal the nuclear scattering the scattering potential can be written as the sum of individual
nuclear interaction [91] :

VN (⃗r) =
2π h̄2

mN
∑

j
b jδ (⃗r− r⃗ j) (3.31)

In contrast to x-ray scattering the form factor for nuclear neutron scattering is independent of
Q, as the nucleus is much smaller compared to electron clouds and the scattering amplitude
can be written as:

N(Q⃗) = ∑
j

b j · eiQ⃗r⃗ j (3.32)

The value of b j is different for same atoms with different isotopes. A list of neutron scat-
tering length for different elements and isotopes can be found here [92]. To account for
different distribution of different isotopes in nature we have to consider the average isotope
distribution [93]. So the differential scattering cross section can be written as

dσ

dΩ
=

〈
∑

j
b jeiQ⃗r⃗ jb∗je

−iQ⃗r⃗ j

〉
= ⟨b⟩2

∣∣∣b jeiQ⃗r⃗ j
∣∣∣2 +N⟨(b−⟨b⟩)2⟩ (3.33)

Only the first term in Eq. 3.33 contains phase information (coherent scattering) and the
second term is the incoherent scattering term contributing to the isotropic background.

Magnetic scattering The intrinsic magnetic moment of a neutron µN makes it possible
to interact with the magnetic field produced by unpaired electrons in atoms. The magnetic
scattering potential (VM = −µ⃗N · B⃗) for neutron is due to interaction with spin (B⃗spin) and
unquenched orbital (B⃗orbital) moments. In the scattering process a neutron changes its spin
moment in its quantization axis z from σz to σz

′ (σ is spin oprator) as wave vector changes
from k to k′. The magnetic scattering cross section can be expressed as below: (for further
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details see [94] )

dσ

dΩ
∝

∣∣∣∣− 1
2µB

〈
σz

′|σ̂ · M⃗⊥(Q⃗)|σz

〉∣∣∣∣2 (3.34)

Only M⃗⊥(Q⃗) contributes to magnetic scattering. M⃗⊥(Q⃗) is the Fourier transformed magne-
tization component perpendicular to Q⃗.

M⃗⊥(Q⃗) = Q̂× M⃗(Q⃗)× Q̂

M⃗(Q⃗) =

∫
M⃗(⃗r)eiQ⃗·⃗rd3r

M⃗(⃗r) = M⃗S(⃗r)+ M⃗L(⃗r)

(3.35)

In contrast to nuclear scattering magnetic scattering of neutron has a form factor. In most
of the transition metal compounds orbital magnetic moment is quenched. Contributions to
M⃗(Q⃗) is only from the spin part.

M⃗(Q⃗) =−2µB · fm(Q⃗)∑
i

eiQ⃗·⃗r · S⃗i

fm(Q⃗) =

∫
atom

ρs(⃗r)eiQ⃗·⃗rd3r
(3.36)

fm is the magnetic form factor which is the Fourier transformation of the spin density ρs

distribution of a single atom. The magnetic scattering takes place at the outer unpaired
electrons, so form factor falls with Q⃗ similar to X-ray scattering. However, in magnetic
scattering contributions are from only unpaired outer shell electrons whereas in x-ray all
electrons contribute. The form factor fall is much faster in neutron magnetic scattering
compared to that of X-ray scattering.

3.6.1 TriCS

The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ)
is used to carry out temperature dependent neutron diffraction experiments. TriCS is in-
stalled at the Swiss spallation neutron source (SINQ) at the Paul Scherrer Institute (PSI,
Villigen, Switzerland). TriCS is designed for investigations of commensurate and incom-
mensurate crystal and magnetic structures as well as phase transitions driven by temperature,
magnetic field or pressure. The flux is ≈ 1.02×105 n/cm2 sec.
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3.6.2 E-4: 2-Axis-Diffractometer
The E-4 2-axis diffractometer is installed at research reactor BER II of Helmholtz-Zentrum
Berlin für Materialien und Energie Hahn-Meitner-Platz-1. The instrument is primarily
suited for magnetic structure determination under various conditions. This includes mag-
netic fields up to 17 T and temperatures down to 30 mK. The monochromator shielding is
at 2θM = 42.5◦ most of the time. This position corresponds to the incident wavelength of
0.244 nm. We used only the vertical field as our interested reflections are in the dark angle
range caused by the magnets in horizontal field geometry. The field values of the supercon-
ducting magnets have considerable error bars at lower field values which will be discussed
in experimental results section.



Chapter 4

Crystal growth and macroscopic
characterization

4.1 Crystal growth
As decribed in the previous chapter, we have used flux growth technique for synthesizing
our single crystals (see section 3.1.2). To obtain high quality single crystals by flux method,
steady-state slow-cooling is very much needed to be maintained during crystal growth. M-
type hexaferrite single crystals are prepared extensively by using different fluxes. Even
floating zone method is also used [57]. In fact, only M-type hexaferrites have been re-
ported to be prepared by floating zone method. Small crystals were prepared from molten
salts of 1:1 NaCl and KCl mixtures [95]. Altogether different fluxes are used for prepar-
ing hexaferrite single crystals like BaO-B2O3 [60, 96, 97], PbO [98], BaCl2 [99], Bi2O3

[100], PbO-PbF2 [98], PbO-B2O3 [101, 102], Na2O-B2O3 [103]. In most of the reports,
Na2O-Fe2O3 flux was preferred over other fluxes [104–109] .

For M-type hexaferrite it was found that 20 to 26.3 mole% of Na2O and 10 to 20 mole%
of BaO are a good starting composition for crystal growth [105]. Here, Na2O and Fe2O3

act as flux, with the latter one acting as self flux as it participates as a reactant for crystal
growth. With NaFeO2, flux content plays a vital role in the type of crystal formed as major
product. As shown in the Table 2.1, other hexaferrites can be built by three constituents:
M-type hexaferrite, Y-type hexaferrite and the spinel blocks. In most of our experiments,
Y-type and M-type hexaferrites are the most favored phases.

It was found that for BaO:MeO ratio of 1:1 with 30 mole% or more NaFe2O4 instead of
Fe2O3, only spinel phase MeFe2O4 is formed [110]. Therefore, we tried to avoid this com-
position. For the synthesis of Y-type single crystals, the best Y-type hexaferrite was reported
to be below 5 % of flux content [110] (see Fig. 4.1). Out of the different hexaferrites, the
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Fig. 4.1 BaO:ZnO = 1:1 plane single crystal fields. Inset shows the composition tetrahedron
for BaO:ZnO plane. From: [110].

BaO:MeO ratio determines which hexaferrite will crystallize in the growth process [111].
All these hexaferrites lie very close to each other in the compositional tetrahedron as can
be seen from the inset of Fig. 4.1. Therefore, they are thermodynamically and kinetically
very close to each other in single crystal synthesis. From previous reports, the following
observations can be made regarding the factors determining the type of hexaferrite going to
crystallize from NaFeO2 flux:

• BaO:MeO ratio.

• Type of Me atom[96].

• Temperature from which slow cooling down takes place[105].

• Amount of NaFeO2 flux used.

Y-type hexaferrites have BaO and MeO ratio of 1:1. For this initial composition of
1:1, Tauber et al.studied the growth of Y-type hexaferrite [110] using NaFeO2 flux. They
found that Y-type hexaferrites are major product only in a very narrow range of 5 mole%
of Fe2O3. Small ZnFe2O4 crystals or polycrystalline powders were the by-product in most
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of the cases. For high flux concentration, but lower than 30% (mole) and low Fe2O3, good
quality crystals were found. The window for Y-type crystal is different for different Me
(Zn2+) ions. To avoid the spinel phase, a temperature cycling process with rapid cooling
and heating was found to be helpful [71].

In all our syntheses, Ba:Me ratio is maintained to be 1:1 for Y-type hexaferrite. Mo-
mozawa also found that in the case of partial substitution of Ba by Sr, viscosity increases
with Sr content and, nucleation temperature decreases for both high and low values of Sr
content.

We used a platinum and a platinum-rhodium crucible for the crystal growth. Respective
reactants and flux are mixed together, after weighing, by grinding using a mortar pestle,
followed by ball-milling. A Nebertherm furnace is used for programmable cooling during
the growth. Cooling rates ranging from 1◦C to 2◦C per hour are used for the synthesis.

We used NaFeO2 as self flux in our synthesis. Starting materials are mixed properly by
grinding in a mortar followed by ball milling for 12 hours. The final mixture is placed in the
platinum crucible and heated to a temperature above the melting point. After temperature
recycling, as explained in section 3.1.2, it is slowly cooled to certain low temperature (≈
950° C) and then to room temperature. The compositions listed in Table 4.1 are used for the
synthesis.

Table 4.1 Composition of starting materials used for crystal growth (composition in mole%),
details parameters can be found in Appendix-A.

BaCO3 SrCO3 ZnO Fe2O3 Na2CO3 Co3O4 NiO Code
9.845 9.845 19.69 53.61 7.01 BZY-1
3.938 15.752 19.69 53.61 7.01 BZY-2
5.907 13.783 19.69 53.61 7.01 BZY-3
2.04 10.02 59.18 20.41 8.16 BNZ-1
3.938 15.752 53.61 7.01 19.69 BCZ-1

4.1.1 Sample preparation results
Single crystals are formed at different places of the crucible, ranging from the center to
the side walls. Therefore, nucleation centers can be considered to be on the walls of the
crucible. While using a crucible of Pt-Ir alloy, it was found that the flux overflows through
the wall of the crucibles. This could be due to higher affinity of the flux to stick to the walls
and then overflow due to capillary action. The first three compositions listed in Table 4.1
were targeted for Y-type hexaferrite as reported in [71]) and we obtained single crystals of
Y-type with various sizes. For BZY-1, 6mm× 4mm× 4mm size was obtained. For BZY-2
and BZY-3, most of the crystals were plate like, and the biggest one was found to be 10mm×
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8mm× 2mm. All the hexaferrites are found to be flat plate type with [0 0 1] perpendicular
to the flat surface.

Recently, Z-type hexaferrite was found to show magneto-electric properties at room
temperature in polycrystalline materials [58]. With the only available single crystal growth
reported , four state memory at room temperature was seen [59]. Therefore, we attempted
the synthesis of Z-type single crystals. Attempt to prepare Z-type hexaferrite with Co (BCZ-
1) and Ni (BNZ-1) failed as preliminary X-ray investigations found the formed crystals to
be of M-type hexaferrites. Compositions for Z-type hexaferrites were taken from ref [111].
Z-type hexaferrites, as mentioned in Section 2.4, consist of alternating blocks of 1/3 of Y-
type and 1/2 of M-type hexaferrites, stacked one above the other (see Fig. 2.17). Therefore,
we believe that further fine tuning of thermodynamic and kinetic parameters with more
experiments are necessary to synthesize Z-type hexaferrites.

Samples with code BZY-1, BZY-2 and BZY-3 are used for further characterization. Sin-
gle crystals are seen as shiny black plate-like (0 0 1) facets buried inside the crucible. Hot
dil. HNO3 is used to get the crystals out of the crucible. In certain cases, concentrated
HNO3 is used (65-70%) and heated to 60° C. Some photographs of as grown crystals are
shown in Fig. 4.2

Fig. 4.2 Some of the as grown crystals with [0 0 1] perpendicular to the plane of the paper.

4.2 Single crystal X-ray diffraction
After the synthesis of the crystals, primary characterization was performed for phase purity
and crystal structures were determined. Single crystals were cleaved for a microscopic part
for use in single crystal X-ray diffraction studies in the supernova single crystal diffractome-
ter from Rigaku. Following the data reduction, in the CrysAlispro [112], refinement of the
structure is performed using JANA2006 [113].

From the previous refinement studies it was found that Zn atoms are located in two
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tetrahedral sites [63, 64]. Therefore, we restricted Zn in our refinement to only 6c tetrahedral
sites.

From single crystal X-ray diffraction, refinement compositions are found out to be as
shown in Table 4.2. The Sr composition (x) given in the reactant mixture is different from
that found from the refinement of X-ray diffraction. These types of differences were re-
ported previously also [5]. Therefore, for the precise determination of x, we need to depend
upon the composition from refinement rather than predicting it from the composition ini-
tially used in the reactant mixture. Discrepancies, in the value of x, may arise with results
from other studies also. Therefore, we compared the values from only those previous studies
where compositions were taken from refined data of scattering studies.

Zn2+ is restricted in two tetrahedral sites with Wyckoff position 6c in our refinement.
Zn(1) is partially occupied by Fe(1) and, Zn(2) by Fe(2). The occupations are found to vary
with x. The occupancies of Zn, defined as γ , in the 11th layer (i.e.Zn(2)) decreases as x
increases (see Fig. 2.18). In the earlier studies, no clear trend was observed for γ with x
[62]. Therefore, with only three compositions it is difficult to find a conclusive fitting for
γ with x. Moreover, since the difference between the electron content in Zn2+ and Fe3+ is
just 6 electrons, so with X-rays which are sensitive to the number of electrons, it is difficult
to precisely determine γ . Partial occupancies of Zn(1) and Zn(2) are graphically shown
in Fig. 4.3(b). The occupancies of Zn(1) increase as we go higher in x and that of Zn(2)
decrease. The sum of occupancies of Zn1 and Zn2 are less than unity. That is why in the
overall composition we have less Zn than the nominal stoichiometry. Earlier refinements
also reported similar findings [63, 64].

Table 4.2 Composition and partial occupancies of Zn(1) and Zn(2) from single crystal X-ray
diffraction refinements at room temperature

Code R Stoichiometric formula Zn(1) Fe(1) Zn(2) Fe(2)
BZY-1 1.41 Ba1.28Sr0.72Zn1.52Fe12.48O22 0.11 0.89 0.65 0.35
BZY-2 1.42 Ba0.58Sr1.4Zn1.66Fe12.28O22 0.14 0.84 0.68 0.31
BZY-3 1.83 Ba.8Sr1.18Zn1.56Fe12.38O22 0.12 0.85 0.66 0.33

From the refinement we calculated the bond length of all the transition metal-O bonds.
Zn(1) in layer number 4 to O(1) in layer 6 are the shortest in the range of 1.9 Å. Fe(3) in
layer 5 to O(3) in layer 2 has the longest bond length (≈ 2.25Å) compared to other average
bond lengths of ≈ 2Å. All the bond lengths are tabulated in Table 4.3. The bond lengths
for all the three samples can be seen in Fig. 4.3(a). Significant change in bond length is
observed with change in x for the bonds shown with ellipse in the Fig. 4.3(a). Changes in
bond length with change in x can be attributed to difference in the Shannon radius of Ba2+
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Table 4.3 Different transition metal-O bond lengths from single crystal X-ray refine-
ments of samples BZY-1, BZY-2, BZY-3 at room temperature. x is given in the formula
Ba1−xSrxZn1−pFe6+pO11

BZY-1 BZY-2 BZY-3

Bond type x=0.36 x=0.59 x=0.70
Zn(1) -O(1) 1.906 1.913 1.899
Zn(1)-O(3) 1.890 1.877 1.883
Zn(2)-O(2) 1.985 1.989 1.989
Zn(2)-O(5) 1.939 1.928 1.941
Fe(3)-O(3) 2.255 2.251 2.233
Fe(3)-O(4) 1.940 1.925 1.933
Fe(4)-O(5) 2.008 2 2.002
Fe(5)-O(1) 2.004 1.999 2.008
Fe(5)-O(2) 2.005 2 2.006
Fe(5)-O(4) 1.975 1.981 1.983
Fe(5)-O(5) 2.049 2.054 2.045
Fe(6)-O(3) 2.024 2.023 2.021

and Sr2+ [114]. Ba2+/Sr2+ in layer-3 is connected to the O2+ in layer-2 which is bonded to
the Fe3+ in layer 4 and 5, see Fig. 2.18. Smaller size of Sr can cause local distortion, which
affects the Zn distribution in layer 4.

From section 2.4.3 we have seen that the boundary between the spin blocks is dominated
by ferromagnetic super-exchange interaction in Zn(1)-O(3)-Fe(3). In Zn(1)-O(3)-Fe(3), one
bond length Zn(1)-O(3) is smaller than the average bond length and one bond length Fe(3)-
O(3) is longer. This makes the super-exchange interactions different from the rest and we
have a ferromagnetic interaction in the collinear phase. Change in x, and hence change
in occupancies in Zn(1), has significant effect on this super-exchange interaction not only
because bond lengths vary significantly but also because the strength depends upon the
magnetic Fe3+ content. Change in Zn occupancies in the Zn(1) sites not only changes the
bond length associated with Zn(1) but also the bonds associated with Fe(3) i.e.Fe(3)-O(4).
Therefore, we can claim that one of the reasons for spin structure change from collinear to
spiral with change in x, is the change in partial occupancies of Zn in Zn(1) site which in turn
changes the bond length. With change in bond length the unusual ferromagnetic interaction
of Zn(1)-O(3)-Fe(3) no longer remains collinear. However, changes in bond lengths are do
not qualitatively follow the same trend as that of x and this can be seen clearly from the Fig.
4.3(a).

Momozawa et al.[5] found out that there are three types of magnetic ordering depend-
ing upon the Sr content in the crystals of Ba(1−x)SrxZnFe6O11: ferrimagnetic ordering for
0 ≤ x ≤ 0.5, helical magnetic ordering for 0.5 ≤ x ≤ 0.8 and collinear commensurate order-
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ing for 0.8 ≤ x ≤ 1 were reported. From our samples we have three x values: one in the
ferrimagnetic range (BZY-1) and others in the non-collinear range (BZY-2 and BZY-3). We
used magnetization measurements on the samples to find out if they display the signature
metamagnetic features reported [3, 5].

Fig. 4.3 (a) Different Fe/Zn-O bond lengths and (b) Partial occupancies of Zn(1) and Zn(2)
for BZY-1, BZY-2 and BZY-3 . x is given in the formula Ba1−xSrxZnFe6O11

4.3 Macroscopic magnetization measurements

Magnetization change with composition

We plotted the magnetization curves for all the three samples, normalized to magnetization
at 6 T, in Fig. 4.4. It can be seen that, unlike BZY-2 and BZY-3, no indications of metamag-
netic transitions are present in BZY-1. Step-like behavior in magnetization curves in BZY-2
and BZY-3 corresponds to different metamagnetic transitions as reported earlier [5]. Meta-
magnetic and composition dependent magnetic behavior of our samples are so interesting
that it is imperative to discuss them separately for each sample in the following subsections.
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Fig. 4.4 (a) DC magnetization vs applied external magnetic measurements of all the three
samples H ⊥[0 0 1], normalized to magnetization at 6 T at 10 K. Inset (a) shows the enlarged
view of low field region. (b) Magnetization at 6 Tesla as a function of temperature.

4.3.1 Ferrimagnetic phase (BZY-1)

For the low Sr content Ba0.64Sr0.36Zn0.76Fe6.24O11 samples, an easy plane of magnetization
⊥ [0 0 1] (M⊥) as well as a hard direction ∥ [0 0 1] (M∥) is found. From torque measurements
it was argued that anisotropy energy can be expressed as simple function of K1 cosθ [115,
116]. In Fig. 4.5 (red curve) it can be seen that along the easy plane of magnetization, no
distinct metamagnetic anomalies can be found up to 380 K in 6 T which is a rather high
H. Magnetization curves at low temperature appear to reach saturation at pretty low H for
H ⊥[0 0 1], but at higher temperatures saturation is not reached completely even at 6 Tesla.
Magnetization at 6 Tesla for H ∥ [0 0 1] is equal to that of H ⊥[0 0 1] at low temperatures,
but at higher temperature, from the converging nature of both the curves, it can be expected
to meet at higher field than 6 Tesla. The saturation magnetization, calculated using the block
spin model (see section 2.4.3) 17.6 µB/formula unit, is close to experimental magnetization
at 6 Tesla 17.45 µB/formula unit at 10 K.

Zero-field-cooled (ZFC) curves, field-cooled curves (FC) and measured while warming
(FCW) curves at H=10 mT for BZY-1 are shown in the inset of Fig. 4.5. In the ZFC
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curve, for both H ⊥[0 0 1] and H ∥ [0 0 1], it is seen that magnetization drops sharply after
360 K and the straight line extrapolation of the drop meets at 380 K with M = 0. This
temperature is close to the reported Curie temperature measured by temperature dependent
magnetization as well as Mössbauer spectroscopy [5, 117, 118]. Many substitution studies
are carried out in Ba2Zn2Fe12O22 for Ba as well as for both the transition metal sites, and
TC is reported to be varying from 300 K to 800 K by different methods of measurements.
Ba2Zn2Fe12O22 has a TC around 392 K [117]. The initial magnetization curve at 380 K can
be seen clearly to be different from that of 360 K. Therefore, we can consider 380 K to be
the transition temperature.

