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Abstract

Due to the worldwide shortage of 3He and the price development caused by this, al-

ternative concepts of neutron detection are in demand. One possible alternative is a

ZnS/LiF scintillation detector with readout via wavelength shifting fibers. The presented

dissertation describes the development of a model of the physical frontend, which enables

computer-aided simulations with different configurations and conditions.

The model regards the microscopic structure of the scintillator during the tracking

of alpha and triton particles created by the conversion of a neutron at a 6Li, as well as

the propagation of photons through the scintillator plate. In the first case, the structure

is simulated via randomly placed spherical grains, through which the charged secondary

particles are tracked. In the second case, the photons are subject to a random walk with

parameters dependend on the composition of the scintillator.

The model is validated in several steps, during which single aspects of the model are

verified. There is a good agreement between measurements and simulations of neutron

absorption and pulse height spectra of different scintillator samples.

A comparison with optical transmission measurements shows, that the simulated ef-

fective optical absorption coefficent is of the same order of magnitude as the measured

value of samples of one manufacturer, but is smaller by a factor of 6 than the value of

samples of another manufacturer.

For the validation of the entire model, measurements of a prototype are compared to

simulations. In order to compare the data event-wise, a detection algorithm based on

cluster finding is developed. Measurements and simulations are in good agreement, so the

model can be regarded as validated.

To optimize multiple parameters at the same time, a generalization of the Golden

Section Search can be used. This algorithm optimizes parameters with respect to an opti-

mization function, e.g. detection efficiency, which is calculated dependend on simulation

data. This way it is possible to optimize detector parameters for new developments.



Zusammenfassung

Aufgrund des weltweiten Mangels an 3He und der damit verbundenen Preisentwicklung

sind alternative Konzepte zur Neutronendetektion sehr gefragt. Eine mögliche Alternative

ist ein ZnS/LiF Szintillationsdetektor mit Auslese durch wellenlängenschiebende Fibern.

Die vorliegende Dissertation beschreibt die Entwicklung eines Modells des physikalischen

Frontends, mithilfe dessen computergestützte Simulationen mit unterschiedlichen Konfig-

urationen und Bedingungen durchgeführt werden können.

Das Modell berücksichtigt die mikroskopische Struktur des Szintillators sowohl bei der

Propagation der Alpha- und Tritonteilchen, die durch die Konversion eines Neutrons an

einem 6Li entstehen, als auch bei der Fortbewegung von Photonen innerhalb der Szintil-

latorplatte. Im ersten Fall erfolgt die Simulation durch zufällig platzierte kugelförmige

Körner, durch die sich die geladenen Sekundärteilchen bewegen. Im zweiten Fall sind die

Photonen Subjekt eines Random–Walks mit Parametern, die von der Zusammensetzung

des Szintillators abhängen.

Die Validierung des Modells erfolgt in mehreren Schritten, in denen jeweils ein Aspekt

des Modells überprüft wird. So zeigt sich eine gute Übereinstimmung zwischen Messun-

gen und Simulationen von Neutronenabsorptionsverhalten und Pulshöhenspektren ver-

schiedener Szintillatorproben.

Ein Vergleich mit Transmissionsmessungen optischen Lichts zeigt, dass der simulierte

effektive optische Absorptionskoeffizient in derselben Größenordnung wie der gemessene

Wert bei Proben eines Herstellers liegt, jedoch um einen Faktor 6 kleiner ist als der Wert

von Proben eines anderen Herstellers.

Für die Gesamtvalidierung des Detektormodells werden Messungen eines Prototypen

mit Simulationen verglichen. Um einen eventbasierten Vergleich durchführen zu können,

wird ein Detektionsalgorithmus basierend auf Clustererkennung entwickelt. Messungen

und Simulationen sind in guter Übereinstimmung, weshalb das Modell als validiert ange-

sehen werden kann.

Zur Optimierung von mehreren Parametern kann eine mehrdimensionale Verallge-

meinerung des Golden Section Search verwendet werden. Dieser Algorithmus optimiert

Parameter in Bezug auf eine Optimierungsfunktion, wie z.B. die Nachweiseffizienz, welche

in Abhängigkeit von Simulationsdaten berechnet wird. So ist es möglich mithilfe des Mod-

ells Detektorparameter für Neuentwicklungen zu optimieren.
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Chapter 1

Introduction

A huge field in modern day physics is the analysis and characterization of new materials. It

is important to determine their structure and modes of excitation in order to explore their

potential in certain applications. Current interesting examples are multiferroic materials

for efficient and persistent RAM, the magneto-caloric effect for solid-state cooling devices,

and the self assembly of nano-particles.

A very common method to gain information about microscopic structures and pro-

cesses is scattering, where a probe is shot on the sample and the scattering pattern is

recorded. Physicists have access to a multitude of probes like x-rays, electrons and neu-

trons to name the most common ones.

Since neutrons carry no charge, they can interact with surrounding matter only via

strong, weak and magnetic interaction. Therefore, they can interact with the magnetic

structure of a material and provide information about it. Further, they scatter at nu-

clei directly and interact with the electrons of the material only due to their magnetic

moments. This is an advantage over x-rays and electrons, which are subject to compton

scattering and Coulomb interaction. So the latter two probes scatter stronger at atoms

with more electrons, and it is very difficult to resolve positions of atoms with low atomic

number, like hydrogen.

However, because they have no charge, the detection of neutrons scattered in a sample

requires very specific methods. In general, the optimal detection method depends on the

neutrons’ kinetic energy, as described in Chapter 2.

The kind of detector modelled and simulated in this work is aimed at the detection

of thermal neutrons with a kinetic energy of about 0.025 eV. At this energy, neutrons

have a de-Broglie wavelength in the order of a few Å and are well suited to resolve lattice

distances in scattering experiments.

7



8 MODELLING A WLSF NEUTRON DETECTOR

To detect thermal neutrons, usually 3He gaseous detectors have been employed in the

past, because 3He has a large cross section and can be used as neutron converter and

counting gas at the same time. Due to its low atomic number it is almost insensitive to

gamma radiation, which is a desired property for neutron detection.