A thermal irreversibility Tirrv, i.e.difference between ZFC and FC curves, are seen below
50 K, where ZFC M ∥ declines and FC increases. For Co2Y hexaferrite, it was proved on the
basis of the magnetic hyperfine field that, this temperature is related to a spin reorientation or
spin transition temperature where a helical magnetic to ferrimagnetic transition takes place
[118]. For H ⊥[0 0 1] below 360 K, M⊥ remains almost constant up to 50 K before dropping
down near 50 K. On the other hand, for H ∥[0 0 1], below 360 K M∥ goes on increasing
steadily up to 50 K for ZFC and up to base temperature 10 K for FC. In the case of helical
phase, M⊥ is found to display metamagnetic steps in the magnetization vs H measurements
(see Fig. 4.4). Although we observed such Tirrv in M-T measurements, M⊥ does not show
any anomalies up to 5 K. Therefore, such ferrimagnetic to helical-magnetic transition can
not be interpreted based only on temperature dependent magnetization measurements. This
needs further microscopic scattering studies to find out the origin of observed Tirrv. It can be
assumed that the anisotropy field parallel to [0 0 1] decreases with temperature whereas, in
perpendicular direction it remains constant above 50 K to Tc. Decrease in anisotropy field
H ∥ [0 0 1] also opens up a possibility of some magnetic moments in [0 0 1] direction.

4.3.2 The helical configuration BZY-2 and BZY-3

H⊥c and H∥c

Let us come to the higher Sr containing samples i.e.BZY-2 and BZY-3. In Fig. 4.4 for BZY-
2 and BZY-3 it is seen that M⊥ (M measured for H⊥[0 0 1]) follows a step-like behavior in
the low field region. This type of behavior was studied by Enz [115], who found that the
magnetization (M⊥) with applied magnetic field H ⊥ (00l) shows step-like behavior, while,
for H ∥ [0 0 1] (M∥) no distinct steps were found. According to Enz, there is a compet-
ing nearest-neighbor ferromagnetic (J1 > 0) and next nearest-neighbor anti-ferromagnetic
interaction (J2 < 0) that leads to helical configuration with angle α where, cosα = − J1

4J2

and |4J2| > |J1| (as discussed in section 2.1). Here, Ji represents the exchange interactions
between total moments in either L or S block. Beyond a certain critical field Hk, helical



58 Crystal growth and macroscopic characterization

Fig. 4.5 DC Magnetization vs applied external magnetic measurements of BZY-1 in H ⊥[0
0 1] as well as H ∥[0 0 1]. (a) ZFC and FC curves for H ∥[0 0 1] =10 mT and ZFC for
H ⊥[0 0 1]. (b) comparison of initial magnetization curves near the transition temperature
for H ⊥[0 0 1].

magnetic order is stabilized and upon increasing H, the magnetization increases sharply
through Hk. A strong magneto-crystalline anisotropy term in the basal plane (k3) (weaker
than anisotropy in ∥[0 0 1]) and a magnetostriction energy (Em) was introduced to account
for the different metamagnetic structures.

For BZY-2 and BZY-3 samples, as can be seen in Fig. 4.6 saturation is reached below
2.5 Tesla for T <200K for H ⊥[0 0 1]. Above 220 K, the S-shaped curves of magnetization
indicate a high saturation field. Hth, the meeting point for M⊥ and M∥, is near the saturation
field. From the upper portion of this figure it can be seen that Hth is near 3 Tesla up to 180 K
and then it increases up to 6 Tesla. At low H, at 340 K and 380 K, it is seen that M⊥ is lower
than the M∥ but with increase in H, this is reversed. It indicates that anisotropy (MCA) field
∥ [00l] becomes weaker near 340 K (see section 2.1.1 for MCA).

Both BZY-2 and BZY-3 behave similarly for M∥ and M⊥, when normalized to the mag-
netization at 6 Tesla (see Fig. 4.7). In M⊥, step-like features suggest metamagnetic transi-
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Fig. 4.6 (below) DC Magnetization vs applied external magnetic measurements of BZY-3
in both H ⊥[0 0 1] (black) and H ∥ [00l] (red) configuration. The dots indicate the threshold
fields where the magnetization curves, measured both parallel and perpendicular directions,
meet. (above) Variation of threshold field Hth with T.

tions and M∥ follows a similar path to saturation but with no visible step-like features. No
spontaneous magnetization was found to be present in the samples.

M⊥[0 0 1] detailed investigation
Momozawa [61] reported six metamagnetic transitions corresponding to six magnetic fields
for a crystal of composition Ba0.504Sr1.496Zn2Fe12O22. Following Momozawa we use the
following notation for these phases and fields:

• Slightly modified helix −→ 0 ≤ H ≤ H1.

• Intermediate-I −→ H2 ≤ H ≤ H3.

• Intermediate-II −→ H4 ≤ H ≤ H5.

• Intermediate-III −→ H5 ≤ H ≤ H6.
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Fig. 4.7 DC Magnetization vs applied external magnetic measurements of BZY-2 and BZY-
3 in a SQUID magnetometer, normalized over magnetization at 6 Tesla. For BZY-2 and
BZY-3, both perpendicular to [0 0 1] and parallel to [0 0 1] H is applied. Inset shows the
enlarged region of low applied H in positive quadrant.

• Ferrimagnetic −→ H6 ≤ H.

The values of these metamagnetic fields are reported to change with composition within
the helical phase [61, 62]. There exist three H ⊥ −T phase diagrams in literature for heli-
cal phase for close to (Ba0.5Sr1.5)Zn2Fe12O22 compositions. Initial magnetization, neutron
scattering and magnetoelectric measurements were used to determine these phase diagrams.
Momozawa used magnetization measurements as well as neutron scattering at particular
fields to validate the phase diagram [8]. Kimura et al.[3] also used the initial magnetiza-
tion curves and later used magnetic field induced polarization and magnetoelectric current
to validate his model. This phase digram was refuted by Chai et al., who claimed that the
boundary for the intermediate-III phase moves towards lower field with oxygen sintered
highly resistive samples [119]. However, no quantitative analysis of oxygen content was
done in that work.
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On a first look at the initial magnetizations of our samples, broad regions in H can be
considered as metamagnetic phase boundaries. As can be seen in Fig. 4.8, the red and blue
dots can be put to determine by eye the field for H5 and H6. For e.g., the blue dots denote
the field where complete ferrimagnetic saturation occurs; is not just a single point in the
curve but can be considered as a broad region. We have used two different approaches to
determine the metamagnetic transitions.

• First derivative of M with respect to H
(

∂M
∂H

)
and the second derivative ∂ 2M

∂H2 .

• Intersection of the extrapolated straight lines from the steps of magnetization corre-
sponding to different transitions.

Fig. 4.8 (a) Initial magnetization curves of both BZY-2 and BZY-3 samples for H ⊥[0 0 1].
Red dots indicate H5 and blue dots indicate H6. Dots are put with accuracy of eyes.

The second method gives the middle point of transition whereas second and first deriva-
tives are used to determine the broadness of the transition. In Fig. 4.9 the region of sharp
increase in first derivative corresponds to the flat region in the second derivative. This flat
region is considered as broadness of the transition.

The first four metamagnetic transitions with temperature are plotted in the bottom panel
of Fig. 4.10. H1 and H4 begin to appear from 318 K down to 4 K, the lowest temperature
measured, for BZY-2. H2 and H3 are visible only for T < 280 K. For 280 K< T , it was not
possible to resolve both as no distinct steps are visible. H1 appears at higher field ≈60 mT
near 300 K and decreases to ≈20 mT at 50 K and then again a small increase in seen. Similar
behavior was seen in earlier studies [8]. For BZY-3 all the metamagnetic transitions start
appearing at 303 K. H1 and H3 get smeared out (can not be determined) at low temperature
and could not be resolved. In both cases, all the transitions are situated close to each other
at higher temperature but become separated from each other gradually as temperature is
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Fig. 4.9 Magenta curve shows the M vs H ⊥[0 0 1] at 200 K (initial magnetization). Red
curve shows the first derivative of M⊥ and the blue curve shows the second derivative. Hor-
izontal grid lines are the broad metamagnetic transitions. Black dotted lines are the extrap-
olation of regions where M⊥ has the steepest change. The crossing points are considered to
be the points of metamagnetic transitions.

lowered. H1 in both cases is very narrow while H3 has the broadest transition as can be
inferred from the vertical bars attached to the symbols.

H5 and H6 are also plotted against temperature in Fig. 4.10(b). Both transitions appear
in the lower field at high temperature. For BZY-2, H5 starting at lower H goes to higher H ≈
1.1 T at 150 K and starts decreasing again. The same features are observed for BZY-3 also
but with different H. At higher and lower T , H5 appears to be broader while in the interme-
diate temperature range it is very sharp. For BZY-2, H6 reaches as high as ≈ 2.2 Tesla at low
temperature, whereas for BZY-3 it is ≈ 2.1 Tesla. For both BZY-2 and BZY-3, H6 decreases
continuously. Variation of H5 and H6 are also consistent with those reported in the literature
[3, 8, 119]. Kimura et al.argued that the region between H5 and H6 (Intermediate-III) is the
region where magnetic field induced ferroelectricity occurs. Chai et al.found that the phase
boundary found by magnetoelectric measurements in highly resistive sample corresponds



4.3 Macroscopic magnetization measurements 63

Fig. 4.10 Metamagnetic fields (a) H1, H2, H3 and H4 and (b) H5 and H6 are plotted against
temperature for BZY-2 (left) and BZY-3 (right). Error bars indicate the broadness of transi-
tions as determined by the first and second derivatives of initial magnetization.
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to a wider region than the phase boundary of H5 and H6. Intermediate-III is considered
as a transient metamagnetic phase connecting ferrimagnetic and intermediate-II phase [61].
Therefore, a detailed investigation is required to determine the relation between magnetic
structure and macroscopic magnetic field induced ferroelectric polarization (see Chapter-5
and Chapter-6).

Transition temperatures BZY-2 and BZY-3

Fig. 4.11 Initial magnetization curves near spin reorientation temperature of BZY-2 and
BZY-3. Inset for both cases show the high H regions.

Some of the initial magnetization curves for BZY-2 and BZY-3 near the temperature
where H1 appears are shown in Fig. 4.11. Higher temperature initial magnetization curves
were measured first. After each measurement an oscillatory field is applied to demagnetize
the sample. The residual magnetic field in the instrument is below 0.5 mT. As mentioned
above, no spontaneous magnetization is observed within the error of the instrument. As seen
in both the cases of BZY-2 and BZY-3, at certain temperature the metamagnetic transition
starts appearing. Above 290 K we have measured the curves in 3 K intervals. In case of
BZY-2, near 318 K (the dotted blue curve) the metamagnetic transition corresponding to H1

starts appearing. For BZY-3, it is near 303 K. It can be seen that other distinct metamagnetic
transitions start appearing at this temperature.

Although it is assigned 318 K for BZY-2, the data for 321 K also have some signature
of step-like behavior. Moreover, we have measured the initial magnetization curves in 3 K
steps, so it is apparently difficult to assign an exact temperature where the metamagnetic
transition start to appear.

In Fig. 4.12 ZFC and FC curves are shown. FC curves are measured in two different
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ways: one, while heating in the presence of H after cooling with applied H and the other
one is measuring while cooling in H. In case of low field measurements (H = 3 mT, 7.5
mT, 30 mT and 50 mT), magnetization seems to increase very sharply upon warming above
≈318 K , and reaches its maximum (Tp) at 332 K and then sharply decreases. In fact, the
Tp region is slightly broader as can be seen in the bottom right corner Fig. 4.12 for 326
K to 337 K. Below 318 K, after a dip, the magnetization again increases with decrease in
temperature and reaches a maximum at around 100 K and decreases again on further low-
ering the temperature (particularly, for ZFC). Such a peak (Tp) like behavior (Hopkinson’s
peak) just below the ordering is found to arise in materials with strong magneto crystalline
anisotropy [120]. Below the ordering temperature T < Tc, when the coercive field equals
to or becomes less than the applied field, in ZFC measurement, such peak like behavior is
observed. In many soft magnetic materials a broad peak is observed while in some cases it
becomes sharper.

This effect is treated differently by different people. From M(T) measurements Lee et
al.found 382 K as the Curie temperature of Ba2Zn2Fe12O22 and it increases to 615 K with
Co replacing Zn [121]. Some authors considered the peak (Tp) as a spin reorientation tem-
perature, i.e., below this temperature a canted conical state is possible in very low H [119].
In polycrystalline samples of BaSrCoZnFe11O22, at 365 K the helical phase is considered
to appear [122]. For (Ba(1−x)Srx)2Zn2Fe12O22, x = 0.748, 319 K was considered as the spin
reorientation temperature and 337 K as the Neel temperature (TN) of an antiferromagnetic
transition [5, 8] based on neutron diffraction and M(T ) measurements. For Ba2Mg2Fe12O22

single crystals, 195 K is a spin reorientation temperature and 553 K is the ferrimagnetic to
paramagnetic transition [65]. Similar situation was encountered for Al-doped samples [66]
and M(T ) measurements were shown to be misleading in determining the spin-reorientation
temperature.

Compared to M(T ) measurements, initial magnetization curves near 332 K (Tp) do not
show any anomalies within our experimental resolution conditions (see Fig. 4.13). The dot-
ted pink curve around 333 K do not have any visible anomaly. The first visible anomaly in
initial magnetization curves appears at 318 K. Therefore, to know the transition temperature
and the type of transition, we need to see if there is any frequency dependence in AC mag-
netic susceptibility (ACMS) measurements. In case of spin glass or any spin frozen system,
frequency dependence in the ACMS measurements is a standard tool to distinguish between
spin frozen transition and other types of transition [76].

AC magnetic susceptibility of the samples was measured in a Quantum Design PPMS.
Samples were cooled to low temperature and then at each temperature, with different fre-
quencies, measurements are performed and then swept to next temperature at 1 K/min rate.
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Fig. 4.12 Zero-field-cooled curves (red), field-cooled curves measured while warming
curves (green) and field-cooled curves measured while cooling curves (blue) at different
applied H⊥ [0 0 1] for BZY-2. Vertical dotted pink line corresponds to the Tp of the ZFC
curve at 332 K and the black line is at 318 K (determined as the spin reorientation tempera-
ture from the initial magnetization curves). Bottom right figure shows enlarged view of the
TP region.

Fig. 4.13 Initial magnetization curves near TP. Left: for BZY-2 and Right: for BZY-3. Inset
shows the expanded region near low field.

ACMS measurements shows similar peak like feature as seen in low field ZFC curves but
at 324 K and this is sharp compared to the broad maxima in low H ZFC curves. This corre-
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sponds to the rising part of the peak in the ZFC curve in DC-magnetization and most likely
is the real transition temperature below which is the helical phase. There is no frequency
dependence near the peak at 324 K. Frequency dependence in the real part of the ACMS
starts appearing in nearly the same region where difference between the ZFC and FC curves
is observed in low H measurements. The frequency dependence are considered to be the
signature of glassy nature or frustration in magnetic ordering. In our case of ordered system,
this can amount to transient metamagnetic phases with different spin spiral states, as is seen
from the DC magnetization process. In fact, ZFC-FC bifurcation temperature is found to
have a field dependence.

Fig. 4.14 (a) Real and (b) Imaginary part of the AC magnetic susceptibility of BZY-2. Inset
shows the region near ordering temperature.

In case of BZY-3 samples the two corresponding temperatures are 329 K and 303 K.
As can be seen from the Fig. 4.15, at low field a strong peak type behavior is observed at
331 K, which drops down at 303 K and starts increasing again with decreasing temperature.
Compared to BZY-2, the Tp region is found to be very sharp in BZY-3.

Initial magnetization curves near 330 K were found to have a steep increase, in fact, at
333 K also it has slight steep increase compared to that of higher temperature at lower field.
Such features were not observed in case of BZY-2. In the ACMS measurement of BZY-3, a
sharp frequency-independent peak is observed at 331 K. It is at the same temperature where
the same peak was observed for low H ZFC curves. The frequency dependent region is also
at the same temperature where ZFC and FC curves bifurcate.
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Fig. 4.15 ZFC (red), FCW (green) and FCC (blue) at different applied H⊥ [0 0 1] for BZY-3.
Vertical dotted pink line corresponds to the ZFC curve at 331 K and the black line is at 303
K, determined as the spin reorientation temperature from the initial magnetization curves.
Bottom right figure shows enlarged view of the TP region.

Fig. 4.16 (a) Real and (b) Imaginary part of the AC magnetic susceptibility of BZY-3. Inset
shows the region near ordering temperature.

Sharp peak like behavior at the transition temperature and absence of frequency depen-
dence in the ACMS measurements shows that this transition is not some local order to dis-
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order transition. Still it is not clear whether it is ordered magnetic to paramagnetic transition
or a transition from one magnetic order to other. However, from the virgin magnetization
measurements it is clear that metamagnetic signatures are retained to room temperature and
above to 318 K and 303 K for BZY-2 and BZY-3 respectively. If magnetic field induced
ferroelectricity is due to the spin order below this transition temperature, then a possibility
to observe such phenomenon up to room temperature can be predicted from the magnetic
data. However, because of the leakage current it was not possible to measure above 130 K
[3].





Chapter 5

Low H phases

5.1 Zero H magnetic structure
The long c lattice parameter (≈ 43.5Å) of Y-type hexaferrite and magnetic propagation
along [0 0 1] makes it easy to study with soft X-ray resonant scattering technique. There are
few studies on the magnetic structures of Y-type hexaferrite using Fe L3 edge photon energy
[6, 9–11, 123]. Very large enhancement in magnetic scattering intensity at resonance was
observed in these studies. All those studies were concentrated on structures in zero field
or small magnetic fields. We extensively used soft X-ray resonance technique to determine
the magnetic structure of the different metamagnetic phases as shown in Chapter-4. This
chapter will deal with only the low H phases, i.e.up to H4. Magnetic structures of the phases
in between H5 and H6 will be discussed in the next chapter. Neutron diffraction experiments
will also be discussed in relevant sections.

The zero-H structure was studied by Momozawa [5, 62] by neutron diffraction. Mulders
et al.studied the zero-H structure by circular and linear polarization of Fe L3 edge X-ray
resonant diffraction. Hiraoka [10, 11] studied the spin chiral domains and the effect of
temperature on them. The only in-field study was carried out by Hearmon et al.[6], but the
maximum applied field value was limited by the electromagnet (150 mT), where they could
reach hardly near H3.

Temperature dependence of zero field structure For soft X-ray experiments we used
surfaces either as grown or cleaved ex-situ. In (0 0 l) scans with σ and π polarizations of
incoming photons (see Fig. 3.5 for σ and π polarizations) two incommensurate satellite
reflections are observed at (0 0 3±δ ), δ = 0.38 as shown in Fig. 5.1(a).

We know from the matrix Eq. 3.25 that for incoming π polarized photons, the intensity
is sensitive to moment components in all z1, z2 and z3 directions, whereas, for σ polarized
photons z2 moment components are not observed. For a helical structure, where z3 moments
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Fig. 5.1 (0 0 l) scan at 10 K with 711 eV energy (a) with π and σ polarizations and (b) with
P and M polarizations, (right:) temperature dependence of incommensurate satellite with
nuclear (0 0 3) reflection, intensity and position in reciprocal space.

are absent, π → σ and σ → π intensities are equal. Intensity in σ → σ is zero for purely
magnetic scattering. The π → π intensity adds up in the total incoming π channel. As a
result, intensity of the (0 0 3±δ ) in π channel is higher than that of the σ channel. We can
see this in Fig. 5.1(a) that for both the satellites, intensity in the π channel is greater than
that of σ channel.