However, because demand heavily outweighted supply since about 2005, 3He has

become very expensive. The world’s main supplier for 3He is the Department of En-

ergy (DOE) of the USA, which obtains it mainly as byproduct of the nuclear weapons

production and maintenance. For maximum efficiency, nuclear weapons require a certain

amount of tritium, which decays to 3He with a half life of about 12 years and thus must

be replaced regularly. So the 3He production capacity of the DOE is determined mainly

by the size of the American nuclear weapons arsenal, and not by the demand for 3He.

As of 2010 the annual production capacity of 3He was approximately 8000 L [1], facing

a demand of about 65 000 L per year [2], to which the main contribution is the demand

for 3He in neutron portal monitors at US borders. Such security sensitive applications

are preferred by the DOE, so the amount of 3He on the free market is scarce. This is

extremely problematic for detectors which require large amounts of 3He, like for example

at the Japan Proton Accelerator Research Complex, where 100 000 L of 3He are needed for

planned neutron detectors. Therefore, several alternative developments have been started

with the aim to build more cost effective, 3He free neutron detectors. Some of these efforts

are described in Chapter 2.

This work aims at the numerical simulation of a ZnS/LiF scintillation neutron detector

with Wavelength Shifting Fibers (WLSF), one of the alternatives to 3He detectors. Four

detector banks of this type are being installed at the Six Anvil Press for High pressure Ra-

diography and diffraction (SAPHiR) instrument at the Forschungsneutronenquelle Heinz

Maier-Leibnitz (FRM-II).

The motivation behind this work is threefold. Beside the solely scientific interest in

understanding the interactions inside the scintillator plate, a working, validated model

of the detector can be a tool to estimate detection efficiency and spatial resolution for

different parameters or even new detector designs, without the need to build a new pro-

totype. Also, using such a model in combination with an optimization algorithm, one can

find optimal parameters for the detector depending on different applications. Finally, a

working detector system can be supported in the analysis by correcting the counting rate

for neutrons of different energies dependening on simulation results. Also, systematical

errors may be estimated and the readout analysis can be optimized.

There have been several attempts to simulate ZnS/LiF detectors. However, most of

them restricted themselves to the microscopic structure of the scintillator material and
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only examined how much energy gets deposited in the ZnS grains [3, 4, 5] and not the

amount of photons created or detected. One study tries to simulate such a detector system

including the WLSFs [6]. However, the model used there ignores the microscopic structure

of the scintillator and fiber cladding. This oversight greatly diminishes the usefulness of

the results obtained with that model. The existing models are discussed in more detail

in Chapter 4.

In this work a full detector model will be developed, which takes into account the

microscopic structure and the optical properties of the scintillator and WLSFs. In order to

validate the model it will be closely examined and checked by comparison to experimental

results.

Chapter 2 gives an overview over different detection methods for thermal neutrons

and describes WLSF detectors in detail. The software toolkit Geant [7], which is used

to simulate the detector, is introduced in Chapter 3. Chapter 4 outlines the model of

the detector and important implementation details of the simulation. The validation

of the model is discussed in Chapter 5, where different measurements are compared to

simulations. Chapter 6 introduces an optimization algorithm for the parameters of the

simulation and shows its application to an example function. Chapter 7 presents impor-

tant simulation results obtained by different simulations of the model. Finally, a short

conclusion and outlook is given in Chapter 8.



Chapter 2

The Detector

Neutrons with more than several hundred keV of kinetic energy can be detected by ob-

serving recoil nuclei from collisions between neutron and nucleus. This way it is possible

to gain information about direction and energy of the neutron. Since a neutron can im-

part up to 4A
(A+1)2

of its energy, where A is the atomic number of the collision partner,

light nuclei like hydrogen or deuterium are best suited for this [8]. If information about

the energy is not required, it is often simpler to moderate the neutrons by collisions in a

thermal bath in order to lower their kinetic energy. At thermal equilibrium with a 300 K

bath, the kinetic energy of neutrons follows a Maxwell distribution with an average of

kB · 300 K = 25 meV.

Such neutrons are called thermal neutrons and they are frequently used in neutron

scattering experiments, because their de-Broglie wavelength of the order of 1 Å is well

suited to resolve lattice distances in solids. Due to their low kinetic energy, recoil nuclei

from elastic scattering processes are hardly detectable. However, there are several iso-

topes, which are able to capture these slow neutrons and subsequently decay under release

of higher energy.

Converter Reaction product Released energy Cross section
at 25 meV [b]

3He 3H + 1H 0.764 MeV 5330

6Li 4He + 3H 4.78 MeV 940

10B
7Li + 4He (ground state, 6 %)

7Li
∗

+ 4He (excited state, 94 %)
2.792 MeV
2.310 MeV

3840

157Gd 158Gd + (γ or e−) ∼ 72 keV 255 000

Table 2.1: Isotopes of helium, lithium, boron and gadolinium as neutron converters, according to [9]

10
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Important examples of capturing isotopes are given in Table 2.1. These examples are

interesting for detection purposes, because reaction products include charged nuclei which

are imparted with all or part of the reaction’s excess energy. Therefore, they are easier to

detect by conventional methods like proportional counters or scintillators. In essence, the

neutron, which is difficult to detect, is converted into easier detectable particles, which is

why these isotopes are called converters.

There is a trade off between the energy released and the cross section of a particular

reaction, so a suitable converter must be chosen depending on the application. 3He has

been used because of its large cross section of 5330 b for thermal neutrons. The relatively

low amount of released energy can still easily be detected in a proportional counter, which

contains the 3He.

The neutron capture of 157Gd with a huge cross section of 255 000 b for thermal neu-

trons does not result in the emission of fast nuclei. Rather, the excited state of 158Gd

deexcites via emission of a gamma photon or via internal conversion, where the excess

energy is transferred to an electron of an inner shell, which is then emitted from the atom.

The low excess energy of 72 keV makes it difficult to detect such a reaction in the presence

of background. Further, 157Gd is not very abundant and not easily enrichable due to the

small relative mass difference to other gadolinium isotopes. For these reasons gadolinium

is not very well suited as a converter in most applications.

The boron reaction shows a smaller cross section than 3He, but it releases much more

energy. If the boron is enriched in 10B, BF3 can be used as counting gas with integrated

converter, like the more popular 3He [10]. However, it cannot be operated at pressures as

high as 3He, and since the cross section of 10B is lower than that of 3He, BF3 detectors are

always inferiour. Further, the gas is toxic, which makes it dangerous to handle, especially

when large quantities are needed.