For nuclear Thomson scattering (0 0 3) nuclear reflection reverse order is observed as
shown in Fig. 5.1(a). In Thomson scattering, σ → π and π → σ off-diagonal channel
intensities are not observed while, in diagonal channels σ → σ to π → π ratio is given by
cos2 2θ as can be seen in Eq. 3.25. Our experimental ratio 10 is somewhat lower than the
calculated 14 ratio. We found that the full width at half maximum is the same for both the
channels for Thomson scattering. Therefore, the penetration depth calculated for both the
channels are similar, i.e.≈85 nm. Intensity ratios π/σ for (0 0 3+δ ) and (0 0 3-δ ) reflections
are 3.65 and 1.87 respectively. We have intensity ratios π/σ in our experiment comparable
to that of Mulders et al.group’s experimental values of 3.375 and 2.17 and calculated values
of 3.125 and 1.96 for (0 0 3+δ ) and (0 0 3-δ ) respectively. Few more intensity ratios are
tabulated in Table. 5.1. It would be wrong to directly compare exact ratios of intensities, as
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the propagation vector in the reference [9] is smaller than that of ours. Both the ratios π/σ

for (0 0 3+δ ) and (0 0 3-δ ) are θ dependent and hence, have different values.
Circular polarized X-ray resonance diffraction provides information about the chirality

of the sample. Intensity in the two incoming polarization of photons P and M is distin-
guished from each other by the chiral term χ =±1 in the following equation [9] (for details
see section 3.4.3):

IXRES
χ =

1
2
[Iσ→σ + Iσ→π + Iπ→σ + Iπ→π ]+χIm

[[
Fπ→σ ][Fσ→σ ]+ [Fσ→π ][Fπ→π

]]
χ is ±1 for P and M polarizations

(5.1)

Value of χ (=±1) determines the intensity in both the channels depending on whether the
second term is added or subtracted from the linear total average intensity given by the first
term. Since, [Mσ→σ ] is zero according to Eq. 3.25, the second term in Eq. 5.1 determines
the intensity of chiral scattering. This second term involves all the three moments (z1, z2

and z3).
In our experimental data which is presented in Fig. 5.1(a), the contrast between circular

P and M is very weak compared to that reported in [9]. This can be explained in the light
of the beam spot used and size dependent populations of chiral domains. In the cited ex-
periment, 1 mm2 of sample surface area was illuminated, but we used a 120 µm horizontal
beam and 400 µm vertical beam compared to experimental sample surface of 8 mm2. With
small beam spots Hiraoka et al.found that, for circular polarization, spin chiral domains
with variable sizes exist. Therefore, with small beam spots different ratios of the intensities
can be observed for both P and M satellites. This is discussed in section 5.3.1. However, as
observed in earlier cases [9], (0 0 3-δ ) is comparatively more intense in M and (0 0 3+δ ) is
more intense in P, which is consistent with chiral structures.

In Fig. 5.1(c) it can be seen that the incommensurate propagation vector (0 0 δ ) increases
with increasing temperature. At 10 K, δ = 0.62 and it reaches to δ = 0.87 at 260 K. No
satellite reflections can be observed at 320 K and above. With increase in temperature,
the intensity of the nuclear reflection decreases marginally but the intensity of the satellite
decreases considerably. The ratio of the intensities between (0 0 3-δ )/(0 0 3+δ ) is plotted
in Fig. 5.3(a). This ratio follows the same trend as that of the propagation vector. Intensities
of (0 0 3-δ ) and (0 0 3+δ ), for a particular temperature, are distinct from each other by
position in reciprocal space Q. Since they are following the same trend, we can assume that
there are no anomalies with respect to Q in the range of the temperatures shown in the Fig.
5.1.

For comparison, neutron diffraction experiment was also carried out in TRICS at The
Paul Scherrer Institute, Villigen, Switzerland. In case of neutron diffraction, the incommen-
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surate propagation vector (0 0 9±δ ) is also changing with temperature and the intensity, as
expected, drops with increase in temperature, see Fig. 5.2. Integrated intensities are calcu-
lated by Gaussian fitting of the reflections. In right side figure of Fig. 5.2, integrated inten-
sities with position in reciprocal space are plotted with respect to the temperature. Smooth
change in position and intensity in neutron as well as resonant X-ray diffraction data rules
out any phase transition at zero H from 290 K to 10 K. However, above 290 K we have
measurements only at 320 K, where no satellite was observed. Therefore, we can say from
the present data that at 320 K helical configuration disappears, but we can not say at which
temperature in the range 320-290 K this transition takes place.

Table 5.1 Comparison of the ratio of intensities of our experiment to that of experimental
and calculated one by Mulders et al.[9]

Polarization (0 0 3+δ ) (0 0 3-δ ) (0 0 3-δ )/(0 0 3+δ )

Exp. Ref [9] Calc. [9] Exp. Ref [9]Exp. Calc. [9] Exp. Ref [9] Calc. [9]

π/σ 3.65 3.375 3.125 1.87 2.173 1.96

π 2.05 1.85 2.04

σ 4.02 2.875 3.25

Fig. 5.2 Left: (0 0 l) scans at different temperatures with neutron of wavelength λ = 2.31Å.
Right: temperature dependence of incommensurate satellite with nuclear (0 0 9) reflection,
intensity and position in reciprocal space are shown.

In Fig. 5.3(a) propagation vector parameter δ from (0 0 3n±δ ) for both X-ray and
neutron diffractions is plotted with respect to the temperature. A small difference in the
value of δ is observed for neutron and resonant X-ray measurements. Such differences
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were observed earlier also [9] and this can be because two samples from same growth are
used for measurements. A small change in Sr content changes δ and the qualitative the
change in δ is in agreement with the previously reported studies [62].

Fig. 5.3 (a) change in propagation vector with temperature for both neutron and X-ray mea-
surements, with X-ray (0 0 3±δ ) is measured, while with neutron (009± δ ) is measured.
The ratio of (0 0 3−δ )/(0 0 3+δ ) is also plotted (pink curve) with a different scale (right-
side). (b) Turn angle (φ ) calculated from X-ray and neutron experiments (c) H1 field from
magnetic measurement with temperature.

The value of δ can be related to the turn angle (φ ) between large (L) and small (S)
spin blocks as φ = 2/3πδ considering equal angles between the adjacent spin blocks. φ

calculated from the position of the incommensurate reflection is plotted as a function of
temperature in Fig. 5.3 (b). φ changes from near 140° at 10 K to 135° at 300 K. It was
found earlier that the value of δ follows the first critical field for metamagnetic transition
H1 [5], and our result also shows the changes in H1 follows same trends as that of δ (see
Fig. 5.3(c)).

5.2 In-field measurements with soft X-rays
We carried out our experiments in detail at two temperatures 100 K and 10 K in the high field
chamber. The high field chamber, as mentioned in 3.5, has an opening of 66° in between
the horizontal magnets. This provides us access to a maximum of (0 0 2.5) in the reciprocal
space at the Fe L3 edge energy. Therefore, higher energy is used for orienting the samples.
In Fig. 5.4 some fixed-Q energy scans at zero H for two Q values, incommensurate (0 0
2.38) and commensurate (0 0 1.5), are shown. For these two Q value,s we have magnetic
satellites at H = 0 and at higher H respectively. Resonance of Fe L3 edge is found to be
in a broad range from 704 eV to 714 eV. Similar broad energy spectrum was observed
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by Mulders et al.[9] also. For the incommensurate reflection (0 0 2.38), two maxima at
707.5 eV and 711 eV are observed in the energy scans and as expected, π is more intense
than σ . A new satellite (0 0 1.5) is observed at higher H (discussed later), therefore, at
zero H also fixed Q energy scan is measured for all the polarizations for (0 0 1.5). In this
case, σ channel intensity is more than that of π , which is not possible in case of magnetic
reflections. In zero H, no (0 0 1.5) satellite is observed, therefore, this can be attributed
to the reflectometry contribution in the background when incident angle θ is very small.
Energy curves at different H will be treated in Chapter-6.

Therefore, we used different energies from 707.5 eV to 711 eV to study the in-field
magnetic structures which are shown as dashed lines in Fig. 5.4.

Fig. 5.4 Energy scans with fixed Q at H = 0. (a) and (b) are energy scans for σ and π

polarizations at Q = (0 0 1.5) and Q = (003−δ ) respectively. (c) and (d) are for P and M
polarizations with the same Q respectively.

Fig. 5.5 shows some of the (0 0 l) scans at 100 K with E=707.5 eV. In zero H, incom-
mensurate (0 0 3-δ ) reflection becomes asymmetric, with a small kink at very low H. The
origin of this kink is unknown, probably a small modification in the turn angle φ which can
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not be resolved with the present resolution at the present detector distance. It can be due to
small modification in the helix as pointed out to be the so called slightly modified helix [8].
The small kink disappears around 9 mT (not observed for H = 0). A new small satellite (0 0
2.25) appears with a commensurate propagation vector (0 0 0.75) in the π channel at 20 mT.
At the same field a small peak develops (0 0 1.5) with equal intensity in σ and π channels.
At 25 mT, only in π channel (0 0 2.25) is observed but (0 0 1.5) is observed in both the
channels. With increase in H further at 30 mT, small intensity in (0 0 2.25) is also observed
in σ channel. This intensity is so small that it may be due to imperfect polarizations also, so
we will neglect it. At 40 mT, only the two commensurate reflections are observed and (0 0
3-δ ) incommensurate reflection disappears. After 50 mT, (0 0 2.25) reflection appears only
in the π channel along with (0 0 1.5) in both the channels with equal intensity.

The intensity of the reflections from all the (0 0 l) scans are integrated by using a
Lorentzian fit and plotted against applied magnetic field and shown in Fig. 5.6. At 100
K the incommensurate reflection (0 0 3-δ ), corresponding to helical phase, disappears near
40 mT in both the channels. Ratio between π and σ channel remains close to 2 (see Fig.
5.6), as is found in zero H measurements. Both the commensurate reflections start appear-
ing at the same H = 20 mT. The horizontal bars in Fig. 5.6 refer to the H values taken from
M vs H curves as discussed in Chapter-4. Considerable intensity of (0 0 3-δ ) remains above
H1 but the commensurate reflections starts appearing at H1. Hearmon et al.observed that at
165 K and at 50 K both (0 0 1.5) and (0 0 3-δ ) are present up to 70 mT. In our case they
are observed up to 40 mT. In contrast with Hearmon et al.’s result, we did not observe any
commensurate reflections at (0 0 2).

Table 5.2 Different satellite reflections observed for different fan structures and comparison
with reference [6]. In this reference, apart from main phase satellites other satellites were
also found, indicating mixture of phases.

Our experiment Ref.[6]
10 K 100 K 50 K 165 K 295 K

Helix (0 0 3-δ ) (0 0 3-δ )
(0 0 3-δ )
(0 0 1.5)

(0 0 3-δ )
(0 0 1.5)

(0 0 3-δ )
(0 0 2)
(0 0 1.5)

6 fan absent absent

(0 0 3-δ )
(0 0 2.25)
(0 0 2)
(0 0 1.5)

(0 0 3-δ )
(0 0 2.25)
(0 0 2)
(0 0 1.5)

(0 0 3-δ )
(0 0 2.25)
(0 0 2)
(0 0 1.5)

4 fan
(0 0 2.25)
(0 0 1.5)

(0 0 2.25)
(0 0 1.5)

(0 0 2.25)
(0 0 1.5)

(0 0 2.25)
(0 0 1.5)

(0 0 2.25)
(0 0 1.5)

2 fan (0 0 1.5) (0 0 1.5) (0 0 1.5) (0 0 1.5) (0 0 1.5)
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Fig. 5.5 (0 0 l) scans at different magnetic fields at 100 K with σ and π polarizations of
incoming photons.

At 10 K only the incommensurate (0 0 3-δ ) reflection is observed up to 50 mT, see Fig.
5.7. Above 50 mT the (0 0 3-δ ) reflection becomes highly asymmetric and a shoulder starts
appearing at (0 0 2.25). The intensity at (0 0 3-δ ) gradually decreases in the π channel,
whereas, at 100 mT in both σ and π channels it completely disappears. At the same H,
(0 0 1.5) reflection also starts appearing. Integrated intensity vs H curve shows that unlike
100 K, at 10 K the (0 0 3-δ ) persists above H2 and disappears before H3. Both (0 0 1.5)
and (0 0 2.25) are observed in between H1 and H2 and (0 0 2.25) disappears before H3,
whereas, (0 0 1.5) intensity increases. To get more accurate idea of the intensity, it is better
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Fig. 5.6 Integrated intensity from the Lorentzian fitted peaks of (0 0 l) scans as shown in
Fig. 5.5. (a) Incommensurate (0 0 3-δ ), commensurate (0 0 0.75) and (0 0 1.5) reflections
with π polarization. Initial magnetization curves at 100 K (arbitrary unit) are also shown
for comparison. Horizontal gray bars refer to the metamagnetic transition fields at 100 K as
explained in the previous chapter. (b) same as (a), but with σ polarization and (c), (d) and (e)
are individual reflections shown separately. All measurements are performed in increasing
field after zero-field cooling. Error in H is ≈ 5 mT.

to do transverse scans or omega scans rather that specular longitudinal scans (as discussed
in section 3.4.4). In the omega-scan-measurement integrated intensity shows similar trends
as that of the (0 0 l) scans. The (0 0 2.25) reflection is found between H2 and H3, see Fig.
5.8.

As reported earlier, rather than sharp metamagnetic transitions, the microscopic mag-
netic structures coexist within large field regions [6]. Different reflections with different
metamagnetic phases are tabulated in the Table 5.2 along with those observed in reference
[6]. In our case, no reflection at (0 0 2) is observed at either of the temperatures 10 K or 100
K. This can be because of the close energy associated with adjacent metamagnetic structures
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Fig. 5.7 (a) Some of the (0 0 l) scans at different magnetic fields at 10 K and E = 711
eV. (b) Integrated intensity from the Lorentzian fitted peaks of (0 0 l). Incommensurate
(0 0 3-δ ) reflection with both σ and π polarizations, initial magnetization curves at 10 K
(arbitrary unit) are also shown for comparison. Horizontal gray bars refer to the metamag-
netic transition fields at 10 K as explained in the previous chapter. (c) is the same as (b) with
(0 0 2.25) (d) with (0 0 1.5) reflections. All measurements are performed in increasing field
after zero-field cooling. Error in H is ≈ 5 mT.

[6].

5.2.1 Discussion
There are various fan structures reported previously. From neutron diffraction, after he-
lical phase, so called 4-fan and 2-fan structures were proposed for higher fields [8, 61].
Intermediate-I, which is the region between H2 and H3, is primarily proposed to be consist-
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Fig. 5.8 Integrated intensity by Lorentzian fitting of the omega scans for σ and π polariza-
tions. Initial magnetization curves at 10 K (arbitrary unit) are also shown for comparison.
(a)and (b) are integrated intensities at different field of (0 0 3-δ ), (0 0 2.25) and (0 0 1.5)
with π and σ polarization respectively. In (c), (d), and (e) individual reflections are shown
separately for both the polarizations.

ing of the 4-fan structure. Another new 6-fan phase was found by soft X-ray diffraction [6]
at lower H. These fan structures are shown in Fig. 5.9.

Fig. 5.9 Various fan structures reported in the literature. Large (Lk) and small (Sk) are
stacked as LkSkLk+1Sk+1... for k = 1,2,3, ....
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Let us consider the 4-fan structure. We can resolve the components along the field
direction H and perpendicular to it in a plane ⊥[0 0 1]. For the components in the field
direction, large spin blocks have a periodicity of 2c/3 in real space, which corresponds to a
satellite reflection (0 0 3/2). The small spin blocks have ferromagnetic contribution and it
contributes towards the nuclear reflection. In case of perpendicular to field direction, both
the large and small spin blocks have periodicity of 4c/3 in real space, which corresponds to
satellite reflection (0 0 3/4). Now, as a whole, for the 4-fan structure we can have magnetic
contribution in the reflections (0 0 0)≃(0 0 3), (0 0 3-3/4) and (0 0 3-3/2). Now if we
see particularly, for the (0 0 2.25) reflection, it is the modulated moments that have only
perpendicular to H components. Within our scattering geometry (see Fig. 3.5) it is the z2

component that contributes towards this magnetic reflection. In the matrix Eq. 3.25 only the
π → π channel probes the moment along z2. Therefore, we should observe intensity in the
π → π channel only for (0 0 3/4) and it has contribution from both the L and S spin block
components along z2.

For the (0 0 3/2) reflection, modulated moments in the field direction contribute. For
z3 = 0 we have contribution from z1 moments only and there is no intensity in π → π .
This makes intensity in incoming σ and π channels equal. For the 2-fan structure we have
intensity in only π → π channel (see section 6.1.4 for details). Therefore, higher intensity
in incoming π channel than σ channel is due to 2-fan structure or other complex structures.

For our structure, considering the atomic coordinates and value of γ (see section 4.2),
from our X-ray structural refinement we calculated the intensities in various channels. We
used 4/3 unit cells to calculate the intensity for both (0 0 2.25) and (0 0 1.5)reflections. In
our experimental limitations we could not measure the (0 0 3) reflection, therefore, (0 0 3)
is not calculated.

In Fig. 5.11 calculated intensities in individual channels are plotted against the angle φ .
For the (0 0 2.25) reflection as can be seen in the σ → π and π → σ channel no intensity is
observed. For z3 = 0 both the channels are sensitive to z1 moments. As we saw in Fig. 5.10
there is no contribution to the modulated moments along [0 0 1] corresponding to (0 0 2.25)
reflection from the z1 components from both S and L spin blocks. Therefore, according to
our calculations, we have intensity in only the π channel for (0 0 2.25) reflection. Intensity in
the π channel increases as we increase φ . For the (0 0 1.5) reflection, only the z1 components
have periodicity along (0 0 1) equal to Q. As can be seen from the Fig. 5.11, we have equal
intensity in σ → π and π → σ . π → π intensity is almost zero for an entire range of φ ,
except for some small values. Therefore, we can expect equal intensity in both the σ and π

channels. With increase in φ value, σ → π and π → σ intensities also increase.
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Fig. 5.10 Component of spin block moments (⊥ c) L and S of 4-fan structure along field
direction and perpendicular to it. Corresponding satellite reflections due to the components
are also shown.

It is difficult to compare direct values of the intensities with our experimental data as
there are many other parameters like absorption, penetration depth etc involved. Therefore,
we plotted the ratios of some of the parameters from our calculations in Fig. 5.11. For
the (0 0 2.25) reflections, Iπ/Iσ ratio makes no sense as Iσ is very small. For the (0 0 1.5)
reflection, apart from very small values of φ , Iπ/Iσ is equal to 1 for the entire range. As
mentioned earlier, only the z1 components of the L-blocks contributes to intensity of (0 0
1.5) reflections in both the channels. Hence, equal intensity in both the channels will be one
of the criteria for the 4-fan structure. Ratio of intensity of the (0 0 1.5)/(0 0 2.25) reflections
can be a good tool to estimate the angle φ . For Iπ the ratio is smaller than unity. This means
that for the 4-fan structure, intensity in (0 0 2.25) should be higher than that of (0 0 1.5). The
ratio varies smoothly from 0 to 1 with φ . In Fig. 5.11(c) we plotted the calculated relative
circular dichroism for both the (0 0 2.25) and (0 0 1.5) reflections and this will be discussed
later in this chapter.

For the 6-fan structure, four propagation vectors were reported: (0 0 1/2), (0 0 1), (0
0 3/2) and (0 0 0). We did not observe the first two propagation vectors in our sample.
Therefore, presence of 6-fan structure in our sample can be ruled out. The 2-fan structure
will be dealt with in detail in the next chapter.
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Fig. 5.11 Calculated intensity as a function of φ for 4-fan structure for both (a) (0 0 2.25)
(b) (0 0 1.5) reflections and (c) ratio of intensities of the (0 0 1.5) in σ channel to that of (0
0 2.25) in π channel.

5.3 Circular polarization

5.3.1 Spin chiral domains

As seen in Eq. 5.1, scattered intensity in the case of circular polarized light is determined by
the sign of χ . Chirality in the non-centrosymmetric (see section 2.1.3) sample determines
the sign of χ . For the same sample there can be a region with different chirality [124,
125]. Therefore, using beam-spots that are smaller than the regions of sample having same
chirality, can give better estimation of the P and M intensities. The regions with the same
chirality will be called as spin chiral domains after [10].

Hiraoka et al.[10] studied the spin chiral domains at zero H. Very recently, the effect
of cooling in electric and magnetic field was also studied by the same group [11]. We used
the same technique of mapping the sample surface with resonant diffraction using circular
polarizations. For that we place the detector and sample orientation corresponding to a
particular reflection and mapped the sample by measuring y scans at different z. Beam spots
(100 µm × 150 µm) are optimized with scan parameters to avoid any dark regions in the
sample.

In Fig. 5.12(a) and (b) a map of the sample surface with P and M polarizations is shown.
In zero H, sitting at (0 0 3-δ ) (fixed Q), sample surface is scanned by moving in in-plane
direction (⊥ z1) using step motors. Different high intensity and low intensity regions are
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found in the sample surface. There are regions ranging from 0.2 mm to 2 mm distance
with higher intensity in either of the polarizations. There is considerable contrast between
P and M polarizations in the observed domains. The size of these spin chiral domains are
comparable to those of earlier studies [10, 11].

In Fig. 5.12(c) the ratio between P and M is plotted. As mentioned earlier (see Fig. 5.1),
we did not observe significant circular dichroism in our earlier (0 0 l) scans because of the
larger beam spots used. From the maps with smaller beam spots, ratio of P/M is found to
range from 2 to 0.5, indicating that our results are very close to those of Mulders et al.[9].
It is a little smaller than the highest value observed by Hiraoka et al.(≈ 5.8). In Fig. 5.12(d)
we normalized the difference of P and M with their sum to enhance the contrast between
them.

Fig. 5.12 (a) and (b) are maps of the sample surface with M and P polarizations respectively.
(c) is the map of the ratio between P and M over the sample surface and (d) is difference
between P and M normalized by their sum (P−M

P+M ).

The shape of the Chiral domains is arbitrary at H = 0. In different samples domains
with different sizes are observed. In Fig. 5.13 two domain patterns of the same sample are
compared at zero H. Here, (a) is measured at zero H after coming down from 340 K in
zero H. (b) is same sample but a saturation field µ0H =3.5 T is applied and after that H is
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ramped back to 0 and the measurement is performed. It can be clearly seen that the sample
does not remember the domain pattern corresponding to zero H for (0 0 3-δ ) reflection after
applying a saturation field. It was already found that demagnetizing the sample by heating
it above ordering temperature also produces different domain patterns [6].

Fig. 5.13 (a) Same as Fig. 5.12 (d), (b) after applying saturation magnetic H.

We also tried to find out the intensity with circular polarizations for bigger sample vol-
ume. Comparatively larger beam spots (400µm × 400µm) are used for determining the
changes in circular dichroism with H. From Fig. 5.14 it is seen that appearance and disap-
pearance of reflections with H are the same as that for liner polarizations. At 100 K, P/M
ratio is found to be in between 1.35 to 1.4 for the (0 0 3-δ ) reflection. This is relatively
smaller compared to the values observed by Mulders et al.and Hearmon et al.

From Fig. 5.14 it can be seen that both the(0 0 2.25) and (0 0 1.5) reflections start
appearing at the same H, just above H1. Considerable intensity in the (0 0 3-δ ) reflection
is found in the region H1 < H2. For the (0 0 2.25) reflection, in fields close to zero, the
relative circular dichroism (Iχ ) is observed up to 30 mT and it increases to 12 % at 80
mT. The increase in Iχ starts before the critical field H2 determined from the macroscopic
magnetization measurements. For the (0 0 1.5), Iχ is near 10 % up to 50 mT but starts
increasing afterwards.

At 10 K also P/M = 2 for (0 0 3-δ ) at low H, but this decreases to 1 and then to less
than 1 with increase in H. The (0 0 2.25) reflection has considerable intensity above H2. It
is difficult to draw conclusive evidence as there are not enough data points measured at low
H.

From the calculations we have seen that, for the (0 0 1.5) reflection the intensities in
the σ and π channels are equal for the 4-fan structure (see Fig. 5.11). From our integrated
intensity we plotted the Iπ/Iσ ratio in Fig. 5.16. At 100 K, Iπ/Iσ is close to 1 up to H2 but
after that it starts increasing. There is a normal increase after H3 due to change in the energy
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Fig. 5.14 Integrated intensity from the Lorentzian fitted peaks of (0 0 l) scans. (a) Incom-
mensurate (0 0 3-δ ), commensurate (0 0 0.75) and (0 0 1.5) reflections with circular p polar-
ization. Initial magnetization curves at 100 K (arbitrary unit) is also shown for comparison.
Horizontal gray bars refer to the metamagnetic transition fields at 100 K as explained in the
previous chapter. (b) is the same as (a) with circular M polarization. (c), (d) and (e) are
individual reflections shown separately for both the polarizations with Iχ = I(P)−I(M)

I(P)+I(M) .

profile at this field, which is discussed in section 6.1.1. The ratio of the intensity in the π

channel for (0 0 1.5) /(0 0 2.25) should be below 1 for all angles φ . We can extract the angle
φ between the large spin blocks from this ratio. Our calculated value of φ ranges from 76°
to 85° as plotted in Fig. 5.16. From neutron diffraction φ was estimated to be 81.5° at the
onset of intermediate-I structure, which is the 4-fan structure [8].

In contrast to neutron scattering, where the 4-fan structure is in the field range H2 < H3

[8], we observe both (0 0 1.5) and (0 0 2.25) reflections below H3, but the intensity ratio
does not fit above H2 for the 4-fan structure. Moreover, we have some small values (≈ 10%)
of circular dichroism in this region. In addition, the (0 0 3.-δ ) reflection does not disappear
completely at H1 but extends above it. Therefore, we can anticipate that several phases
co-exist. Above H1, modified helix and 4-fan structure coexist and below H2, the 2-fan
structure and the 4-fan structure coexist.
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Fig. 5.15 Integrated intensity by Lorentzian fitting of the omega scans for P and M polariza-
tions. Initial magnetization curves at 10 K (arbitrary unit) are also shown for comparison.
(a) and (b) are integrated intensities at different fields of (0 0 3-δ ), (0 0 2.25) and (0 0 1.5)
with P and M polarization respectively. In (c), (d), and (e) the individual reflections are
shown separately for both the polarizations.

Fig. 5.16 The ratios on intensities in the σ and π channels for (0 0 1.5) reflection and ratio
of intensity of (0 0 1.55) and (0 0 2.25) reflections in the π channels for different H at 100
K and 10 K.
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At 10 K we do not have enough data points near low H. As seen in Fig. 5.7, for 50 mT (0
0 1.5) intensity is much much lower than that of (0 0 2.25) and (0 0 3-δ ). Therefore, the ratio
(0 0 1.5)/(0 0 2.25) for Iπ channel is very small. We can assume this field to be the onset of
the 4-fan structure. At 750 mT the ratio is a bit higher than unity in contradiction with the
calculated value which is less than unity. However, the intensity in σ and π channel is same
up to 100 mT and starts going to higher values after this field. In case of circular dichroism
also we have seen that after 50 mT circular dichroism starts increasing. Therefore, at 10
K we can expect phase co-existence to a larger extent compared to that of 100 K. This is
also evident from the magnetization data, where initial magnetization curve at 10 K does
not show as distinct features as that at higher temperatures.

From our experimental results, we can claim that distinct phase boundaries can not
drawn based on mere magnetization data. Significant phase co-existence appears at low
H. Above a certain H only the (0 0 1.5) reflection remains. This will be discussed in next
chapter.





Chapter 6

Magnetic structure in the ferroelectric
phase

Almost a decade ago in the year 2005, Kimura et al.[3] found magnetic field driven fer-
roelectricity in the intermediate-III phase, that is in between H5 and H6 critical fields (see
Fig. 4.10). In 2009 Chai et al.found that near room temperature, H driven ferroelectric-
ity can be found at much lower field than that found earlier (see Fig. 6.1) [119]. For
that, the sample was annealed in oxygen. Phase boundary from magnetization measure-
ment in Fig. 6.1(b), the intermediate-III phase or proposed onset of ferroelectric phase
i.e.H5, is different compared to the phase diagram from magnetoelectric measurements in
Fig. 6.1(a). Moreover, a 2-fan structure reported earlier in literature does not support mag-
netic field driven ferroelectricity as per inverse IDM mechanism. This is the classic example
of H driven ferroelectricity in hexaferrite, but the spin structure in the FE phase is not yet
solved. Therefore, a detailed investigation of the spin structure in the FE phase is needed.
In most of the other hexaferrites, in the field driven ferroelectric phases, magnetic ordering
with cycloidal components are reported [55, 58, 66, 126–128]. For example, in the case
of Ba2Mg2Fe12O22, below 195 K the zero-H magnetic structure is longitudinal conical and
it transforms to slanted conical on application of a small H and thus, gives magnetic field
induced ferroelectric polarization in accordance with inverse DM model [55]. Therefore,
we used microscopic diffraction techniques to investigate the in-field magnetic structures of
the samples. We used mostly BZY-2 samples for our measurements. To verify the phase
diagram we have used the high field diffractometer of the beamline UE46−PGM-1 in the
Helmholtz-Zentrum Berlin. In Chapter 5 we discussed the low field metamagnetic phases,
here we present the magnetic structure in the FE phase. In this chapter we will deal with
magnetic field above H4 only.

As-grown surface as well as cleaved sample surfaces are used for soft X-ray diffraction
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experiments. In all the experiments a horizontal scattering geometry is used. We will first
discuss our results of horizontal magnet geometry in section 6.1, then vertical magnet ge-
ometry in section 6.2. We will present our numerical calculations in section 6.3 and finally
with our correct model we will explain the experimental results in the section 6.4.

6.1 Horizontal magnet geometry
The high field chamber, as mentioned in section 3.5, consists of a horizontal magnet. In the
case of high field measurements, the magnet is rotated so that the field remains perpendicular
to [0 0 1] with tolerance of ± 2° for changes in omega by 4°. However, experiments are also
performed with 10° angle between [0 0 1] and H and no significant difference is observed.
In Chapter-5 we presented magnetic structures in low H.

Fig. 6.1 Magnetoelectric phase diagram of Ba0.5Sr1.5Zn2Fe12O22 from magnetoelectric
measurements from ref [119]. Black line is from ref [3] (M vs H), blue one is as-grown and
red one is for sample after annealing in oxygen. Phase diagram was determined using the
magnetoelectric measurements. (b) Phase diagram from the magnetization measurements.

6.1.1 Energy dependence in magnetic field
Careful choice of resonance energy is very critical for resonance soft X-ray diffraction ex-
periments. In Fig. 6.2 integrated intensity of (0 0 1.5) reflections at different photon energies
are shown. Integrated intensities are calculated from Lorentzian fit of the reflections from
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Fig. 6.2 Integrated intensity of (0 0 1.5) reflection from the Lorentzian fit of omega scans
at different H for π and σ polarizations at 100 K. From the top at 707.5 eV, 708.5 eV and
710 eV resonance energy respectively. The horizontal bars represent various critical fields
observed from the magnetization measurements.

(0 0 l) scans. In case of 707.5 eV, at fields higher than 0.06 T, the intensity in the σ channel
comes down almost to zero whereas, for the π channel considerable intensity is observed
up to 1.5 T, which is near the H6 critical field observed in magnetization measurements. For
708.5 eV energy, intensity in both the channels persists up to 1.5 T. However, the intensity
for 707.5 eV experiments in π channel is also found to be 3 times smaller than that of 708.5
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eV experiments. When 710 eV energy is used, the intensity in the σ channel also decreases
considerably with increase in field like that of 707.5 eV experiment. This can be explained
if we look at the energy scans at fixed Q very carefully.

In Fig. 6.3 intensity corresponding to energy 707.5 eV in the σ channel can be observed
up to 80 mT (see the vertical green dashed line). Above 80 mT broad curve extending as
low as 705 eV becomes very sharp and gives a maximum value at 708.5 eV (see the vertical
pink dashed line). Only small intensity in the σ channel can be observed below 707.5 eV,
but for the π channel even down to 710.5 eV intensity can be observed. Another maximum
is observed for energy near 710 eV. For 710 eV also it is observed that the intensity in σ

channel decreases comparatively more than that of 708.5 eV. The simulation of the energy
spectra is beyond the scope of this thesis.

Fig. 6.3 Energy scans with fixed Q (0 0 1.5) at different H at 100 K. Vertical dashed lines
guide energy for the values as: olive - 707.5 eV, pink - 708.5 eV and navy blue - 710 eV.

In zero-field no reflection was observed at (0 0 1.5). Therefore, the resonance enhance-
ment in zero H can be considered to be from the reflectometry contribution from the shiny
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surface of the sample. Complex magnetization dependence of the reflectometry contribution
is neglected as the shape of the curve is similar at both zero H and at H = 3 T. The spectra
are replotted in Fig. 6.4 after subtracting the reflectometry contribution. After subtraction,
the intensity in the π channel is found to be higher than that of σ channel all over the L3

edge. Therefore, we can use 708.5 eV and near 710-711 eV as reliable energies for our
experiments above 80 mT.

Fig. 6.4 Energy scans with fixed Q (0 0 1.5) after subtracting the zero field E scans at 100
K. Vertical dashed lines guide energy for the values as: olive - 707.5 eV, pink - 708.5 eV
and navy blue - 710 eV.

In the Fig. 5.7 of Chapter-5, we have seen that the intensity of the (0 0 1.5) reflection
starts appearing near 20 mT at 100 K, with equal intensity in σ and π channels. At the
same time (0 0 2.25) reflection was also present. This (0 0 2.25) reflection is observed up
to H close to H3. Phase with only a (0 0 1.5)reflection is found near H4 near 120 mT and
above. The value of H4 was determined to be 0.16(2) T at 100 K from the magnetization
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measurements (see Fig. 4.10). Individual intensities in both π and σ channels are found to
be unchanged up to 1 T ≈ H5 at 100 K and after that they start decreasing (see Fig. 6.5).
Value of H5 was found to be 1.05(5) T at 100 K from magnetization measurements. Between
1 T and 1.2 T there are not enough data points to exactly determine the field region where the
intensity starts decreasing. Therefore, it can be concluded that (0 0 1.5) reflection intensity
starts decreasing near H5 and it disappears near H6 (1.78(5) T from M(H) measurements).
To verify these results we measured at 10 K and found that here also the phase with only (0 0
1.5) reflection starts appearing near H4 (0.18(5) T from M(H) measurements) and disappears
near H6 (2.20(5) T from M(H) measurements), see Fig. 6.6.

In Fig. 6.5(b), the ratio of Iπ/Iσ is plotted along with the values normalized with the sum
of intensity in both the channels. Iπ/Iσ is found to be approximately same from 0.12 to 1.2 T
and after that it starts decreasing. Values smaller than 1 are observed below 1.5 T but it can
be due to small value of intensity as can be seen from the normalized values, (normalization
by total intensity in σ and π) which is indicated by black stars at the corresponding fields in
Fig. 6.5 (b). At 10 K the average of Iπ/Iσ is 1.66 (see Fig. 6.6). These values will be used
later for quantitative analysis of different magnetic models.

Fig. 6.5 (a) Integrated intensity from the Lorentzian fit of omega scans at different H for π

and σ polarizations at 100 K and 708.5 eV. (b) Ratio normalized to total intensity and ratio
between the intensities of π and σ in same scale. The initial magnetization curves at 100
K (arbitrary units) are shown for comparison. Horizontal bars are guide to the critical fields
determined from the magnetization measurements.

We used circular polarization to determine the circular dichroism in diffraction. In
Chapter-5 we have seen that the intensity of the (0 0 3-δ ) reflection depends upon the posi-
tion on the sample and gives spin chiral domain configurations when the surface is mapped.
Therefore, we used bigger beam spot of size 400 µm × 400 µm to collect intensity in omega
scans and (0 0 l) scans to get an average circular dichroism.
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Fig. 6.6 (a) Integrated intensity from the Lorentzian fit of (0 0 l) scans at different H for
π and σ polarizations at 10 K and 711 eV. (b) Ratio normalized to total intensity and ratio
between the intensities of π and σ . Initial magnetization curves at 10 K (arbitrary unit) are
shown for comparison. Horizontal bars are guide to the critical fields determined from the
magnetization measurements.

From Fig. 6.7 we can see that intensity of the (0 0 1.5) reflection follows a similar trend
as that is observed for σ and π polarization at 100 K. The total intensity (P+M) remains the
same up to 1 T, but afterwards at 1.2 T it decreases 55 % and at 1.8 T it vanishes. Ratio
between P and M and their difference is normalized with total intensity is approximately
constant between H4 and shortly below H6. The ratio P/M is 1.38 and average relative
difference normalized to intensity is 16.%.

At 10 K the intensity of (0 0 1.5) reflection also starts to decrease above H5 and it
vanishes near H6 as shown in Fig. 6.8. The P/M ratio is found out to be 2.04 and the
relative difference normalized to total intensity is found out to be 34.%.

The two experiments were performed on as grown sample surfaces. Another experiment
was carried out on a cleaved surface. For cleaving, the sample is glued to a metal piece and
the sample holder and then a sudden force is applied. In Fig. 6.9 integrated intensities from
the omega scans for P and M polarizations at 10 K in low H are plotted. It can be seen
that a maximum intensity plateau is reached in much lower field than H4, in fact it appears
near H2. Normalized difference and total intensity in P and M also remain almost flat after
H2. This can be due to some magnetization history in the sample and will be addressed in
later sections. For as-grown surface also we repeated our experiments and found similar
observations.
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Fig. 6.7 Top: Integrated intensity from the Lorentzian fit omega scans at different H for P
and M polarizations at 100 K and 708.5 eV. Bottom: difference normalized to total intensity
and ratio between the intensities of P and M. Initial magnetization curves at 100 K (arbitrary
unit) are shown for comparison. Horizontal bars are guide to the critical fields determined
from the magnetization measurements.
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Fig. 6.8 Top: Integrated intensity from the Lorentzian fit (0 0 l) scans at different H for P
and M polarizations at 10 K and 711 eV. Bottom: difference normalized to total intensity
and ratio between the intensities of P and M. Initial magnetization curves at 10 K (arbitrary
unit) are shown for comparison. Horizontal bars are guide to the critical fields determined
from the magnetization measurements.

6.1.2 Discussion

In the previous neutron diffraction studies on Al substituted Ba0.5Sr1.5Zn2(Fe1−xAlx)12O22

[66] and Ba2Mg2Fe12O22 [65] Y-type hexaferrites, in the entire ferroelectric phase a (0 0
1.5) reflection was present. In the case of Al substituted samples in the field driven ferro-
electric phase the field region for FE overlaps with appearance of the propagation vector k1

= (0 0 1.5). The incommensurate propagation vector k2=( 0 0 δ ) disappears in the magnetic
field region where ferroelectric polarization appears [56] and k1 appears. In the case of
Ba2Mg2Fe12O22 three different ferroelectric phases were found where FE-3 phase contains
only the (0 0 1.5) propagation vector along (0 0 l). The other two ferroelectric phases contain
(00.75) along with (0 0 1.5) and (001) with (00δ )incommensurate propagation. Therefore,
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Fig. 6.9 Left: Integrated intensities from the Lorentzian fitted omega scans at different H
at 10 K in a cleaved sample. Right: Sum of the integrated intensity in P and M channels,
difference of P and M normalized to total intensity and ratio between P and M is plotted.
Horizontal bars are guide to different metamagnetic critical fields measured by DC magne-
tization measurements.

we will try to find the relationship between our (0 0 1.5) reflections in soft X-ray diffraction
and magnetic field driven macroscopic polarization in our sample.

From the above field dependence of the intensity of the (0 0 1.5) reflection, it can be seen
that at all temperatures the intensity appears around H2 and H3 (with (0 0 2.25) reflection)
and it becomes maximum above H4 and starts disappearing above H5. No other anomalies
are observed between H4 and H5 indicating that there is not phase transition between H4

and H5. Therefore, onset of the field dependent polarization should be near H4 in contrast to
the proposed H5 (intermediate-III) by Kimura et al.[3]. Measurements performed by Chai
et al.indicate that with increasing resistivity of the samples in much lower H, polarizations
can be obtained [119]. However, it is still higher than H4. We observed the commensurate
(0 0 1.5) reflections at much lower field. Like other Y-type hexaferrite mentioned above,
if the phase with commensurate (0 0 1.5) is to be responsible for magnetic field driven
ferroelectricity then according to our scattering data, polarization should appear at much
lower H than that observed previously. We will discuss the lower boundary of FE phase in
later sections.