A safer application is the coating of counting tube cathodes with a boron compound

such that either the lithium nucleus or the alpha particle of the boron neutron capture

reaction enters the tube and can be detected [11]. However, the coating must be thin

so that secondary particles reach the counting gas, which leads to a restricted efficiency.

Such detectors are well suited for monitoring purposes. For scientific applications, which

require a good efficiency, special stacked arrangements are necessary. It is also possible

to use enriched boron in combination with a scintillator, like mixtures of boron oxide and

zinc sulfide or boron-loaded plastic or liquid scintillators [9].

Finally, 6Li is the converter which releases the most energy after neutron capture.

Since there is no gamma emitted as reaction product, all the excess energy is imparted

on the recoil nuclei. This makes it interesting for scintillation detector systems in which
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very bright scintillation flashes are needed.

A good material for neutron detection is europium doped lithium iodide (LiI:Eu) with

the lithium enriched in 6Li. It can be grown as single crystal and has an excellent neutron

response. However, it is also sensitive to gamma radiation, such that it is not suited for

environments with high background rate. It is further hygroscopic which requires sealed

containment in order to prevent the scintillator from dissolving due to moisture. Because

of these difficulties, LiI:Eu is not widely used.

Cerium doped 6Li-glass is a widely used scintillator which directly incorporates the

neutron converter. It has a very fast response, so it is well suited for applications with

high counting rates [12]. However, the light yield is smaller than that of other scintillators

and an indistinguishable response to gamma radiation may appear.

The use of lithium fluoride enriched in 6Li as converter in combination with silver

doped zinc sulfide as scintillator is the basis for the detector modelled in this work. The

constituents are ground to microscopic size and bound in a matrix in order to ensure

close proximity. Due to the large amount of energy from the lithium neutron capture

and the zinc sulfide’s excellent scintillation response to alpha particles, the light yield is

very high. For this reason such compounds can be used in combination with cost-effective

light detection methods (like WLSF) on large sensitive areas. The long decay time of the

scintillator limits the counting rate, but also allows for an efficient gamma discrimination.

Due to the opaqueness of the mixture, the thickness of a single scintillator plate is limited

to about 500 µm.

2.1 Scintillation

Scintillation is the emission of light which follows ionization by radiation in certain ma-

terials. During its passage, an ionizing particle may collide with atoms, molecules or

electrons of the material and transfer part of its kinetic energy to them, thus exciting the

collision partner. These excitations will deexcite eventually and lose their excess energy

in some way. This so-called relaxation process might happen via emission of a photon or

by interactions with phonons, i.e. causing lattice vibrations and thus producing heat.

In order to exhibit observable scintillation, a material needs to be transparent to

light emitted in this way. Self absorption can be avoided, if the relaxation happens via

intermediate steps with low excitation cross sections. One possible intermediate step in

a crystal is an exciton, a state in which a conduction electron and a valence hole form a

hydrogen-like quasi-particle. Due to their mutual attraction, the energy of a combined

state is lower than that of a free electron and a photon created due to recombination of
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an exciton does not have enough energy to lift an electron from the valence band to the

conduction band.

For inorganic crystals intermediate states can be introduced by doping the material

with appropriate impurity atoms. ZnS for example has a band width of 3.9 eV [13] and

is doped with silver for the use in ZnS/LiF scintillators. The Ag+ ions replace Zn2+ ions

and thus have an additional local negative charge. Therefore they are electron donors

and can fill vacancies in the valence band of ZnS. With the resulting net positive charge,

electrons of the conduction band can be trapped and transferred to an excited state of the

silver ion. The subsequent decay into the ground state happens under emission of a 2.7 eV

photon, which has too little energy to excite an electron in the valence band. It could be

reabsorbed at another silver site, but since they are sparsely distributed throughout the

crystal, the probability for that is low.

Conduction electrons and valence holes can reach such recombination centers if they

form excitons. In that state they can travel the crystal freely until they are trapped at

an impurity and eventually recombine.

2.2 Photon Detection Methods

In the case of scintillation techniques, it is further necessary to convert the optical signals

which are emitted by the scintillator into electronic signals for digital processing. This

can be done using Photo-Multiplier Tubes (PMT) or Silicon Photo-Multipliers.

Usual photo sensors used in cameras, like CMOS or CCD chips, are very cheap, since

they are massively produced. However, these devices collect light in an integrating manner

and are read out periodically, meaning that timing information is lost. The information of

exactly when an event occurs is essential for some applications like Time of Flight (TOF).

Further, it is possible to distinguish between neutron and gamma events depending on

the pulse shape if the scintillator has a different response to gammas. Without timing

information this is impossible, so camera sensors are unsuitable for many applications in

neutron detection.

A PMT operated in pulse mode can give very precise timing information and can even

resolve single photons. The sensitivity to single photons is necessary if one uses a WLSF

readout. There exist two distinct detector designs for a position sensitive detector using

PMTs and a scintillation screen.

The first is the Anger-camera, which is an array of PMTs mounted a certain distance

behind the screen. The light flashes of neutron events spread out on their way to the anger

camera and are detected in several PMTs at the same time. This allows for reconstruction
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of the position by taking the mean position of the illuminated PMTs weighted by their

signal strengths. This way one can achieve a precision higher than the diameter of each

single PMT.

The other design makes use of WLSFs for position reconstruction (see Section 2.3).

Only the ends of the fibers have to be monitored, which means that the required PMT

surface is proportional to the plate’s edge length. In relation to Anger-cameras, which need

a PMT surface proportional to the scintillator’s surface, this is a cost-effective advantage in

case of large scale detectors. However, the use of WLSFs requires a very bright scintillator,

because only a small fraction of the scintillation light is carried along the fiber and reaches

the PMTs.

2.3 WLSF Detector Type

Fig. 2.1: A neutron causes the scintilla-
tor plate to emit a bright flash, the pho-
tons of which are shifted in wavelength
by the WLSFs and carried along to the

PMTs, where they are detected.

The detector of interest to this work is a posi-

tion sensitive ZnS/LiF scintillation detector for

thermal neutrons with position reconstruction via

WLSFs.

The reaction products of the neutron capture

are detected via ZnS, a scintillating material with

very high light yield. The light is captured by the

WLSFs, which guide a small fraction to PMTs,

where they are detected and converted into elec-

trical signals for subsequent digital processing.

The scintillator plate contains LiF and ZnS

grains. The LiF is enriched in 6Li, which has a

high cross section for capturing thermal neutrons,

as mentioned in Table 2.1. If the highly energetic

alpha and triton particles created in such an event

pass through ZnS, the ionization causes scintillation.

Since the scintillator plate is not homogeneous and the refraction indices of its con-

stituents highly differ (at 450 nm they are 1.4 for LiF [14] and 2.47 for ZnS [15]), the light

is scattered heavily before exiting on either side. This limits the practical thickness of the

plate, because it gets opaque to its own light.

As depicted in Figure 2.1, there are two orthogonal layers of WLSFs. They absorb

light emitted by the scintillator and reemit photons with longer wavelengths isotropically.

By total reflection some photons are carried along the fiber to the PMTs.
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One can discriminate against thermal noise in the PMTs by performing a coincidence

measurement between the two layers. The position of the neutron event can be recon-

structed by averaging over all horizontal and vertical fibers separately, and thus obtaining

the horizontal and vertical positions respectively (see Section 5.4.1).

2.4 The Scintillator Plate

Fig. 2.2:
Schematics of
a neutron hitting
a LiF grain in the
scintillator and
causing the emis-
sion of a triton and
an alpha particle.

If a neutron is captured by a 6Li nucleus in one of the LiF grains,

the nuclear reaction results in the creation of a triton (3H nucleus)

and an alpha (4He nucleus) particle with total kinetic energy of

4.78 MeV. Since there are no other reaction products, no energy is

lost to other recoil particles.

As the kinetic energy of the incident neutron (25 meV for thermal

neutrons) is insignificant compared to the released energy, the energy

imparted on each particle is always the same due to conservation of

momentum (i.e. ~pα = −~pt)

Eα
Et

=
mtp

2
α

mαp2
t

=
mt

mα

(2.4.1)

With the sum being Eα + Et = 4.78 MeV and the mass ratio

between the particles being 4:3, the energy divides as

Eα = 2.05 MeV

Et = 2.73 MeV
(2.4.2)

As charged particles, the triton and alpha lose their kinetic energy mostly due to

ionization of the surrounding material, which causes the scintillator ZnS:Ag to scintillate.

In order to increase the brightness of the scintillation flashes, a large amount of ZnS in the

scintillator is advantageous. However, this leads to a smaller amount of 6Li nuclei, and

thus to a lower neutron conversion efficiency. A compromise must be found depending on

the actual application.

With energies as in (2.4.2), the triton has a range of about 30 µm in ZnS and LiF, and

the alpha has a range of about 5 µm [16]. This means, that in order for the particles to

be able to leave their origin LiF grain and enter a ZnS grain to create scintillation light,

the grain sizes of LiF grains must be sufficiently small.

The scintillation light is emitted isotropically in all directions. Since the plate does not
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consist of a homogeneous material, but rather a matrix of microscopic grains with highly

different refraction indices (nLiF = 1.4 at 450 nm [14] and nZnS = 2.47 at 450 nm [15]), light

is heavily scattered inside it, which gives rise to the scintillator’s opaqueness. Further-

more, ZnS is not transparent to its own scintillation light, and thus may reabsorb some

scintillation photons traversing ZnS grains. These effects limit the possible maximum

thickness of the plate to about 500 µm.

2.5 Wavelength Shifting Fibers

Using a WLSF readout enables the construction of large area detectors at affordable

costs. A large area is needed for neutron diffraction measurements of samples with sizes

of several cm, because then the detector must be positioned at a certain distance to

minimize parallactical effects. In order to cover a large solid angle at such distances,

several m2 of sensitive detection area are required.

A WLSF is a conventional optical fiber containing flourescent dye. The dye parti-

cles absorb photons with short wavelengths and reemit photons with longer wavelengths

isotropically. A certain fraction of reemitted light is guided along the fiber via total

reflection at the boundary.

If such a fiber is placed along the scintillator, it will carry a light pulse whenever a

neutron event happens near it anywhere along its length. The brightness of this pulse

will be proportional to the amount of scintillation light passing through the fiber. This

amount in turn depends on the distance between fiber and the event’s position and of the

event’s brightness itself. Also, obstruction of adjacent fibers can attenuate the light flash.

Overall, the fibers closest to the event are likely to carry the most photons, such that the

position of the event can be deduced from the distribution of photons over the fibers.

2.5.1 Internal Reflection and Fiber Cladding

Fig. 2.3: A light ray
is reflected/refracted at

a medium boundary

The angle of total reflection at the boundary of the fiber de-

pends on the refractive indices of the bordering materials and

is determined by Snell’s law n1 sin(θ1) = n2 sin(θ2) (see Fig-

ure 2.3). If the sine of θ1 exceeds n2/n1, there is no valid value

for θ2 and refraction is forbidden. This means, that all light is

reflected internally. So we have

θtotal = arcsin

(
n2

n1

)
(2.5.1)
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for the minimum inbound angle in order to get total reflection. So, a photon, which is

emitted from the center of a cylinder, must have an angle of less than 90◦− θtotal with the

cylinder’s center axis to be reflected totally and thus be guided along the cylinder (see

Figure 2.4). The integral of all angles which lead to total reflection is then

Ω =

2π∫

0

dφ

π
2
−θtotal∫

0

dϑ sin(ϑ) = 2π
(

1− cos
(π

2
− θtotal

))
= 2π

(
1− n2

n1

)
(2.5.2)

Fig. 2.4: Opening angle of the light
cone, which is guided along the fiber

This is the solid angle for light guided in only

one direction. If we take into account the opposite

direction as well, the fraction of the whole solid

angle becomes
(

1− n2

n1

)
. This is the approximate

value for the fraction of light trapped within the

fiber in the wavelength shifting process. The ac-

tual value is higher, because if a photon is emitted

from an excentric position, there are additional

directions, which give rise to helical movement

through the fiber. Calculating the exact fraction

is cumbersome and does not yield an analytical result. Since it is not of great importance,

it is not discussed here.

In our case, the fiber is made out of Polystyrene (PS), with a refractive index of

n1 = 1.59. At a boundary with air (n2 ≈ 1), this would yield a total reflection angle of 42◦

and a trapping fraction of about 33 %. However, the boundary with air almost certainly

does not exist all the way to the PMT, where the photons need to arrive. The fiber will

be mounted somehow and therefore needs to be in contact with a mechanical structure.