Moreover, since the intensity of (0 0 1.5) starts to decrease above H5, the region be-
tween H5 and H6 i.e., intermediate-III can not be the only field driven ferroelectric phase.
Intermediate-III phase can be considered as the transient phase connecting ferrimagnetic
phase and intermediate-II. In other words, intermediate-II and intermediate-III are same
phase, where intermediate-II is the onset of ferrimagnetic phase. The metamagnetic tran-
sition at H5 should be associated with the spin canting angle which causes the decrease in
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intensity in (0 0 1.5) reflection.

Fig. 6.10 (a) 2-fan structure for x = 0 in Ba2− xSrxZn2Fe12O22 with crystal structure
and spin blocks (section 2.4.3). Schematic of the proposed 2-fan magnetic structures in
intermediate-II and intermediate-III [3, 61]. (b) Schematic of the magnetic structure in 2
dimension with components of moments in three Cartesian co-ordinates z1, z2 and z3 as de-
fined in Fig. 3.5. (c) Schematic explaining the propagation vector and the cross product of
spin blocks. We refer to this model as model-A.

Let us consider the magnetic structures proposed previously [3, 6, 61]. The proposed
2-fan proper screw structure is schematically represented in Fig. 6.10. We will refer to it
as model-A. In this model no clear distinction was proposed between intermediate-II and
intermediate-III, but a change in the turn angle in the intermediate-III phase is considered as
a transient phase connecting ferrimagnetic and intermediate-II phase [61]. However, both
the magnetic structures are incompatible with a macroscopic polarization induced by IDM
mechanism, as explained in section 2.3 in Chapter-2.

6.1.3 Intensity calculations and circular dichroism mapping
The following assumptions and rules are followed for the calculation of intensity and var-
ious dichroisms. We used various parameters to fit our models and a python program for
calculating the intensity.

• The block spin model is assumed to be valid and within each block spins are collinear
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(see section 2.4.3).

• Within each block the ferrimagnetic arrangements are there as explained in Fig. 2.18.

• Site (Fe vs Zn) occupancies are taken into consideration from Table. 4.2

• For structure factor calculations the actual positions of the atoms within the blocks
are considered.

The structure factor for the magnetic satellite is given by the Eq. 3.25. We can write
f XRMS with the help of matrix given in Eq. 3.25. Now we calculate the structure factor
for individual atoms in the 3/2 of the cell (the periodicity for (0 0 1.5) satellite reflection)
structure factor contributions for σ → π , π → π and π → σ channels. In the appendix
we calculated, for individual spin blocks for all the polarizations, the structure factor con-
tributions which are finally summed up for calculating the total structure factor. Circular
dichroism and linear dichroism are calculated by Eq. 3.28 and Eq. 3.29.

From Eq. 3.28 we see that a basic requirement for circular dichroism is a non zero in-
tensity in the π → π channel as well as in σ → π channel. Linear dichroism is not simply
the difference between total intensity in π and σ channels but is also the contrast between
σ → π and π → σ channel, which can give rise to position dependence. The linear dichro-
ism will be discussed in the experiments with vertical magnets.

6.1.4 Model-A (2-fan structure)
We calculated the Intensity of (0 0 1.5) and relative circular dichroism ( Rel_Circ) to check
whether the proposed structure is compatible with our results. We define angle φ to be
the angle between adjacent large spin blocks, i.e.between L1 and L2. Since σ → σ is zero
for incoming sigma channel, intensity in total incoming σ channel is due to σ → π and
according to the matrix equation Eq. 3.25, it is sensitive to moment component along z1 and
z3. In model-A z3 component is zero, and hence, σ → π and π → σ have equal intensity
where, we probe moments in z1 direction only. In the π → π channel we are sensitive to
moments in z2 direction, where only L-blocks contribute.

In the z1 direction there is only ferrimagnetic contribution from both the L and S spin
blocks which gives magnetic intensity in (0 0 3n) reflections but not in (0 0 1.5). Therefore,
there is no intensity in the σ → π and in π → σ channels. In z2 direction only large spin
blocks contribute to (0 0 1.5) reflections with magnetic cell equal to 2/3 of c. Therefore,
we have non-zero intensity only in the π → π channel in our calculations and is shown in
Fig. 6.11. As stated above, with zero intensity in the σ → π channel Rel_circ is also not
observed. Since this model can not explain the experimental circular dichroism, this model
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is clearly not compatible with our data for the field regions both in the intermediate-II and
intermediate-III.

Fig. 6.11 Calculated Iπ→π for (0 0 1.5) satellite as a function of phi for model-A.

To fit our experimental data as well as an H induced FE polarization we need to employ
other more complex magnetic models. A simple model which can explain H induced FE
polarization is a transverse conical model proposed for other hexaferrite compositions [55,
58, 66, 126–128]. For that we need the experimental values of Rel_Circ and some additional
parameters. We have seen in Chapter-5 that circular dichroism is a position dependent
phenomenon, therefore, we mapped the surface in the presence of different magnetic fields.
Fig. 6.12 shows maps of the intensity of the (0 0 1.5) reflection at 10 K in different H. In the
first row, intensity maps of (0 0 1.5) reflection are shown at different H for P polarizations.
Peak intensities of both 0.5 T and 1 T are comparable, but at 1.5 T it reduces significantly.
In the second row, intensity maps are shown for M polarization showing distinct regions of
high intensity.

From Fig. 6.12 a strong sample position dependence of the diffracted intensity for cir-
cularly polarized light is seen, which is different for P and M polarizations. Therefore, a
more reliable value Rel_Circ is extracted from the individual maps. The extracted values
of Rel_circ, according to formula 3.28, as a function of sample position are plotted in Fig.
6.13. We see two distinct regions with Rel_circ having positive and negative values. The
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size of the region with one chiral domain has sharp changes at the boundary with higher
values of Rel_circ for 0.5 T and 1 T compared to that of 1.5 T. For all the fields a particular
shape of the spin chiral domains is observed. This shape is retained in all the high field
measurements.

Fig. 6.12 Position dependence of individual intensities of circular P and M polarizations at
10 K in different fields for (0 0 1.5). Color bar indicates intensity in arbitrary unit.

From the map of the sample it is evident that when we measure the field dependence of
intensity with omega scans or (0 0 l) scans using a wide beam, in a particular field we will
get a domain average of the intensity depending on the beam spot size used. The size of the
region with higher intensity, for a particular polarization, is not the same at all the fields.
Therefore, we calculated the average of first 50 highest data points (experimental Y-scans)
from the map of the surface for relative circular dichroism and this can be seen in Table 6.1.
The difference between the Rel_Circ extracted from the maps and that from omega scans
with larger beam spot is very high at 100 K. We obtained 16 % circular dichroism from
omega scans whereas for our map we got an average of 32.5%. This is not the case when we
used a smaller beam spot where, in case of 10 K data we get ≈ 32.5% from map and 34(8)%
from (0 0 l ) scans. A larger beam spot gives a domain average of circular dichroism with
the intensity in P and M channels are coming partly from the regions with higher positive or
higher negative relative circular dichroism. Therefore, we will use the average values from
the maps in all the position dependent parameters. To verify our results we used another
sample which is much smaller compared to the previous sample and mapped its surface.
In this sample Rel_Circ is observed to be divided into positive and negative regions almost
diagonally (see Fig. 6.15). Therefore, if the incoming beam is hitting the middle of the
sample then it can have contribution from both the positive and negative regions. Lower



6.1 Horizontal magnet geometry 105

values of relative circular dichroism in Fig. 6.7 are thus due to the contribution from both
the spin chiral domains.

Fig. 6.13 Position dependence of the relative circular dichroism (P-M)/(P+M) at 10 K in
different fields for (0 0 1.5) reflections. Color bar indicates (P-M)/(P+M).

It is difficult to explain why a particular domain configuration is observed in the sample
used. It may have some domain wall pinning effect by defects in the sample, which leads to
the particular domain configuration. The sample was heated several times to 350 K, which is
above the spin-reorientation temperature, and mapping for relative circular dichroism at 1 T
yielded the same domain configuration. Higher than the saturation field (> 4 T) was applied
and the after that also mapping produces same domain configuration at 1 T. Therefore, we
can conclude that neither of thermal nor magnetic hysteresis effect is there in the spin chiral
domains. This is also visible from the magnetization curves, where no hysteresis is observed
at higher field in the magnetic field vs moment and 1 T temperature dependent field cooling
and field warming measurements, as discussed in Chapter-4.

Interestingly, when we reversed the field direction and measured the intensity in P and
M channel as a function of sample position, we found that the domains with higher P or
M are not the same for positive field but they exchange positions. In Fig. 6.14 we show
the intensity maps for P and M polarizations at 1 T and -1 T field. Map for 1 T for P
polarization is similar to that of M polarization for -1 T and vice versa. This is clearly visible
in the relative circular dichroism maps (top figure). Positive circular dichroism regions
become negative and negative circular dichroism regions become positive on reversing the
field direction (see the color bar). Since in the domain configuration we did not observe any
hysteresis, either thermal or magnetic, we checked this behavior with a different sample.

We reversed the field at 100 K also and found that the domain configuration is again
inverted on reversing the field direction. The maps on the right of Fig. 6.15 show that in
the case of this sample also upon reversing the field the relative circular dichroism changes
sign. Moreover, the domains are smeared out at 1.2 T compared to that at 0.4 T and 0.8 T,
which was also observed in the previous sample. Therefore, changing sign of the spin chiral
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Fig. 6.14 Intensity map for: (Bottom:) P polarization, (Middle:) M polarization and (Top:)
relative circular dichroism for field (Left:) 1 Tesla and (Right:) negative 1 Tesla. Color bar
indicates (P−M)/(P+M) for top and rest intensity in arbitrarily unit.

domains is not sample specific but intrinsic. At the same field of 0.4 T we saw that domains
are larger at 4 K compared to the domains at 100 K.

We used a cleaved sample and a larger beam spot to verify whether circular dichroism
changes sign on reversing field direction. We carefully did omega scans on the sample in
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Fig. 6.15 Relative circular dichroism map at 0.4, 0.8, 1.2 and -ve 0.8 T at 100 K. Color bar
indicates (P-M)/(P+M). The hatched regions are the regions with extremely low intensity.

different fields at 10 K using energy 710.6 eV. Between measurements the field was ramped
from positive to negative direction. In the Fig. 6.16 it can be seen that the blue curve for M
polarization is higher in positive field and becomes lower to that of P polarization in negative
field direction. Close observation of the data reveals that in the positive field direction the
difference in P and M starts appearing near H2 but in the negative field direction it starts
appearing at near H4. H2 and H4 values are from virgin magnetization curves, therefore,
magnetic history of the sample has an influence on the stability of the particular magnetic
structure of the sample. This can also be seen in Fig. 6.17, where circular dichroism is
observed in the sample for (0 0 1.5) reflection in low field region (65 mT), when ramping
the field from a higher field.

We did a crude experiment on the sample used for measurements at 100 K. We fixed
the detector at the 2θ and omega corresponding to (0 0 1.5), varied the magnetic field at
a ramp rate of 4 mT per second and collected the data at 0.4 seconds intervals. Although
in this type of measurements sample positions as well as field values are not very accurate,
magnetic phase transitions can be visualized with certain error bars with more data points.
In Fig. 6.18 we plotted the time scans for all the four polarizations. Left side measurements
are performed for ramping fields from positive to negative directions. For both, in σ and
π channels near the critical field, H1 intensity starts jumping up (H1 is not shown in the
graph because its value is very small). After that it reaches a maximum and reduces down
to another minimum. There is a hysteresis observed in this region when we compare to that
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of the curves at right hand side. The features in the curves are not important as such mea-
surements of intensity are not very reliable but the position in H definitely shows hysteresis
between H3 and H1. These anisotropic contributions are also visible in the magnetization
measurements, where a small loop opening is seen between H2 and H4 region but it vanishes
at H = 0 (see inset of Fig. 6.16).

Fig. 6.16 Integrated intensity from the omega scans on a cleaved sample at 10 K using
710.6 eV for P and M polarization. Horizontal bars indicate different critical fields from
the magnetization measurements. Hysteresis loop at 10 K (arbitrary unit) is also shown as a
reference.

Fig. 6.17 (a) Spin-chiral domain patterns at 10 K in H = 65 mT for (0 0 2.25) reflection and
(b) for (0 0 1.5) reflection after coming from 3.5 T. Contrast is given by P−M

P+M .
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Fig. 6.18 Plot of intensity vs. H for linear and circular polarizations at 100 K while the field
is sweeping. For this measurement, detector and omega are fixed at (0 0 1.5) reflections and
magnetic field is varied. (Left:) for ramping field from positive to negative direction and
(Right:) for reverse direction. Horizontal bars represent different critical fields measured by
magnetization measurements.

6.2 Vertical magnet geometry
We also used a vertical permanent magnet of field strength 0.3 ±0.02 T (measured with a
hall probe at the center of both the pole pieces) in the sample of dimension 3 mm for our
experiment in the zero-field chamber and this is explained graphically in Fig. 3.8. This
field value is between H5 and H6 With the permanent magnet we have higher heat loss
because the big pole pieces of magnets were attached to the cryostat. This limits our base
temperature to 15 K only. We oriented the sample using higher energy X-rays and only (0 0
1.5) reflection could be reached within the limitations of dark angle of our setup.

It was interesting to see that no circular dichroism is observed in the vertical field geom-
etry in the (0 0 l) scans as can be seen in Fig. 6.19(a). We mapped portions of the sample for
circular dichroism and found that the entire sample surface does not have circular dichroism
as can be seen from Fig. 6.19(b). Intensity in σ channel was found to be 4 times higher that
of in the π channel. Mapping of the sample surface for liner dichroism i.e.(Iπ − Iσ )/Iπ + Iσ )

produces the same shape domains as was observed in the case of circular dichroism in hori-
zontal magnetic field and is shown in Fig. 6.19(d).



110 Magnetic structure in the ferroelectric phase

Fig. 6.19 (a) (0 0 l) scans for P and M polarization, (b) same for σ and π polarizations,
(c) map of the sample surface for relative circular dichroism where color bar indicates (P-
M)/(P+M) and (d) is map of the sample for relative linear dichroism, where, color bar indi-
cates values of (Iπ − Iσ )/Iπ + Iσ ) at 15 K.

We mapped the sample for linear dichroism as a function of temperature and found
that the same domain configuration can be obtained up to 300 K, see Fig. 6.20. As the
temperature is increased, the value of relative linear dichroism starts to decrease. Domain
configurations also start to become more diffuse compared to that of 15 K. At 300 K most
of the sample is occupied by -ve values of Rel_Lin and i.e.the σ channel intensity is higher
than that of the π channel.

To understand the difference between horizontal and vertical field geometry let us go
back to the scattering geometry in Fig. 3.5 of Chapter-3. We have z1, z2 and z3 along U1, U2

and U3 directions respectively. Now, as shown in Fig. 6.21, for example, for the model-A
we can put the large spin block L1 in the plane containing z1 and z2 with an angle φ/2 with
z1. The total moment in the large spin blocks starts moving towards field direction with
increasing field whereas small spin blocks are in the opposite direction at saturation point.
In a horizontal scattering geometry horizontal H is along z1 direction whereas a vertical H
is along z2 direction. With our direction of k fixed, the modulated moments in z1 direction
in horizontal field are now modulated in the z2 direction.

We have seen from Eq. 3.28 that the circular dichroism is related to the σ → π and
π → π channels. From Eq. 3.29, we can see that linear dichroism is related to the σ → π

and π → σ channels. For linear dichroism we need contrast between moment components
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Fig. 6.20 Map of linear dichroism in vertical field geometry at 15 K, 40 K, 100 K and at 300
K for (0 0 1.5) reflection. Color bar indicates (Iπ − Iσ )/Iπ + Iσ ).

in the two directions in the scattering plane i.e.along z1 and z3 directions. Both of them are
responsible for moments in the z3 direction. With z3 = 0 for model-A we also can not have
linear dichroism in vertical field geometry. This implies that there should be a component
of moment in z3 direction which is parallel to Q⃗ and therefore to the c-axis.

In the following we will consider few simple models, which might fit our linear and
circular dichroism data.

6.3 Calculations on possible models

6.3.1 Model-B

Now let us consider our first model after the 2-fan model, the model-B, where the large
spin blocks are tilted towards the c-axis i.e.our z3 direction with an angle α with c-axis.
The small spin blocks are kept the same as for the model-A, see Fig. 6.22. We consider
the projections of L-blocks in the c-direction and in the plane perpendicular to it given by
mcosα and msinα . This msinα makes an angle φ/2 with the z1 axis. The components
of moment in the z1 and z2 directions are msinα cosφ/2 and msinα sinφ/2 respectively.
In the case of horizontal magnet geometry, field is applied in the z1 direction and in the
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Fig. 6.21 Scattering geometry for both horizontal and vertical field is explained graphically.
For horizontal field H(H) it is in the z1 direction whereas for vertical field H(V ), the field
is along z2 direction. For H(H) the large spin blocks (only L1 shown) have angle φ/2
with z1 direction whereas this angle becomes (π/2 − φ/2) for vertical field. Following
conclusion can be seen from the scattering geometry: (σ ′×σ) = 0, (σ ′×π) = k̂ = fπ→σ ,
(π ′×σ) =−k̂′ = fσ→π , (π ′×π) = k̂′× k̂ = fπ→π .

Table 6.1 Summary of experimental parameters for Rel_circ and Rel_Lin at different H and
T for both the horizontal and vertical field experiments

Field
(H)

Circular
H (H)

Linear
H (H)

Circular
H (V)

Linear
H (V)

4 K 10 K 15 K 40 K 100 K
0.0065

0.3 0 60.3
0.3 0 56.4

0.3 0 51.4
0.4 42.3 0

0.4 34.9 0
0.5 31.7 0

0.8 37.1 0
-0.8 39.0 0

1 32.5 0
-1 31.7 0
1.5 26.5 0

case of vertical field geometry, field is applied in the z2 direction. Magnetic modulation
perpendicular to z1 now moves by π/2 towards z2. Therefore, we exchange the axes z1
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Fig. 6.22 (a) Schematic representation of model-B, where the small spin blocks are same as
model-A but large spin blocks are tilted at angle α with c-axis. Components of magnetic
moments are also shown in the figure. (b) In the unit cell the periodicity of the spin blocks
are represented.

and z2 for calculations of the structure factors in vertical and horizontal magnet geometry.
Structure factor calculation details can be found in Appendix-B.

If we look at the Eq. 3.28, it is the contrast between real part of the structure factor in
σ → π times the imaginary part in π → π and real part of the structure factor in π → π

times the imaginary part in σ → π that gives circular dichroism. For circularly polarized
light (σ + iπ) the real and imaginary part of the light have a phase shift of π/2 or both are
cos and sin functions. Now if we consider the moments as localized in the center of each
block, with moment components z2 and z3 in L-blocks, we can have finite intensities in
σ → π and π → π channels but for a circular polarized light real and imaginary parts have
the same phase shift. Therefore, P and M polarization can not have contrast in this model.
Therefore, we can not have circular dichroism in horizontal field in this model also. This
rules out model-B also from our probable models. Numerical calculations on the intensity,
circular and liner dichroism can be found in Appendix-B.3. However, linear dichroism in
the vertical field (Rel_Lin) can be observed in this model (see Fig. B.1).

6.3.2 Model-C

Considering both the vertical magnet and horizontal magnet geometry for model-B, we
can summarize that with the z3 component of moment for large spin blocks we can have
linear dichroism in the vertical field geometry but we fail to account for the experimentally
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Fig. 6.23 (a) Schematic representation of model-C. The small spin blocks are rotated in the
c-direction of the crystallographic axis with an angle β and large spin blocks are the same as
in model-B. Components of magnetic moments in all the three z-directions are also shown.
(b) In the unit cell the periodicity of the spin blocks are represented.

observed circular dichroism in the horizontal field. The contrast between real part of the
structure factor in σ → π times the imaginary part in π → π and real part of the structure
factor in π → π times the imaginary part in σ → π is zero when we have contrast between
z2 and z3 present at the same position. Therefore, to have circular dichroism we need this
contrast at two positions, in the unit cell, which are not multiples of π . The small spin
blocks have to be modulated as well to circular dichroism in the horizontal field geometry.
We consider model-C as shown in Fig. 6.23. We add a component of the small spin blocks in
the c-direction of the crystallographic axis with the same periodicity of (0 0 1.5). Magnetic
moment in small spin blocks makes an angle β with the z3 axis.

Now we have three angle parameters dependence i.e.φ , α and β in model-C. In Appendix-
B.4 our numerical calculations on model-C for intensity in individual channels and various
quantities Rel_Circ, Rel_Lin and Iπ /Iσ are presented. In this model, for horizontal field
geometry, we have both Rel_Circ and Rel_Lin for wide angular dependence. We picked out
the values across a very broad range of angles φ , α and β which satisfies a wide range of
experimental values. For that we considered 0.2 ≤ Rel_Circ ≤ 0.7 and plotted the range of
angles observed in Fig. 6.24. We can see that Rel_Circ can be observed only up to φ ≤ 60
and 70 ≤ α . We restrict Iπ /Iσ ratio in the range 1. ≤ Iπ/Iσ ≤ 5 and obtained an area as
shown in Fig. 6.24(b). In both the cases we get a wide range of values for β as can be seen
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from the color-bar. Filtering out the values which satisfy the above two conditions we found
the region shown in Fig. 6.24(c).

Fig. 6.24 Calculated slices of the range of φ , α and β for values of (a) Rel_circ, (b) Iπ /Iσ as
indicated in the figure. (c) Combinations of both the parameters for model-C.

For vertical magnet geometry various parameters with angular dependence are shown
in Appendix B.6. Iσ→π and Iπ→σ have a strong angular dependence whereas Iπ→π is zero.
This gives us the angular dependence of Rel_Lin values. Now we choose the range of
Rel_lin as 0.2 ≤ Rel_Lin ≤ 0.7. Incorporating this range into the solution for horizontal
magnet we get the ranges of φ , α and β as shown in Fig. 6.25. For a wide range of values
for φ , α and β we have a solution. It should ne noted that we have chosen a large range
(i.e.large experimental uncertainity) for the values of Rel_Circ, Rel_lin and Iπ /Iσ to find the
solution.

Fig. 6.25 Range of φ , α and β after simultaneously incorporating the quantities Rel_Circ,
Rel_Lin and Iπ / Iσ as shown, with φ and α as the axes and β as the color bar. (b) Normalized
initial magnetization curves at 100 K showing changes in values of M at H4 and H5.
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Fig. 6.26 Calculated moments for φ , α and β values from the solution shown in Fig. 6.25.
(a) as a function of φ and α with moment as color bar.

For the experimentally observed values of Rel_Circ, Rel_lin and Iπ /Iσ , model-C is suit-
able. So far we have not considered the change in magnetic moments. We calculated the
magnetizations for the values of φ , α and β found in the solution and plotted this in Fig.
6.26. Most of the solutions for model-C show magnetization above the saturation moment
value of 18.6 µB/F.U. (sparse region shows values above the saturation magnetization).
From Fig. 6.25(b) we see that in H4 and H5, 82% (15.25 µB/F.U.) and 76% change in
magnetization are observed respectively. Calculated magnetization for all the values of φ ,
α and β in the solution are well above these values and very close to saturation values.
The smaller spin blocks are anti-parallel to the field direction. Now, for circular dichroism
if we consider a c-component with angle β , then it serves our purpose to get Rel_Circ for
horizontal field, but we decrease the moment opposite to field direction with increase in β .
Therefore, in this model also we can not have our solution.

6.3.3 Model-D: The correct spin structure

Contrast between z2 and z3 modulated moments at two different positions served our pur-
pose in getting circular dichroism in model-C, but could not give us a suitable solution for
the magnetic moments. A realistic model has to include both z2 and z3 components in both
the large and small spin blocks. Therefore, we introduce model-D. The small spin blocks
have a z2 component in model-D (horizontal field geometry). Each of the small spin block
makes an angle β with the z3 axis. Like we did with large spin blocks in model-B, we
make the projections of the small spin block moments along the c-axis and in the plane
perpendicular to it (z1− z2 plane). Now, this projection makes an angle γ/2 with the z1 axis.

Straight-forward solution is difficult in the case of model-D. We have four independent
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Fig. 6.27 Schematic representations of the model-D. Here, compared to model-C, a com-
ponent of moment for the small spin block is added along z2 axis in horizontal magnet
geometry. Small spin blocks make an angle β with the z3 axis and γ/2 with the projections
of it on the z1 − z2 plane with z1 axis.

angles for which we need to calculate intensity and different parameters. We have calculated
parameters such as Rel_Circ, Iπ / Iσ for horizontal field and Rel_Lin for vertical fields and
identify values within certain tolerance limits using a programming script in Python. For
this, let us consider values at 10 K from Table. 6.1. At 10 K, we have for horizontal field
H = 0.5T Rel_Circ of 31.7 %. We do not have corresponding data for vertical field at 10 K
and H. Therefore, we consider 15 K and H ≈ 0.5 T Rel_Lin values. For that we added a
tolerance of 10 % to each of the values, including magnetic moments. We kept Rel_Lin in
horizontal field and Rel_Circ low for all the solutions and did not use any error bars as these
values are close to zero.

In our experiments the net magnetic moments can be determined with the highest ac-
curacy. Therefore we picked the values with the highest accuracy in magnetic moments.
We saw in Fig. 6.25 that at H4 and H5 respectively, 75% and 82% of the saturation mag-
netic moment of 18.6 µB/(F.U.) is observed. Therefore, we extracted the values of various
parameters from our calculations using a programming script as a function of all the four
angles corresponding to magnetic moments in between H3 and H4. To this we then added
the additional requirements 0.2 ≤ Rel_Circ ≤ 0.7, 1. ≤ Iπ/Iσ ≤ 5 for horizontal magnet
geometry and 0.2 ≤ Rel_Circ ≤ 0.7 for vertical magnet geometry to extract the angular de-
pendence. Values of φ are found to have to be smaller than 17° to satisfy our solution for
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Fig. 6.28 Various parameters calculated for model-D for three different values of phi, 5°,
10° and 15°, as a function of two out-of-plane angles α and β , for L and S blocks. In the
top panel, value of γ satisfying our solution is shown. For each φ same color bars are used
and are shown beside the φ =15°.

all the quantities.

In Fig. 6.28 we have plotted various parameters as a function of α and β as well as
values of γ in the top panel for three different values of φ : 5°, 10° and 15° respectively.



6.4 Experimental results in light of final model (model-D) 119

Our broad solution criteria also restricts the other angles α , β and γ to non zero values.
For φ =15°, a broad range of values of the other angles are considered to swipe at a broder
solution. The parameter range considered is: 47°≤ α ≤59°, 45°≤ β ≤89°, 96°≤ γ ≤178°.
Closer look in the plot reveals that for φ =15° Rel_lin is always above 50 % whereas we can
obtain Rel_Circ values ranging from 20 to 40 % for various values of the other three angles.
Highest value of Rel_Circ is found to be 40 %. With non-zero values of all four angles φ , α ,
β and γ we have a transverse conical spin structure. This T-conical spin structure not only
gives the solution for our experimental microscopic properties but also fulfills the condition
for H driven ferroelectricity by IDM mechansim (see section 2.3).

In other hexaferrite classes in the ferroelectric phase a transverse conical phase is pro-
posed. When a small amount of Al is substituted for Fe, a longitudinal conical spin structure
in the zero H transforms to a transverse conical phase with contributions from both spin
blocks [66, 129]. For Ba2Mg2Fe12O22 also transverse conical contributions from both the
spin blocks were found in the ferroelectric phase [55, 65, 130]. Sr3Co2Fe24O41 system also
has a transverse conical spin structure in the ferroelectric phase [58, 131]. All these hexa-
ferrites exhibit magnetic field driven ferroelectricity by IDM mechanism. Our solution of
producing a transverse conical structure in this classical hexaferrite is in line with the other
hexaferrite systems showing H induced ferroelectricity.

We first sort our values corresponding to the data from the Table 6.1. For few field
ranges we have plotted the values of φ , α , β and γ in Fig. B.7 in Appendix-B. Although we
can see distinct changes in the values of angles near H5, the error bars in the solutions are
very large.

6.4 Experimental results in light of final model (model-D)

6.4.1 Boundary between different phases

We used a Mathematica 10.4 program to calculate our intensity and various parameters. In
the Fig. B.8 of Appendix-B we plotted the values of the quantities Rel_Circ, Rel_Lin, Iπ/Iσ

and moment as a function of α , β and γ for three values of φ=5°, 10° and 15°. All the
values are interdependent. We need to find the solution for a particular set of experimental
values. We used the same program to minimize the difference between experimental and
simulated values of Rel_Circ, Rel_Lin, Iπ/Iσ and moment by random search method. At 10
K (from Table. 6.1) we saw that from 0.5 T to 1 T our Rel_Circ remains almost the same at
30(2)%. While ramping down H, we got almost the same values of Rel_Circ at 65 mT (see
Fig. 6.17). We solved for Rel_Circ in the range of 30% (with tolerance of 5%) up to 1 T and
higher for field of 26% (with 5% tolerance). We do not have experimental data on Rel_Lin
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Fig. 6.29 Solution for model-D for φ , α , β and γ as a function of applied field below satura-
tion field and above H4. Values of the angles are calculated by simultaneously minimizing
individual experimental parameters.

above 0.3 T. Therefore, we did not put tolerance in Rel_Lin values. Magnetic moment is
given a tolerance of 1%. Our solution for various values of H is shown in Fig. 6.29.

Transition to ferrimagnetic phase Let us first discuss the transition to ferrimagnetic
phase from the transverse conical phase. With increasing H, the in-plane angle for large
spin blocks i.e.φ decreases near H5 and is sharper after 1 T. The in-plane angle from small
spin blocks i.e.γ also follows the same trend. In case of out-of-plane angles for large spin
blocks (α), it goes on increasing slowly from 50° at H4 to 90° as we increase H. β values
decrease up to 1 T and then increases towards 90° with increasing H. From the trends in
φ and γ we can claim that H5 is the field region where the in-plane angle starts decreasing,
but we have considerable out-of-plane contributions left. Thus, both the intermediate-II and
intermediate-III phases can be considered as transverse conical phase. The relative approach
of all the four angles towards ferrimagnetism is difficult to find as we do not have sufficient
scattering data in this H region. Our speculation is that very close to saturation value the
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spin structure remains transverse conical and first the in-plane angles approach zero and at
the saturation point out-of-plane angle becomes close zero, i.e, α and β approaches 90°.

6.4.2 Chirality inversion with reverse H

Fig. 6.30 Electric polarization as a function of applied H ⊥ c for (a) Ba0.5Sr1.5Zn2Fe12O22
from Kimura et al.[3] and (b) for Ba2(Mg0.9Zn0.1)2Fe12O22 from Ishiwata et al.[130].

In Chapter-5 we have seen that, near H2 the angle between the spin blocks becomes
close to 80°(5). Above H4 it is difficult to calculate the angle as the phase corresponding
to (0 0 1.5) starts contributing. Our solution above H4 shows that the L-spin block’s in-
plane (ab-plane) angle φ decreases considerably while the S-spin block’s in-plane angle (γ)
increases. Moreover, out-of-plane angles 40° (90°-α) and 10° (90°-β ) are found near H4.
This transition is accompanied by hysteresis as can be seen from the magnetization curves
(Fig. 6.25(b)). Details of this hysteretic behavior are discussed below.

We have seen that our spin chiral domains are inverted upon reversal of the H direction
(Fig. 6.15 and in Fig. 6.14). Let us consider the following situation as shown in table
6.2. The chirality term is (S⃗1 × S⃗2) induced by IDM interaction (see section 2.3). For any
magnetization direction in a multi-domain sample we have spin chiral domains with both
the signs. Let us consider the condition shown by the first column in Table 6.2, where we
have magnetization direction only upward while chirality is in both the directions. Now
in negative H direction if we have M in the opposite direction and positive chirality is
inverted implies that positive chirality becomes negative and vice-versa. From Eq. 2.11,
we see that polarization induced by IDM mechanism is given by P⃗ = e⃗12 × (S⃗1 × S⃗2) or
we may write P⃗ = e⃗12 × c⃗. Let us consider the polarization is P for positive direction of
H. Now, as H is inverted the domain population of both the chiralities get inverted in our
experiment. Domains which are in positive direction become negative and vice-versa. This
implies that the domain directions which are responsible for positive polarization are now in



122 Magnetic structure in the ferroelectric phase

Fig. 6.31 Initial magnetization (pink), magnetization for decreasing field from 6 T (red) and
magnetization for increasing field from -6 T (blue) curves at different temperatures.

negative direction and hence polarization should be −P, but according to the macroscopic
measurements it is in the same direction [3]. This difference can be because of the difference
in composition in our experiment compared to that of Kimura et al.

Table 6.2 Possible situation for magnetization and
chirality (Mχ) simultaneously present.

Mχ M −M

χ ↑ + ↓ -
χ ↑ - ↓ +

Chiral domains can be inverted if they are linked to the point where the field direction
changes i.e.at H = 0 (no coercivity). We have seen that when we measured in positive
field direction from zero H, a non-chiral 4-fan phase is the connecting phase. The 4-fan
structure was observed only for a small field range, above and below which it is mixed
with the transverse conical and helical phases, both of which are chiral. However, all these
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measurements were done in increasing field from zero H. In Fig. 6.17 we have seen that on
ramping H from higher field we observed circular dichroism at 65 mT field also, which was
the 4-fan phase range in the increasing field direction. We have measured very carefully
some magnetization curves with 1 mT data interval to see if there is any hysteresis in the
magnetization. We have plotted the hysteresis curves along with the initial magnetization
curves in Fig. 6.31. In the initial magnetization curve (magenta) the step corresponding to
4-fan phase was observed. We can see clearly that metamagnetic steps corresponding to 4-
fan phase are not present in the demagnetization curve (red) i.e.the magnetization measured
while reducing H from 6 T down to 0 at 10 K. In the magnetization curve in the negative
direction now there is the corresponding step, but the demagnetization curve does not show
this step (blue). Therefore, we can claim that in the magnetic field switching process the
4-fan structure is not observed i.e.we have only the transverse conical and the helical phases.
We can speculate that the chirality is linked between the transverse conical phase and the
helical phase in the absence of 4-fan phase. Similar situation was observed in the case of
BaFe12−x−δ ScxMaδ O19 at 10 K, where a transverse conical domain wall was responsible
for polarization reversal. However, at other temperatures the difference in magnetization
and demagnetization is not that prominent (see Fig. 6.31) and therefore, no polarization
switching can be predicted at higher temperatures. We speculate that minor loop tracing in
magnetization measurement as well as in diffraction measurements after ramping from low
H may provide different switching behavior.

6.4.3 The room temperature magnetoelectric

Fig. 6.32 Map of (a) Rel_Circ at 300 K for horizontal magnet geometry and (b) Rel_Lin at
300 K for vertical magnet geometry.

As the metamagnetic steps in magnetization curves were visible up to 300 K (see Fig.
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4.8), we mapped the samples at 300 K for both the horizontal and vertical magnet geome-
tries. Both these maps are shown in Fig. 6.32. At 300 K distinct domain configurations,
similar to that observed at 10 K, were found in both the geometries. Therefore, we claim
that magnetic field induced polarization can be expected to be observable up to 300 K. This
indeed was observed in more resistive samples [119]. Therefore, apart from Z-type hexa-
ferrites, our Y-type hexaferrites can be considered as room temperature magnetoelectric.

6.5 In field Neutron diffraction

Fig. 6.33 Unpolarized neutron (0 0 l) scans at 4 K in different vertical magnetic field. Mea-
surements were carried out in increasing H.

In field Neutron diffraction experiments were carried in the two axis E4-diffractometer
of the Helmholtz-Zentrum Berlin för Materialien und Energie. A vertical superconducting
magnet is used in a horizontal scattering plane. (0 k l) is our scattering plane with λ = 1.44Å.
Several samples were tested and in many samples reverse-obverse twinning was found. In
Fig. 6.33 and 6.34 we have plotted (0 0 l) scans at 4 K and 100 K in different magnetic
fields. Nuclear reflections can be found obeying the conditions (-h+k+l=3n) (k0). Reflec-
tions corresponding to different propagations vectors (0 0 3n-τ), (0 0 3/2) and (0 0 /4) are
labeled as k1, k2 and k3. Along with this we have magnetic intensity in K0 at the nuclear
reflection. At 4 K, where we measured in the increasing order of fields, the nuclear (0 0 9)
reflection is difficult to resolve from the incommensurate k1 ( τ = 0.6) satellite at H=0 T. As
the field increases to 0.05 T small intensity in the commensurate satellite corresponding to
propagation vector k2 appears and another commensurate satellite corresponding to propa-
gation vector k3 appears which is difficult to resolve from the incommensurate satellite. At
0.15 T onwards only the propagation k2 is found.
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Fig. 6.34 Unpolarized neutron (0 0 l) scans at 100 K in different vertical magnetic field.
Measurements were carried out in decreasing H. Intensity of (0 0 7.5) is multiplied by 3

In another sample we measured in the decreasing H at 100 K. Unlike the previous sample
we found sharp peaks in this sample. Therefore, this sample was used for further experi-
ments, see Fig. 6.34 . Near 1.6 T k2 satellite reflections starts appearing. Below 0.2 T
additional k3 reflection is also found. It is interesting to find that this time we do not have
any incommensurate reflection present.

Integrated intensities from Gaussian fits of the (0 0 l) reflections at three different temper-
atures is shown in Fig. 6.35. Due to low detector resolution, the reflections corresponding to



126 Magnetic structure in the ferroelectric phase

k3 are not possible to resolve from the incommensurate reflections. The (0 0 8.25) reflection
was found to exist near 0.1 T (<0.2 T) in all the temperatures. Considerable intensity for the
reflections corresponding to k2 was found from 0.05T onwards in all the temperature. Due
to the residual field in the superconducting magnet at low H the magnetic field below 0.1T
has bigger uncertainty compared to high H values. Therefore, the boundary between the 4
fan and transverse conical phase is difficult to establish in this experiment. The reflections

Fig. 6.35 Integrated intensity from the Gaussian fit of the reflections in unpolarized neutron
(0 0 l) scans at three different temperatures 4 K, 100 K and 300 K. Magnetizations curve is
also plotted as a reference.

corresponding to k2 starts becoming more intense near the H4 in all the cases and intensity
starts decreasing near H5. Other Y-type hexaferrite compositions studied by neutron diffrac-
tions having a K2 propagation has a transverse conical spin structure and are ferroelectric
in that phase. For Ba2Mg2 Fe12O22 the Fe-II ferroelectric phase has only k2 propagation
vector [65, 126, 130]. In Ba0.3Sr1.7Co2Fe12O22 and Ba0.5Sr1.5Zn2(Fe1−xAlx)12O22 also the
commensurate k2 phase is the transverse conical ferroelectric phase [56, 66, 127]. In our
case this commensurate phase is found at as low as 0.1 T or near H4 up to 300 K, see Fig.
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6.35.

In the (0 0 l) scans we did not get any additional information to what we have seen in
our soft-x-ray data. In the following section we studied the scattering in perpendicular to (0
0 l) direction in reciprocal space.

6.5.1 Neutron scattering in (0 k l) plane

Fig. 6.36 Integrated intensity from the Gaussian fit of the omega scans for reflections along
(a) (0 0 l) and (b) (0 1 l) at 4 K as a function of applied H. Field is applied perpendicular
to both (0 0 l) and (0 1 l). For reference intensity from the soft-x-ray experiment for σ

polarization is also plotted in (a). Magnetization data is also shown in (b). In the inset of (a)
enlarged view of (0 0 9) reflection is plotted.

In a good quality sample we carried out omega scans of few reflections in (0 h l) plane.
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The sample has small fraction of reverse-obverse twin. The nuclear and magnetic inten-
sity of both the twins contributes for (0 0 l) reflections but for (0 1 l) reflections they are
separated. Magnetic intensity in the (0 0 l) reflections probe the moments in (h h 0) plane
while modulated magnetic moments in [0 0 1] direction will contribute to intensity in the (0
h l) reflections but not to (0 0 l). Since our lattice parameter c (43.5Å) is large compared to
a=b=5.86 Å , low Q reflections along (0 h l) is perpendicular to the to (0 0 l). In Fig. 6.36 (a)
we saw that intensity of (0 0 10.5) follows similar trend as that of soft-x-ray resonance data
(green). The intensity of the (0 0 9) reflection increases above 0.1 T (inset (a)) and becomes
almost flat after 0.3 T indicating that the ferrimagnetic component perpendicular to (0 0 l)
remains approximately constant above 0.3 T. Thus we have almost non varying modulated
moment in the ab plane. In (b) the magnetic intensity in the (0 1 -1) nuclear reflection is
found to increase sharply up to 0.12 T and then increases steadily. Combining with the vari-
ation along (0 0 1) we can tell that this is due to the moment component along (0 0 1). The
satellite (0 1 -2.5) shows very interesting variation. Intensity of (0 1 -2.5) increase sharply
up to 0.12 Tesla, reaches a maximum and decreases steadily up to 2 T and then becomes flat
again. In the ferrimagnetic phase we do not expect any satellite along c.