At these contact points, much light previously trapped in the fiber might be absorbed,

refracted or otherwise scattered. Another source of light loss can be impairments of

the surface polish, may they be of permanent nature like fissures or scratches, or only

temporary like smudges of oil or dust.

Due to these unknown losses the fiber would not be well defined, which would make

a comparison between the light gain from different fibers impossible, and thus lower the

spatial resolution. To counter this, one usually uses so-called cladded fibers. These are

fibers with a PS core and an additional outer layer with a lower refractive index. The

inner optical boundary is protected by the cladding and its existence is ensured along the

whole length of the fiber.

The manufacturer Kuraray offers two types of cladding: single cladding and multi
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cladding [17]. A single cladded fiber consists of a PS core and a cladding out of Poly-

methylmethacrylate (PMMA). The multi cladding also consists of these two layers, with

an additional cladding out of Fluorinated polymer (FP), as shown in Figure 2.5. The

thickness of each cladding layer constitutes 3 % of the total fiber thickness.

Fig. 2.5: Sketch of the fiber multi-
cladding geometry. Only the innermost
PS-layer contains dye particles. A fiber
with single cladding simply lacks the

outermost layer.

From the optical point of view it is uneces-

sary to insert the PMMA layer between PS and

FP, because this intermediate layer does not in-

fluence the angle of total reflection. To see this,

let’s call the refractive indices of PS n1 = 1.59,

of PMMA n2 = 1.49 and of FP n3 = 1.42. The

total reflection angle between PMMA and FP is

θ2→3 = arcsin
(
n3

n2

)
. In order to hit at this an-

gle, a beam of light must be refracted at the

PS/PMMA boundary according to Snell’s Law:

n1 sin(θ1→2) = n2 sin(θ2→3) = n3. This gives

θ1→2 = arcsin

(
n3

n1

)
, (2.5.3)

which is independent of n2. So, the reason to include the intermediate layer may be

ease of manufacture, adhesion problems or even bending properties.

Fig. 2.6: Photons which are reflected
at the boundary between outermost
cladding and air are subject to uncon-
trollable imperfections at that bound-
ary. They are not guaranteed to reach

the PMT and are thus undesirable.

Equation (2.5.3) reveals another problem: if

the cladded fiber is placed in air, the angle of total

reflection is determined at the unprotected bound-

ary between air and outermost cladding, as shown

in Figure 2.6. To eliminate photons, which are

trapped at the air boundary, one can add an ab-

sorbing agent in the outermost cladding layer [18].

The absorbance of the outermost layer should not

be very large, because it would otherwise absorb

too much of the incident scintillation light. On

the other hand, the attenuation must be strong

enough to absorb most of the undesired photons before they reach the PMT. For a more

detailed consideration, see Section A.1. This way the fiber is guaranteed to be well defined

under any circumstances.
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2.6 Development for SAPHiR

SAPHiR is an instrument under construction at the FRM-II. With the six independently

adjustable anvils it will be able to create environments of up to 15 GPa pressure for samples

of up to 20 mm3 volume. The instrument can be operated in radiography mode, where

the neutron beam is continuous, or in TOF diffraction mode, where a chopper divides

the beam into short packages, which disperve according to differing neutron velocities. In

TOF mode the neutron wavelength ranges from 1 Å to 2.4 Å.

The anvils compressing the sample volume cover much of the solid angle and absorb

neutrons scattered towards them. Thus, only neutrons scattered forward, backward or

perpendicular to the neutron beam can be observed, as indicated in Figure 2.7. The

forward and perpendicular directions will be occupied by 3He proportional counters.

Backscattered neutrons will be detected by four WLSF detector banks developed at the

Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-2) in Jülich. The detector

requirements are 2.5 × 2.5 mm2 spatial resolution, better than 1 µs time resolution and

counting rates of a few 10 kHz. The detection efficiency is required to be larger than 50 %

for 1 Å neutrons.

To meet the requirement of efficiency, the detector consists of two 500 µm scintillation

screens from the manufacturer ELJEN Technology (ELJ) with a 2:1:1 ZnS:Ag/LiF/Binder

mass ratio. The two WLSF layers run between the scintillator plates and both ends are

bent towards the back, where they are read out by 8× 8 Hamamatsu Multi Anode Photo

Multiplier Tubes (MaPMT). ”Multi Anode” means that there is one square shaped photo

sample

~F ~F

~F~F

backscattering

backscattering

neutron beam
forward scattering

forward scattering

90◦

90◦

Figure 2.7: Schematic of possible detection directions at the SAPHiR instrument with the sample in
the center, four anvils on each side and the neutron beam incoming from the left. The top
and bottom anvils are not shown. The anvils exerting pressure on the sample cover much
of the solid angle. Thus, only neutrons scattered forward, backward or perpendicular can
be examined.



20 MODELLING A WLSF NEUTRON DETECTOR

cathode for multiple anodes and their respective dynode chains positioned in an 8×8 grid

behind it.

Fig. 2.8: Fiber guidance in the detector. On
the top there is the orthogonal WLSF array sand-
wiched by scintillator screens (not visible). The
fibers are bent backwards and merged into five bun-
dles, and a MaPMT is mounted behind each bun-
dle. Note that opposite ends of each fiber are fed

into the same MaPMT pixel.

The fibers have a thickness of 1 mm

and are placed with 1 mm gaps in be-

tween them. In one direction there are

128 fibers read out by two MaPMTs, in

the other direction there are 192 fibers

for three MaPMTs, which determines the

sensitive detector area of one detector

bank to be 256 × 384 mm2. As shown

in Figure 2.8, both ends of each fiber

are read out by the same MaPMT pixel

in order to increase the light output per

neutron event and thus the detection ef-

ficiency.

Each MaPMT is controlled and read

out by its own board, which contains a

Multi-Anode ReadOut Chip (MAROC)

for adjusting amplifier gains for different

channels independently and for discriminating the resulting signals. The individual ad-

justment of gains is necessary because of non-uniformities across pixels of the MaPMT.