The presence of (0 1 -2.5) in the saturation field is not unique to our sample. In
Ba0.3Sr1.7Co2Fe12O22 and Ba0.5Sr1.5Zn2(Fe1−xAlx)12O22 also such behavior was reported
[66, 127]. Since we do not have any satellite along (0 0 l), this can be only due to small tilt
angle along c-direction still remaining in the sample, which predicts small reduction in sat-
uration moments compared to calculated spin only moments. This is also evident from our
soft-x-ray data, where the angles α and β not seem to approach π/2 compared to in-plane
angles as we increase H, see Fig. 6.29.

Obvious question arises why we did not see any intensity in the (0 0 1.5) reflection. As
the tilting of spins in c-direction causes modulated moments in z3 directions and should be
observable in σ → π and π → σ channels. For that let us look back at the model-C. In Fig.
B.3 for zero in plane angle i.e.φ = 0 we have almost negligible intensity in the σ → π and
π → σ channels for smaller out of plane angle i.e.(α,β → 0). Therefore, no intensity was
observed in the soft-x-ray experiments in the (0 0 1.5) satellite. Our sample was exposed
to high magnetic field before measurements. Although the measurements of omega scans
were performed in increasing field order, previous magnetic history is found to influence
the sample behavior. This is evident from the emergence of only (0 0 9.75) satellites and
absence of incommensurate k1 satellite. The magnetization curves also showed the history
in the sample, as can be seen from the loop opening near 0.2 T.
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Fig. 6.37 H-T Phase digram constructed using our magnetization, soft-x-ray diffraction and
neutron diffraction data.

6.5.2 The phase diagram
Based on all our experimental data, magnetization, soft-x-ray diffraction and neutron scat-
tering we constructed the H-T phase diagram of our sample which can be seen in Fig. 6.37.
In the low field region we already saw that it is magnetic history dependent and various
phases coexist. The intermediate-II phase which, in contrast to reported 2-fan structure ear-
lier is found to be transverse conical phase with only k2 propagation. Therefore we claim
it ferroelectric phase-I (FE-I). The difference with FE-II phase is that the k2 satellite inten-
sity starts decreasing at this phase, but still remains ferroelectric. Thus FE-II phase can be
considered as a transient phase or the onset of rapid transition to ferrimagnetic phase. The
intermediate-II and intermediate-III both phases are found to be ferroelectric with trans-
verse conical spin structure, which is contrary to the previously proposed phase diagram
[3]. Moreover, the so called ferrimagnetic phase is also found to be modulated in c-direction.
This needs high magnetic field studies to find out the field values where a collinear phase is
reached. Therefore, our microscopic data proves that H-driven ferroelectricity in this type
of hexaferrite is occurring at much lower field and can be observed near room temperature.





Chapter 7

Summary and outlook

In this thesis we carried out in-depth macroscopic as well as microscopic scattering stud-
ies on the Y-type hexaferrite [Ba(2−x)Srx]Zn2Fe12O22, the first hexaferrite to have magnetic
field induced ferroelectricity. We have grown crystals of different compositions and com-
pared their structural and macroscopic magnetic properties. This thesis provides, first time
ever, a solution for spin structure in the ferroelectric phase. Most notably, the solved trans-
verse conical spin structure is compatible with magnetic field induced ferroelectricity by
IDM mechanism, which was the case for most of the hexaferrites.

Growth of single crystals of hexaferrite is a tricky business. As most of the hexaferrite
classes have similar block arrangement, even small changes in thermodynamic and kinetic
parameters can influence the growth remarkably. We were successful in synthesizing single
crystals of [Ba(1−x)Srx]Zn2Fe12O22 with three different x = 0.72, 1.18 and 1.4. Composi-
tions with x values 1.18 and 1.4 show distinct metamagnetic steps in the easy plane magne-
tization curves (H ⊥[0 0 1])indicating metamagnetic transitions, while for lower Sr content
(x =0.72) no such steps were observed. In Chapter-4 we have seen that the occupancies
of Zn in the tetrahedral site are modified by the substitution of Sr for Ba. This change in
occupation changes the average bond length at the boundary between Zn/Fe and O. This
change happens to be in the boundary between the spin blocks which in turn effects the su-
perexchange interaction in the spin block boundary. Thus, we get from ferrimagnetic to spin
helix structures at zero H depending upon Sr content. It would be interesting to investigate
more samples with different compositions to see the influence of Sr content on structural
and magnetic changes in this type of hexaferrite.

The spin structures corresponding to metamagnetic phases were found to be consisting
of phase mixtures at low H. Transverse conical structure is found to be present at very
low H, mixed with a 4-fan structure in a wide field range. The transition of 4-fan to the
transverse conical state is accompanied by hysteresis which disappears near zero H. No
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circular dichroism is observed in the pure 4-fan structure at either of the satellites. This 4-fan
structure is the connecting structure between the two chiral phases: the zero H helical and
the high H transverse conical phases. In the demagnetization process the 4- fan structure is
not observed and the zero H helical phase is reached from high H transverse conical phase.
This causes a linkage between the two chiral phases in the demagnetization process.

We carried out extensive field dependent soft X-ray diffraction experiments to investi-
gate the magnetic structure in the ferroelectric phase. Circular dichroism in horizontal fields
and linear dichroism in vertical fields are not at all consistent with the proposed 2-fan spin
structure. In 10 K to 300 K in no field range the proposed 2-fan structure in literature is
found. We carried out numerical analysis of the various possible models and for the first
time found that a transverse conical model is the best model that suits our diffraction data.
As per IDM mechanism, spin induced ferroelectricity (see section 2.3) can not be possible
in 2-fan spin structure proposed in the literature. Remarkably, as in the case of other mag-
netoelectric hexaferrite systems, our transverse conical spin structure is compatible with H
induced polarization by IDM mechanism. It is for the first time the spin structure in the
ferroelectric phase has been solved and found transverse conical structure.

Only the transverse conical structure is found to exist above the metamagnetic field H4.
Therefore, we claim that magnetic field induced ferroelectricity should be observable from
H4 rather than from H5 as claimed by [3]. Our claim is supported by low H induced electric
polarizations in the oxygen sintered highly resistive samples [119]. However, the field at
which Chai et al.found field driven ferroelectricity is higher than the values of H4 obtained
by magnetization measurements. Therefore, there is a scope that with increase in resistivity,
polarization can be obtained at lower H. The reported 2-fan structures in intermediate-
II and intermediate-III phases are found to be the same transverse conical phases. In the
intermediate-III phase the in-plane angles start decreasing rapidly, causing a jump in the
magnetization, but the structure still remains transverse conical.

Electrical polarization switching with magnetic field is one of the most interesting phe-
nomenon in hexaferrites. In our system the mapped spin chiral domain configurations were
inverted upon reversing the field direction. Chirality and polarization by IDM mechanism
are related by P⃗ = e⃗12 × c⃗. Therefore, chirality switching should switch the polarizations,
but experimentally, in a sample with different composition this has not been observed [3].
Also, in the same compound at two different temperatures, different switching behaviors
were observed [57]. In the demagnetization process since the non-chiral 4-fan structure is
not observed, the chirality in the high field transverse conical phase is assumed to be con-
nected to the zero H helical phase. This may cause the chirality inversion upon reversing
H. A clear insight can be obtained by performing more experiments at different H and



133

temperature.
We have seen that at 300 K, both linear dichroism in the vertical field and circular dichro-

ism in horizontal field can be observed (see Fig. 6.32). Thus H induced polarization can be
obtained at 300 K, which indeed was indicated by an earlier observation [119]. The metam-
agnetic signatures in our samples are found well above room temperaure (318 K for BZY-2
and 303 K for BZY-3). This makes it a very good potential candidate for room temperature
applications.

In our neutron diffraction experiment also we saw a transverse conical spin structure. In
addition to that intensity in (0 1 -2.5) reflection is observed up to 3 T vertical field which is
above macroscopic saturation magnetization field. This indicates modulated moments in the
c-direction is observed saturation field. Without in plane modulated components intensity
in soft-x-ray resonance diffraction is too small to observe. This fact was for the first time
addressed in this thesis. High filed experiments are to be performed to se if the tilting angle
goes to zero at high field.

Switching of chirality or magnetization by external electric field is desirable for magne-
toelectric materials. Recently, magnetization switching by electric field was achieved in an
M-type hexaferrite SrCo2Ti2Fe8O19 [132]. In Al doped Y-type hexaferrite also it was found
that magnetization can be switched with electric field [129].

It would be an interesting experiment to observe switching of chirality in electric field.
So far we saw inversion of chirality at temperature 100 K and lower, but it would be inter-
esting to see how Chirality changes at different temperatures and fields. Moreover, in good
quality thin sample recently skyrmions have been reported [72, 133]. It will be interesting
to see in our samples with spin polarized electron microscopy like Lorentz transmission
electron microscopy. MFM or PFM studies can also be used to correlate the magnetic and
ferroelectric domains. Model Hamiltonian calculations on different spin structures could
give input to the stability of the structures.

Polarization analysis of neutron diffraction in a vertical magnetic field in horizontal
scattering geometry can not distinguish between modulated moments in (0 0 l) and in (h 0
l) planes as both will give spin flip scattering. Therefore, in a horizontal external magnetic
field half polarized neutron diffraction experiment may give valuable information. In our
samples it was carried out very recently.

In a short, our proposed transverse conical spin structure model reveals that the H in-
duced polarization is by IDM mechanism and can be observed at low H and can be extended
to room temperature.
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Appendix A

A.1 Crystal structure refinement parameters

Table A.1 BZY-1 atomic parameters

Atom Atom type x y z Occ

Ba1 Ba2+ 6c 0 0 0.298428(16) 0.295(3)
Sr1 Sr2+ 6c 0 0 0.298428(16) 0.705(3)
Zn1 Zn2+ 6c 0 0 0.37537(2) 0.143(10)
Fe1 Fe3+ 6c 0 0 0.37537(2) 0.837(10)
Zn2 Zn2+ 6c 0 0 0.152273(19) 0.684(11)
Fe2 Fe3+ 6c 0 0 0.152273(19) 0.306(11)
Fe3 Fe3+ 6c 0 0 0.06488(2) 1
Fe4 Fe3+ 3b 0 0 0.5 1
Fe5 Fe3+ 18h 0.50325(5) 0.49675(5) 0.109476(15) 1
Fe6 Fe3+ 3a 0 0 0 1
O1 O2- 6c 0 0 0.41907(10) 1
O2 O2- 6c 0 0 0.19787(10) 1
O3 O2- 18h 0.1567(2) -0.1567(2) 0.02875(6) 1
O4 O2- 18h 0.8282(2) 0.1718(2) 0.08412(6) 1
O5 O2- 18h 0.1806(2) -0.1806(2) 0.13749(6) 1
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Table A.2 BZY-1 thermal displacement parameters

Atom U_11 U_22 U_33 U_12 U_13 U_23

Ba1 0.01375(11) 0.01375(11) 0.01516(19) 0.00687(6) 0 0
Sr1 0.01375(11) 0.01375(11) 0.01516(19) 0.00687(6) 0 0
Zn1 0.00674(17) 0.00674(17) 0.0050(3) 0.00337(8) 0 0
Fe1 0.00674(17) 0.00674(17) 0.0050(3) 0.00337(8) 0 0
Zn2 0.00574(15) 0.00574(15) 0.0060(2) 0.00287(8) 0 0
Fe2 0.00574(15) 0.00574(15) 0.0060(2) 0.00287(8) 0 0
Fe3 0.00665(14) 0.00665(14) 0.0060(2) 0.00332(7) 0 0
Fe4 0.00584(17) 0.00584(17) 0.0042(3) 0.00292(9) 0 0
Fe5 0.00594(12) 0.00594(12) 0.00600(18) 0.00368(10) 0.00002(4) -0.00002(4)
Fe6 0.00825(18) 0.00825(18) 0.0050(3) 0.00413(9) 0 0
O1 0.0056(6) 0.0056(6) 0.0063(11) 0.0028(3) 0 0
O2 0.0072(6) 0.0072(6) 0.0061(12) 0.0036(3) 0 0
O3 0.0180(5) 0.0180(5) 0.0158(9) 0.0113(6) -0.0032(3) 0.0032(3)
O4 0.0070(4) 0.0070(4) 0.0074(7) 0.0034(4) 0.0011(2) -0.0011(2)
O5 0.0064(4) 0.0064(4) 0.0062(7) 0.0031(4) -0.0003(2) 0.0003(2)

Table A.3 BZY-2 atomic parameters

Atom Atom type x y z Occ

Ba1 Ba2+ 6c 0 0 0.29930(2) 0.643(5)
Sr1 Sr2+ 6c 0 0 0.29930(2) 0.357(5)
Zn1 Zn2+ 6c 0 0 0.37581(4) 0.114(19)
Fe1 Fe3+ 6c 0 0 0.37581(4) 0.886(19)
Zn2 Zn2+ 6c 0 0 0.15231(4) 0.65(16)
Fe2 Fe3+ 6c 0 0 0.15231(4) 0.35(19)
Fe3 Fe3+ 6c 0 0 0.06505(4) 1
Fe4 Fe3+ 3b 0 0 0.5 1
Fe5 Fe3+ 18h 0.50323(10) 0.49677(10) 0.10963(3) 1
Fe6 Fe3+ 3a 0 0 0 1
O1 O2- 6c 0 0 0.41959(18) 1
O2 O2- 6c 0 0 0.19792(18) 1
O3 O2- 18h 0.1573(4) -0.1573(4) 0.02851(11) 1
O4 O2- 18h 0.8291(4) 0.1709(4) 0.08490(12) 1
O5 O2- 18h 0.1801(5) -0.1801(5) 0.13756(11) 1
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Table A.4 BZY-2 thermal parameters

Atom U_11 U_22 U_33 U_12 U_13 U_23

Ba1 0.00887(19) 0.00887(19) 0.0127(3) 0.00443(10) 0 0
Sr1 0.00887(19) 0.00887(19) 0.0127(3) 0.00443(10) 0 0
Zn1 0.0039(4) 0.0039(4) 0.0036(5) 0.00194(19) 0 0
Fe1 0.0039(4) 0.0039(4) 0.0036(5) 0.00194(19) 0 0
Zn2 0.0035(5) 0.0035(5) 0.0047(5) 0.0018(2) 0 0
Fe2 0.0035(5) 0.0035(5) 0.0047(5) 0.0018(2) 0 0
Fe3 0.0042(3) 0.0042(3) 0.0044(5) 0.00210(16) 0 0
Fe4 0.0030(4) 0.0030(4) 0.0036(6) 0.0015(2) 0 0
Fe5 0.0032(3) 0.0032(3) 0.0052(3) 0.0022(2) -0.00001(10) 0.00001(10)
Fe6 0.0048(4) 0.0048(4) 0.0035(6) 0.0024(2) 0 0
O1 0.0025(13) 0.0025(13) 0.005(2) 0.0012(6) 0 0
O2 0.0050(13) 0.0050(13) 0.005(2) 0.0025(7) 0 0
O3 0.0119(10) 0.0119(10) 0.0093(14) 0.0065(11) -0.0028(5) 0.0028(5)
O4 0.0039(9) 0.0039(9) 0.0076(12) 0.0023(10) 0.0006(5) -0.0006(5)
O5 0.0033(9) 0.0033(9) 0.0057(13) 0.0020(10) -0.0002(5) 0.0002(5)

Table A.5 BZY-3 atomic parameters

Atom Atom type x y z Occ

Ba1 Ba2+ 6c 0 0 0.298707(13) 0.404(3)
Sr1 Sr2+ 6c 0 0 0.298707(13) 0.596(3)
Zn1 Zn2+ 6c 0 0 0.379(3) 0.117(2)
Fe1 Fe3+ 6c 0 0 0.3748(4) 0.8549
Zn2 Zn2+ 6c 0 0 0.15210(14) 0.660(3)
Fe2 Fe3+ 6c 0 0 0.1528(3) 0.3316
Fe3 Fe3+ 6c 0 0 0.06502(2) 1
Fe4 Fe3+ 3b 0 0 0.5 1
Fe5 Fe3+ 18h 0.50319(4) 0.49681(4) 0.109538(12) 1
Fe6 Fe3+ 3a 0 0 0 1
O1 O2- 6c 0 0 0.41945(10) 1
O2 O2- 6c 0 0 0.19806(10) 1
O3 O2- 18h 0.1577(2) -0.1577(2) 0.02849(7) 1
O4 O2- 18h 0.8293(2) 0.1707(2) 0.08446(6) 1
O5 O2- 18h 0.1797(2) -0.1797(2) 0.13785(6) 1
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Table A.6 BZY-3 thermal parameters

Atom U_11 U_22 U_33 U_12 U_13 U_23

Ba1 0.01291(9) 0.01291(9) 0.01530(12) 0.00645(4) 0
Sr1 0.01291(9) 0.01291(9) 0.01530(12) 0.00645(4) 0
Zn1 0.006(5) 0.006(5) 0.01(2) 0.003(3) 0
Fe1 0.0065(9) 0.0065(9) -0.002(3) 0.0032(5) 0
Zn2 0.0085(10) 0.0085(10) 0.0089(13) 0.0042(5) 0
Fe2 0.0014(17) 0.0014(17) 0.001(3) 0.0007(8) 0
Fe3 0.00766(10) 0.00766(10) 0.00686(15) 0.00383(5) 0
Fe4 0.00667(13) 0.00667(13) 0.00491(19) 0.00334(7) 0
Fe5 0.00632(8) 0.00632(8) 0.00645(10) 0.00375(8) -0.00002(3)
Fe6 0.00869(14) 0.00869(14) 0.0055(2) 0.00435(7) 0
O1 0.0066(5) 0.0066(5) 0.0067(7) 0.0033(2) 0
O2 0.0069(5) 0.0069(5) 0.0071(7) 0.0034(2) 0
O3 0.0167(4) 0.0167(4) 0.0152(6) 0.0101(5) 0.0030(2)
O4 0.0072(3) 0.0072(3) 0.0081(4) 0.0034(4) -0.00098(17)
O5 0.0069(3) 0.0069(3) 0.0070(4) 0.0032(4) -0.000148(11) 0.00031(17)



Appendix B

Numerical calculations on various models

The intensity of a first harmonic magnetic reflection in dipole resonant condition can be
written as:

I =
(

FXRMS
)2

=
∣∣∑ f XRMSe2πiQr

∣∣2 (B.1)

where, f XRMS is given by the following matrix:

f XRMS =

∣∣∣∣∣σ → σ π → σ

σ → π π → π

∣∣∣∣∣
=

∣∣∣∣∣ 0 z1 cosθ + z3 sinθ

−z1 cosθ + z3 sinθ −z2 sin2θ

∣∣∣∣∣
(B.2)

B.1 4-fan structure

σ to π∗

S1 =mcos(φ/2)cos(θ)

L1 =−mcos(θ)

S2 =mcos(φ/2)cos(θ)

L2 =−mcos(φ)cos(θ)

S3 =mcos(φ/2)cos(θ)

L3 =−mcos(θ)

S4 =mcos(φ/2)cos(θ)

L4 =−mcos(φ)cos(θ)

(B.3)
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π to σ∗

S1 =−mcos(φ/2)cos(θ)

L1 =mcos(θ)

S2 =−mcos(φ/2)cos(θ)

L2 =mcos(φ)cos(θ)

S3 =−mcos(φ/2)cos(θ)

L3 =mcos(θ)

S4 =−mcos(φ/2)cos(θ)

L4 =mcos(φ)cos(θ)

(B.4)

π to π∗

S1 =msin(φ/2)sin(2θ)

L1 =0

S2 =−msin(φ/2)sin(2θ)

L2 =msin(φ)sin(2θ)

S3 =−2msin(φ/2)sin(2θ)

L3 =0

S4 =msin(φ/2)sin(2θ)

L4 =−msin(φ)sin(2θ)

(B.5)

B.2 Model-A

Geometry: horizontal magnet
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σ to π∗

S1 = ([−z1 cosθ + z3 sinθ ])e2πiQr

=−z1 cosθ .e2πiQr Z3=0

=−[−mcos [φ/2]]cosθ .e2πiQr ;m is opposite to z1

= mcosθ .e2πiQr ;φ = 0

L1 =−z1 cosθ .e2πiQr

=−mcos [φ/2]cosθ .e2πiQr Z3=0

S2 = mcosθ .e2πiQr

L2 =−mcos [φ/2]cosθ .e2πiQr

π to σ∗

S1 = ([z1 cosθ + z3 sinθ ])e2πiQr

= z1 cosθ .e2πiQr

=−mcos [φ/2]cosθ .e2πiQr ;m is opposite to z1, φ = 0

=−mcosθ .e2πiQr

L1 = Z1 cosθ .e2πiQr

= mcos [φ/2]cosθ .e2πiQr

S2 =−mcosθ .e2πiQr

L2 = mcos [φ/2]cosθ .e2πiQr

π to π∗

S1 =−z2 sin2θ .e2πiQr

=−msin [φ/2]sin2θ .e2πiQr

= 0 ;φ = 0, z2=0

L1 =−z2 sin2θ .e2πiQr

=−msin [φ/2]sin2θ .e2πiQr

S2 = 0

L2 = msin [φ/2]sin2θ .e2πiQr opposite to z2

B.3 Model-B
Horizontal magnet geometry
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σ to π

S1 = ([−z1 cosθ + z3 sinθ ])e2πiQr

=−z1 cosθ .e2πiQr ;z3 =0

= mcos [φ/2]cosθ .e2πiQr

= mcosθ .e2πiQr ;m is opposite to z1 and φ = 0

L1 = [−z1 cosθ + z3 sinθ ]e2πiQr

= [−msinα cosφ/2cosθ +mcosα sinθ ].e2πiQr

S2 = mcosθ .e2πiQr

L2 = ([−z1 cosθ + z3 sinθ ])e2πiQr

=[−msinα cosφ/2cosθ −mcosα sinθ ].e2πiQr ;z3 =−mcosα

π to σ

S1 = ([z1 cosθ + z3 sinθ ])e2πiQr

= z1 cosθ .e2πiQr ;z3 = 0

=−mcos [φ/2]cosθ .e2πiQr

=−mcosθ .e2πiQr ;φ = 0, m is opposite to z1

L1 = ([z1 cosθ + z3 sinθ ])e2πiQr

= [msinα cosφ/2cosθ +mcosα sinθ ].e2πiQr

S2 =−mcosθ .e2πiQr

L2 = ([z1 cosθ + z3 sinθ ])e2πiQr

=[msinα cosφ/2cosθ −mcosα sinθ ].e2πiQr ;z3 =−mcosα

π to π

S1 =−z2 sin2θ .e2πiQr

= 0 ;φ = 0, z2 = 0

L1 =−z2 sin2θ .e2πiQr

=−msinα sinφ/2sin2θ .e2πiQr

S2 = 0

L2 =−z2 sin2θ .e2πiQr

= msinα sinφ/2sin2θ .e2πiQr
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Vertical magnet geometry After exchanging z1 and z2:

σ to π

S1 = ([−z1 cosθ + z3 sinθ ])e2πiQr

= 0 ;new z1 and φ = 0

L1 = [−z1 cosθ + z3 sinθ ]e2πiQr

= [−msinα sinφ/2cosθ +mcosα sinθ ].e2πiQr

S2 = 0

L2 = ([−z1 cosθ + z3 sinθ ])e2πiQr

=[msinα sinφ/2cosθ −mcosα sinθ ].e2πiQr ;z3 =−mcosα

π to σ

S1 = ([z1 cosθ + z3 sinθ ])e2πiQr

= 0 ;φ = 0, new z1 = 0

L1 = ([z1 cosθ + z3 sinθ ])e2πiQr

= [msinα sinφ/2cosθ +mcosα sinθ ].e2πiQr

S2 = 0

L2 = ([z1 cosθ + z3 sinθ ])e2πiQr

=[−msinα sinφ/2cosθ −mcosα sinθ ].e2πiQr ;z3 =−mcosα

π to π

S1 =−z2 sin2θ .e2πiQr

=−msin2θ .e2πiQr ;φ = 0,z2 = 0

L1 =−z2 sin2θ .e2πiQr

= msinα cosφ/2sin2θ .e2πiQr

S2 =−msin2θ .e2πiQr

L2 =−z2 sin2θ .e2πiQr

= msinα cosφ/2sin2θ .e2πiQr

Calculated intensity for the model-B for horizontal magnet geometry is plotted in Fig.
B.1. Intensities in σ → π and π →σ channels are similar and decrease with increase in α . In
both the channels intensity is almost independent of φ . Higher α indicates larger magnetic
moment in the field direction and with smaller φ it approaches ferrimagnetic structure. We
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can conclude that in these two diagonal channels intensity is solely determined by the z3

component. Since there is no contrast between σ → π and π → σ intensities, Rel_Lin is
zero for all the values of φ and α . Higher value of Rel_Lin near α close to π/2 can be
explained on the basis of the smaller normalization factor, due to smaller values of intensity,
which is an artifact in the calculations. Intensity in the π → π channel changes diagonally
towards higher values of both φ and α . The highest intensity is obviously found when
moments are in the z2 direction.

Fig. B.1 Model-B: Calculated intensities for the σ → π , π → σ and π → π channels for
horizontal magnet geometry. In the bottom panels Rel_Circ, Re_Lin and Iπ/Iσ are plotted
as a function of φ and α . In the Iπ/Iσ plot the values of Iπ/Iσ > 5 are shown by black sparse
region.

In Fig. B.1 we also plotted the values of relative circular dichroism (Rel_Circ), relative
linear dichroism (Rel_Lin)and ratio of intensities in π and σ channels(Iπ/Iσ ). No Rel_Circ
can be found in the entire range of α and φ except in a small region near α =90° and φ =0°,
which is also an artifact arising due to small values of intensity in π channel. In this case we
have finite values of intensity in both σ → π and π → π channels at least in a certain range
of φ and α , but Rel_Circ is zero. If we look at the Eq. 3.28, it is not the intensity but the
contrast between the real part of the structure factor in σ → π times the imaginary part in
π → π and real part of the structure factor in π → π times the imaginary part in σ → π . For
a circularly polarized light (σ + iπ) the real and imaginary parts of the light have a phase
shift of π/2 or both are cos and sin functions. As mentioned earlier, if we have moment
component z2 and z3 we can have finite intensities in σ → π and π → π channels, but for
a circular polarized light real and imaginary parts have the same phase shift. Therefore, P



B.3 Model-B 155

and M polarization can not have contrast in this model.

Fig. B.2 Model-B: Calculated intensities for the σ → π , π → σ and π → π channels for
vertical magnet geometry. In the bottom panels Rel_Circ, Re_Lin and Iπ/Iσ is plotted as a
function of φ and α . In the Iπ/Iσ plot the values of Iπ/Iσ > 5 are shown by black sparse
region.

In Fig. B.2 we have plotted the intensity of the individual channels for vertical field
geometry. Compared to horizontal magnet geometry, in vertical magnet intensity is both α

and φ dependent for (Iσ→π ) and (Iπ→σ ). In the case of vertical magnet geometry, magnetic
modulations are shifted by π/2 from that of horizontal magnets in z1 direction. Now our
new z1 for vertical magnet is the z2 in horizontal magnet, and directions are given by a right
handed co-ordinate system. Contributions from both the large spin blocks in the magnetic
unit cell contribute opposite to each other in z1 direction, as well as that for z3. Therefore,
we have a contrast in our new z1 and z3 moment directions. This gives us a difference in
intensities in σ → π and π → σ channels. Highest intensity in this case for both σ → π and
π → σ was observed for higher values of both φ and α . This indicates that in the case of
vertical magnet higher component of moments in the new z1 (which is the z2 direction) in
horizontal magnet favors both the diagonal channel intensities. However, unlike in case of
horizontal magnet, here intensity maps are not the same i.e.φ , α dependence is not the same
for both the channels and intensity is both α and φ dependent.

In case of vertical magnet geometry we do not get any circular dichroism except for the
artifact near φ =0° and α =90°. Interestingly, in a wide range of α and φ linear dichroism is
observed. The Iπ/Iσ ratio becomes very huge in the regions as shown in Fig. B.2. Therefore,
altogether this model-B could not explain the circular dichroism observed in horizontal field
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geometry and accounts for no common regions in φ and α for experimentally observed
Iπ/Iσ ratio and Rel_Lin.

B.4 Model-C

Horizontal magnet geometry

σ to π

S1 = ([−z1 cosθ + z3 sinθ ])e2πiQr

= [−(−msinβ )cosθ +mcosβ sinθ ].e2πiQr

= [msinβ cosθ +mcosβ sinθ ].e2πiQr

L1 = ([−z1 cosθ + z3 sinθ ])e2πiQr

= [−msinα cosφ/2cosθ +mcosα sinθ ].e2πiQr

S2 = ([−z1 cosθ + z3 sinθ ])e2πiQr

= [−(−msinβ cosθ)+(−mcosβ sinθ)] ;z3,z1oppositedirection

= [msinβ cosθ −mcosβ sinθ ]

L2 = ([−z1 cosθ + z3 sinθ ])e2πiQr

=[−msinα cosφ/2cosθ −mcosα sinθ ].e2πiQr ;z3 =−mcosα

π to σ

S1 = ([z1 cosθ + z3 sinθ ]) .e2πiQr

= [−msinβ cosθ +mcosβ sinθ ].e2πiQr ;z1oppositedirection

L1 = ([z1 cosθ + z3 sinθ ])e2πiQr

= [msinα cosφ/2cosθ +mcosα sinθ ].e2πiQr

S2 = ([z1 cosθ + z3 sinθ ])e2πiQr

= [−(msinβ cosθ)+(−mcosβ sinθ)] ;z3,z1oppositedirection

= [−msinβ cosθ −mcosβ sinθ ]

L2 = ([z1 cosθ + z3 sinθ ])e2πiQr

=[msinα cosφ/2cosθ −mcosα sinθ ].e2πiQr ;z3 =−mcosα
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π to π

S1 =−z2 sin2θ .e2πiQr

= 0

L1 =−z2 sin2θ .e2πiQr

=−msinα sinφ/2sin2θ .e2πiQr

S2 = 0

L2 =−z2 sin2θ .e2πiQr

= msinα sinφ/2sin2θ .e2πiQr

Vertical magnet geometry

σ to π

S1 = ([−z1 cosθ + z3 sinθ ])e2πiQr

= mcosβ sinθ ;new z1 = 0 and φ = 0

L1 = [−z1 cosθ + z3 sinθ ]e2πiQr

= [−msinα sinφ/2cosθ +mcosα sinθ ].e2πiQr

S2 =−mcosβ sinθ

L2 = ([−z1 cosθ + z3 sinθ ])e2πiQr

=[msinα sinφ/2cosθ −mcosα sinθ ].e2πiQr ;z3 =−mcosα

π to σ

S1 = ([z1 cosθ + z3 sinθ ])e2πiQr

= mcosβ sinθ ;φ = 0, new z1 = 0

L1 = ([z1 cosθ + z3 sinθ ])e2πiQr

= [msinα sinφ/2cosθ +mcosα sinθ ].e2πiQr

S2 =−mcosβ sinθ

L2 = ([z1 cosθ + z3 sinθ ])e2πiQr

=[−msinα sinφ/2cosθ −mcosα sinθ ].e2πiQr ;z3 =−mcosα
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π to π

S1 =−z2 sin2θ .e2πiQr

=−msinβ sin2θ .e2πiQr

L1 =−z2 sin2θ .e2πiQr

= msinα cosφ/2sin2θ .e2πiQr

S2 =−msinβ sin2θ .e2πiQr

L2 =−z2 sin2θ .e2πiQr

= msinα cosφ/2sin2θ .e2πiQr

Fig. B.3 Calculated intensity of model-C for horizontal field in the σ → π and π → σ

channel as a function of angles α and β at various values of φ . Color bars scale with the
corresponding values.

Calculations of various parameters in this case is not as straight forward as is the case
of model-A and model-B. In model-C we have three parameters φ , α and β . Therefore, we
calculate the intensity parameters for each φ by varying α and β .

Fig. B.3 shows the intensity in σ → π and π → σ channels for selected values of φ and
as a function of α and β for horizontal field geometry. Intensity in σ → π and π → σ has
only small difference for all φ which is not visible in the intensity map and there should not
be any Rel_Lin. We also did not observe any Rel_Lin experimentally. For both the spin
blocks pairs, L1 and L2 and S1 and S2, have equal contributions towards z1. In z3 direction
in both the pairs each one contributes opposite to the other. Thus the sum and difference of
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Fig. B.4 Calculated intensity of model-C for horizontal field in the π → π channel as a
function of angles α and β at various values of φ . Color bars scale with the corresponding
values.

contributions in z1 and z3 are equal. Our calculations also show equal intensities for σ → π

and π → σ . In the π → π channel for φ =0° no intensity is observed. This is obvious that
with no z2 component intensity in this channel is zero. As the value of φ increases the z2

component also increases and the intensity in π → π channel starts increasing, see Fig. B.4.
We have plotted various parameters calculated from model-C, as a function of α and β

for various values of φ , in Fig. B.5. From the intensity calculations we have already seen
that for phi = 0, intensity in π → π=0. Since, for Rel_Circ we need finite intensity in π → π

channel, for φ=0 we cannot see any circular dichroism for all values of α and β . For a small
change in φ=5° circular dichroism appears. Highest value of circular dichroism is found
when α goes to π/2 and the value of β is small. Rel_Circ dichroism with a value of 0.7
can be observed in this region. However, for a wide range of β Rel_Circ in the range of
0.2 to 0.7 is observed. As we increase φ to 15° the region with circular dichroism increases
to lower values of α . At φ =45° the highest value of Rel_Circ decreases to below 0.3 but
small circular dichroism is extended for lower values of α . With further increase in φ , value
of circular dichroism decreases. We have plotted the Iσ /Iπ ratio up to a value of Iσ /Iπ=5.
Some very high values of Iσ /Iπ are observed, which we indicate by the white regions in the
curve. With small increase in φ value above 0°(=1 forφ = 0) the ratio increases. Highest
value of the ratio is observed near α,β → π/2. With higher φ , α,β → π/2 region gives
values much higher than 5 (which are shown as cross-dashed region in the plot).

Now let us look at the vertical field geometry. In this case, as mentioned earlier, z1 and
z2 are exchanged. In Fig. B.6 we plotted the individual intensities Iσ→π and Iπ→σ with the
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Fig. B.5 Calculated Iπ/Iσ ratio and Rel_Circ of model-C for horizontal field as a function
of angles α and β at various values of φ . Color bars scale with the corresponding values.

same color bars for the same values of φ . In case of both the diagonal channels σ → π and
π → σ intensity increases as we increase φ . For a particular φ , intensity has huge variation
along α but a very small change is observed along β . For φ =0° we can see that in both
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Fig. B.6 Intensity in the σ → π , π → σ and calculated for vertical field geometry of model-
C for different values of φ as indicated in the figure. For Iσ→π and Iπ→σ same color bars
are used for the same values of φ . Rel_Lin is plotted in the right hand side with the same
color bar for all values of φ .

the channels σ → π and π → σ highest intensity is observed at α = 0 and it decreases
with increase in α . As φ is increased, the pattern of relative intensities changes differently
for both the channels. Intensity in both the channels are independent of β . This indicates
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that for linear dichroism the angle of the small spin blocks with the c-axis has no influence.
Small β dependence is observed for φ =5° and the small values are due to the artifact caused
by small values of individual intensities. For both the intensities small blocks in the new z1

direction, or the perpendicular to H direction, do not have moment component. Therefore,
it is obvious that Rel_Lin is independent of β . The value of α is the controlling factor for
the linear dichroism.

Intensity in the π → π channel is negligible for the entire regions of φ , α and β . Along
z2 i.e.in the field direction there is only ferrimagnetic contribution, so there is no intensity
in the π → π channels. Without π → π intensity we can not have Rel_Circ. For the entire
range of φ , α and β no Rel_Circ is observed.

As can be seen in Fig. B.6, Rel_Lin values can reach as high vales as ≈ 1. There is no
Rel_Lin for φ =0°. z2 component for L-blocks are essential for relative linear dichroism
also. For φ =5° we can see that regions with very high Rel_lin start appearing at α value
around 80°. As we further increase in φ the highest value region moves towards lower α .

B.5 Model-D

Horizontal magnet

σ to π

S1 = ([−z1 cosθ + z3 sinθ ])e2πiQr

= [−msinβ cos(γ/2)cosθ − cosβ sinθ ] · e2πiQr

L1 = ([−z1 cosθ + z3 sinθ ])e2πiQr

= [−msinα cos(φ/2)cosθ +mcosα sinθ ] · e2πiQr

S2 = [−msinβ cos(γ/2)cosθ + cosβ sinθ ] · e2πiQr

L2 = ([−z1 cosθ + z3 sinθ ])e2πiQr

=[−msinα cos(φ/2)cosθ −mcosα sinθ ] · e2πiQr ;z3 =−mcosα
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π to σ

S1 = [z1 cosθ + z3 sinθ ].e2πiQr

= [msinβ cos(γ/2)cosθ − cosβ sinθ ] · e2πiQr

L1 = ([z1 cosθ + z3 sinθ ])e2πiQr

= [msinα cos(φ/2)cosθ +mcosα sinθ ] · e2πiQr

S2 = [msinβ cos(γ/2)cosθ + cosβ sinθ ] · e2πiQr

L2 = ([z1 cosθ + z3 sinθ ])e2πiQr

=[msinα cos(φ/2)cosθ −mcosα sinθ ] · e2πiQr ;z3 =−mcosα

π to π

S1 =−z2 sin2θ · e2πiQr

= msinβ sin(γ/2)sin2θ · e2πiQr

L1 =−z2 sin2θ · e2πiQr

=−msinα sin(φ/2)sin2θ · e2πiQr

S2 =−msinβ sin(γ/2)sin2θ · e2πiQr

L2 =−z2 sin2θ · e2πiQr

= msinα sin(φ/2)sin2θ · e2πiQr

Vertical magnet geometry

σ to π

S1 = ([−z1 cosθ + z3 sinθ ])e2πiQr

= m[−sinβ sin(γ/2)cosθ − cosβ sinθ ] · e2πiQr ;new z1 = msinγ

L1 = [−z1 cosθ + z3 sinθ ]e2πiQr

= [−msinα sin(φ/2)cosθ +mcosα sinθ ] · e2πiQr

S2 = m[sinβ sin(γ/2)cosθ + cosβ sinθ ] · e2πiQr

L2 = ([−z1 cosθ + z3 sinθ ])e2πiQr

=[msinα sin(φ/2)cosθ −mcosα sinθ ] · e2πiQr ;z3 =−mcosα
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Fig. B.7 Solution for model-D for φ , α , β and γ for applied field below saturation field and
above H4

π to σ

S1 = ([z1 cosθ + z3 sinθ ])e2πiQr

= m[sinβ sin(γ/2)cosθ − cosβ sinθ ] · e2πiQr ; new z1=msin(γ/2)

L1 = ([z1 cosθ + z3 sinθ ])e2πiQr

= [msinα sin(φ/2)cosθ +mcosα sinθ ] · e2πiQr

S2 = m[−sinβ sin(γ/2)cosθ + cosβ sinθ ] · e2πiQr

L2 = ([z1 cosθ + z3 sinθ ])e2πiQr

=[−msinα sin(φ/2)cosθ −mcosα sinθ ] · e2πiQr ;z3 =−mcosα
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Fig. B.8 Calculated values of Rel_Circ, Rel_Lin, Iπ/Iσ and moment (using a Wolfram math-
ematica 10.4 program) as a function of α , β and γ for three values of φ=5°, 10° and 15°.
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π to π

S1 =−z2 sin2θ · e2πiQr

=−msinβ cos(γ/2)sin2θ · e2πiQr

L1 =−z2 sin2θ · e2πiQr

= msinα cos(φ/2)sin2θ · e2πiQr

S2 =−msinβ cos(γ/2)sin2θ · e2πiQr

L2 =−z2 sin2θ · e2πiQr

= msinα cos(φ/2)sin2θ · e2πiQr
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