The trigger data of the MAROC is collected on a concentrator board, which is connected

to all five modules and checks the data for coincidence between layers. The concentrator

board is also responsible for the synchronization between the modules, which add a time

stamp of 2 ns resolution to each photon event.

The four detector banks have already been delivered to the University of Bayreuth

and are ready for installation at SAPHiR. The ZEA-2 is now working on improving the

event reconstruction algorithm as well as an automatic system for adjusting the channel

gains of the MaPMTs.

When the detector banks will be in use, the concentrator board will perform the anal-

ysis of photon events and send information about position and time of any neutron events

to the lab computer. In contrast to this, all photon data including channel number and

timestamp was stored for offline analysis during the measurement described in Section 5.4.
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Simulation Toolkit Geant4

Geant is an acronym for ”Geometry and Tracking” and names a software library for the

simulation of particles in matter, developed and maintained by CERN [7]. It is able to

simulate a wide variety of particles, including leptons, hadrons, neutrinos, photons and

atomic nuclei. In a Geant simulation such particles are tracked in their surrounding matter

in discrete steps, during which physical processes influence the state of the particles.

Particles which are tracked by Geant do not interact with each other, but only with

the surrounding material. This means that two particle tracks are independent of each

other and can be calculated in arbitrary order. Therefore, Geant cannot fully simulate

whole experiments, but it is perfectly capable to simulate detectors.

In the simplest case, the user defines the geometry and material properties of the

setup, specifies which physical processes are to be taken into account in the simulation,

and chooses the initial particles. The initial particles are then tracked by the program

until they decay or lose enough kinetic energy to fall below a threshold. At every step

it is possible for processes to create secondary particles. However, these secondaries will

only be tracked, if their kinetic energy is above the threshold.

It is possible to declare some parts of the detector to be sensitive detectors in order

to obtain results from the simulation. They will be informed of any changes a particle

undergoes inside them, and are thus able to e.g. count the amount of energy deposited in

them.

3.1 Geant API

The version of Geant used in this thesis (Geant4) is written in C++, making use of

modern object oriented programming design. To run a Geant simulation, it is necessary

21
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to implement derivatives of the purely virtual interface classes G4VUserDetectorConstruction ,

G4VUserPhysicsList and G4VUserPrimaryGeneratorAction , in which the detector definition, the set

of applicable physical processes, and the initial particles must be defined respectively.

While implementing these three classes is mandatory, there are many purely virtual

classes, which offer rich interfaces to the simulation. Implementing and deploying these

enables access to and manipulation of nearly any aspect of the simulation, which makes

Geant a very flexible and versatile tool.

3.2 Stepping and Processes

A Geant4 program is a finite-state machine, which tracks the trajectories of particles in

discrete steps and applies physical processes to them depending on the particle’s type,

charge and energy, as well as the surrounding material’s properties.

The central part of the tracking process is the G4SteppingManager , which processes each

discrete step of each trajectory. At the beginning of each step, it queries all active phys-

ical processes, which are applicable to the particle, to propose a step distance. The

G4SteppingManager will then choose the shortest step distance proposed and in turn inform

the processes about it.

A default implementation of the stepping distance calculation, which is used by a

multitude of predefined physical processes in Geant, can be found in the G4VDiscreteProcess

class. It begins with drawing a positive, real exponentially distributed random number

ξ with expectation value one. ξ is stored in the currentInteractionLength field of the super

class G4VProcess .

During every step taken by a particle, to which a process is applicable, the process

will propose a step distance which is the product of its currentInteractionLength and its

mean free pathlength obtained by a call to the function GetMeanFreePath() . After each step

the quotient of actual step length and current mean free path is subtracted from the

currentInteractionLength . This number is used in the next iteration, instead of drawing a

new random number. This approach omits many costly drawings of random numbers,

and still handles a non-constant mean free path length correctly. This means, that user

processes only have to implement the GetMeanFreePath() method and the actual effect of the

process, if they extend this class.

There are three distinct process callbacks for three different situations and purposes.

AtRestDoIt() is called at the beginning of stepping if the kinetic energy of the particle is

below a threshold. The particle is then numerically treated as stopped and processes like

radioactive decay may delay the particle’s termination. AlongStepDoIt() is used to apply a
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”continuous” effect on the particle. For example, the influence of an electromagnetic field

on a charged particle is such a continuous process and needs to be applied all along the

trajectory. The PostStepDoIt() method is to be used for event-like effects. At each step only

the PostStepDoIt() method of the process, which proposed the smallest step length, is called.

Thus, the PostStepDoIt() method is called for every process once the currentInteractionLength

of that process reaches zero.

The communication between stepping manager and different processes is conducted

via a protected field aParticleChange defined in the interface G4VProcess . During the *DoIt()

methods, processes may store any changes to the particle in this object. There is the

possibility to change position, momentum, polarization etc. Processes may also initialize

the creation of new daughter particles, so called secondaries, via this method.

3.3 Scintillation Process

Scintillation is already part of the Geant4 toolkit, and is implemented in G4Scintillation , a

subclass of G4VRestDiscreteProcess . This means that it implements the methods AtRestDoIt()

and PostStepDoIt() and respectively GetMeanLifeTime() and GetMeanFreePath() . Both methods are

implemented equally: they check whether the surrounding material is an active scintillator

and, if that is the case, check how much energy has been deposited in the material during

the current step. Then a number of photons proportional to the deposited energy is

created, with random directions and polarizations. The wavelength of a scintillation

photon is also determined randomly, according to a distribution defined in the material

properties of the surrounding material. The proportionality constant between deposited

energy and number of photons has to be specified by the user and is not subject to any

checks of conservation of energy. That means the user is responsible for checking the

values for sanity.

In order to be a scintillator, an object’s material must have several properties set.

It is possible to define two scintillation components with different decay times and en-

ergy spectra. The decay times of the components are defined by the material properties

FASTTIMECONSTANT and SLOWTIMECONSTANT . The fraction of how many photons are created in

the fast or slow mode is given in YIELDRATIO . FASTCOMPONENT and SLOWCOMPONENT are lists of

energy-value pairs and describe the emission spectrum of the scintillation light. The use

of two different components enables the simulation of different pulse shapes for different

ionizing particles. This is of main interest in the case of pulse shape discrimination when

discriminating against e.g. gamma particles.

SCINTILLATIONYIELD is the amount of photons created per energy. After each step a num-
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ber of photons is created equal to the product of this number and the amount of energy

deposited in the material. There is also the possibility to set a multiplicative factor for

the scintillation yield via SetScintillationYieldFactor() , a method of G4Scintillation . The cre-

ated photons have random direction and random polarization, and an energy distributed

according to FASTCOMPONENT or SLOWCOMPONENT , depending on the mode in which the photon

was created.

3.4 Wavelength Shifting Process

Geant4 includes a process for wavelength shifting in the class G4OpWLS . It is a subclass of

G4VDiscreteProcess which implements the functions GetMeanFreePath() and PostStepDoIt() . Since

only optical photons should be absorbed by WLS materials, this process only applies to

particle objects of the G4OpticalPhoton class.

The mean free path depends on the photon’s energy and must be defined for every

wavelength shifting material in the material property WLSABSLENGTH . This property must be

defined as a list of energy-value pairs, where the values in this case are the absorption

lengths of photons of the given energy.

PostStepDoIt() stops and kills the optical photon for which it gets activated and creates

a secondary optical photon at the last position. The wavelength of the new photon is

determined randomly according to the distribution provided in the material property

WLSCOMPONENT . Direction and polarization are completely random. The new photon starts

at a random time after its absorbtion, distributed exponentially with mean defined in the

material property WLSTIMECONSTANT .

If the material property WLSMEANNUMBERPHOTONS is defined, the WLS-process creates not one

emitted photon per absorbed photon, but a random poisson-distributed amount. Without

this parameter exactly one shifted photon will be created, which is needed in our case. It

is noteworthy that like the scintillation process, this process does not check conservation

of energy, i.e. it is possible for the created photons to have more energy than the original

absorbed one.



Chapter 4

Description of the Model

The first computer aided simulation of a ZnS/LiF detector was reported in 1975 [3].

The model used in this simulation consists of a slab geometry, with 10 µm ZnS:Ag slabs

alternating with LiF slabs of a thickness dependend on the mass ratio. A neutron event is

simulated as triton and alpha particles starting in a random position inside a LiF slab in a

random opposite directions. The amount of energy deposited in ZnS:Ag is approximated

by the inersection of the particle’s paths with ZnS:Ag slabs. The range of the particles

needs to be determined experimentally and is used as path length.

This crude aproximation ignores the influence of the binder material as well as the

LiF grain size. Further, the deposition of energy along a charged particle’s path through

matter is not constant. Since the cross section of such a particle increases with decreasing

velocity, most of its energy is deposited at the path’s end. The simplicity of the approach

can probably be ascribed to the available computer hardware at that time.

There have been two further attempts to improve this model in recent years. Stephan

et al. used randomly placed spheres of ZnS:Ag inside a 6Li loaded glass binder as a model

for the scintillator material [4]. Parameters in their simulations include the radius of the

spheres and the volume fraction of ZnS:Ag. It is unclear whether overlap between different

spheres is allowed in their model. An alpha/triton pair is allowed to start anywhere in the

surrounding 6Li-loaded material and is tracked using a modification of the heavy charged

particle transport code SRIM.

Sadly, the data given in [4] is contradictory. In the sub-micrometer limit of grain sizes,

the average energy deposited in the ZnS grains should be proportional to the volume

fraction of ZnS. For several volume fractions an average deposited energy twice as large

as the correct value was reported. This limits the comparability with their data.

Yehuda’s approach was to simulate the propagation of alpha and triton within ZnS:Ag

25
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spheres ordered in a regular fcc lattice [5]. Ordering the grains in a fixed pattern is a

computationally inexpensive method of placing the grains. However, it is a contrast to the

random distribution in real scintillator materials. This leads to an incorrect distribution

of empty space between the grains and can distort the results.

Both approaches track the energy deposited in ZnS:Ag through ionization processes,

which is a good improvement with respect to the path intersection model. However, some

questions still cannot be answered. Both models do not regard the size of LiF grains, in

which alpha and triton particles are created. Due to the finite length, a certain amount

of energy is always deposited in the LiF, an effect which should not be disregarded since

typical LiF grain sizes are of the order of the alpha particle’s range in the scintillator. Fur-

ther, both models use spheres of identical sizes. Thus, the influence of different variances

of radii distributions cannot be examined.

An attempt at simulating a ZnS/LiF detector with WLSF readout has been reported

in [6]. There the scintillator is modelled as a homogeneous structure, where the entire

energy of the neutron capture process gets deposited. No attempt at simulating the

microscopic structure is made. The model uses a light yield of 160 000 photons per

neutron given in [19], which is the value for an optimized configuration and not readily

generalizable to any ZnS/LiF scintillator.

The WLSFs are modelled as simple cylinders without cladding. Therefore, the trap-

ping efficiency depends on the refractive index of the surrounding material. This is gen-

erally an undesired behaviour as discussed in Section 2.5.1. These oversights diminish the

usefulness of the results.

In this work, the physical front end of the detector described in Chapter 2 is modelled

including the microscopic structure for alpha and triton propagation, the creation and

propagation of photons inside scintillator plate and WLSFs, and photon detection in

PMTs. As such, it is currently the most complete model of a ZnS/LiF scintillation

detector with WLSFs to the author’s best knowledge.

The model was implemented using Geant4 (see Chapter 3). To be able to easily adapt

the model to future needs each component is defined in its own module. The different

modules are a grain box, the scintillator plate, the WLSF layers, and a photon counter.

Each module can be activated or deactivated during runtime and will then be added to

or removed from the simulation.

Many parameters of the simulation are freely adjustable. Names and default values

of these adjustable parameters used by the different modules are shown in tables 4.1,

4.2, 4.3 and 4.5. In every simulation described in this work the default values have been

kept, if not otherwise stated. Figure 4.1 shows the simulation of one neutron event in
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the final model. Visible in this image are the scintillator plate, WLSF array and paths of

scintillation (blue) and wavelength shifted (green-brown) photons.

Fig. 4.1: One event simulated in Geant with
our model. The blue lines correspond to scintilla-
tion photons, the green-brown lines are wavelength
shifted photons guided by the WLSFs. In order
for the picture to show something discernible, the

scintillation yield factor has been set to 0.05

The modelling of the microscopic

structure of the scintillator plate consti-

tutes a central part of this thesis. Since

the plate consists of two types of grains

bound together in a matrix, with grain

sizes being in the order of 10 µm, and the

scintillator plate having a volume in the

order of 10 cm3, a full description of the

scintillator plate with grains is impracti-

cal. It would require about 109 geomet-

ric entities with randomized parameters

and positions, which exceeds the compu-

tational power of a standard desktop ma-

chine.

Fortunately the microscopic structure

does not influence all aspects of the simulation. Since neutron capture is a singular event,

structure correlations on the microscopic scale are unimportant for this process. Thus,

the scintillator can be treated as a homogeneous material with a certain 6Li density for

the purpose of neutron propagation.

However, the question of how much energy is deposited in the scintillating material

ZnS:Ag cannot be answered accurately without taking the microscopic structure into

account, because alpha and triton particle deposit energy during many collisions in the

surrounding matter. The alpha particle’s range in the scintillator is about 5 µm [16],

which is of the same order of magnitude as the grain sizes. Therefore, in order to study

the energy deposition in ZnS:Ag, the propagation of alpha and triton through the grain

structure is simulated by the grain box module described in Section 4.1.

As described in 2.4, the propagation of photons in the scintillator is also influenced by

the microscopic structure. The light is heavily scattered while propagating through the

material and the amount of scattering depends on microscopic parameters. Section 4.2

describes two different models for propagation of photons inside the scintillator plate.
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variable name symbol default value description

/var/global/partLiF φLiF 1 Mass fraction of LiF
/var/global/partZnS φZnS 2 Mass fraction of ZnS:Ag
/var/global/partBinder φbinder 1 Mass fraction of binder material
/var/global/grainSizeLiF sLiF 2.5 µm Grain size of LiF grain at origin
/var/global/grainSizeZnS sZnS 7.5 µm Grain size of ZnS grains
/var/global/sizeDeviationLiF σ∗LiF 0.4 Relative deviation of LiF grain size
/var/global/sizeDeviationZnS σ∗ZnS 0.4 Relative deviation of ZnS grain size
/var/global/binderDensity ρbinder 1 g cm−3 Density of the binder material
/var/grainbox/grainBoxLength lbox 100 µm Length of the module volume
/var/grainbox/grainBoxWidth wbox 40 µm Width of the module volume

Table 4.1: Parameters used by the grain module with their respective default values.

4.1 Grain Box for Alpha and Triton Particle

Fig. 4.2: Exemplified placement of ZnS
spheres in the grain box module. The
radii and placements of spheres are ran-
dom, but without overlap. The dimen-
sions of this box are 40× 40× 100 µm3.

The grain box module simulates the propagation

of alpha and triton particle within the microscopic

structure of the scintillator in order to determine

the amount of energy deposited in ZnS grains. At

the beginning of each event the grainbox is popu-

lated randomly with microscopic grains as shown

in Figure 4.2. Also, an alpha and a triton particle

with opposite directions of momenta and kinetic

energies as in (2.4.2) are created at the center of

the box. In order not to influence any other part

of the simulation, the grain box is placed outside

of the scintillator plate and influences the rest of

the simulation only by adjusting the scintillation

yield of G4Scintillation . Alpha and triton particles are created during every event, regard-

less of whether the neutron is captured or not. In fact, they are always tracked before

the neutron, so that the scintillation yield is already determined when the neutron is

captured. This means that the module can be used as a stand-alone model for examining

the energy deposition in ZnS grains.

The grains are modelled as spheres of varying radii, scattered throughout the box.

Although real grains are unlikely to be exactly spherical, they usually attain shapes similar

to convex polyhedra during the grinding process, as electron microscopic images show.

So, spheres are a good first order approximation.



CHAPTER 4. DESCRIPTION OF THE MODEL 29

Initial tests revealed that including placement of LiF grains explicitly in the simulation

is very costly with respect to memory requirements and simulation time. This is due to

their much smaller grain size (commonly about 2 µm to 3 µm) so that there are an order

of magnitude more LiF grains than ZnS grains. Since the distinction between energy

deposited in LiF grains and energy deposited in the binder material is unimportant to

the simulation, it is possible to incorporate lithium and fluor in the binder. However,

care must be taken that the alpha and triton particles do not start inside a ZnS grain.

To ensure this, there is a region placed such that it contains the origin, with a radius

corresponding to the LiF grain size, and in which no ZnS grain can be placed.

In each event in which the grain box module is enabled, the alpha and the triton

particles are tracked first. This way the energy deposited in ZnS grains can be deter-

mined before the neutron is captured and deposits 4.78 MeV in the scintillator plate. The

yield factor of G4Scintillation is changed via SetScintillationYieldFactor() to the amount of

deposited energy divided by 4.78 MeV. There are no photons created directly in the ZnS

grains of this module, because the grain box is placed outside the scintillator plate.

The volume needs to be long enough for the triton particle not to escape. The large

number of collisions on the triton’s path lead to a very small fluctuation in the path

length. So, fortunately almost all tritons have a range very close to 30 µm. Further, the

volume’s lateral dimensions should be large enough to contain even the largest grains.

With a default ZnS grain size of 7.5 µm, a box with dimensions 100 µm×40 µm×40 µm is

sufficient for this. In case of simulations with smaller or larger grain sizes, it is possible to

adjust the parameters via variables /var/grainbox/grainBoxWidth and /var/grainbox/grainBoxLength .

4.1.1 Radii of the Grains

The influence of grain size and volume ratio of ZnS has been examined in [4]. Unlike

in their model, where the radii of all spheres are equal, our model allows for a certain

variability in grain sizes, in order to examine the influence of the variance of radii on

energy deposition. To determine radii for the single grains, it is necessary to choose a

probability density function pr(r) with mean 〈r〉 and variance ∆r2 := 〈r2〉−〈r〉2 according

to grain size sZnS and relative deviation σ∗ZnS:

〈r〉=
sZnS

2
, ∆r =

σ∗ZnS · sZnS

2
. (4.1.1)
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An obvious choice might be a normal distribution

pnr (r)dr =
1

σ
√

2π
· e−

(x−µ)2
2σ2 (4.1.2)

with µ = sZnS/2 and σ = σ∗ZnS · sZnS/2. However, for large relative deviations σ∗ZnS,

the probability for generating negative radii from this distribution cannot be neglected.

The distribution would have to be cut off at r = 0, which would change the mean and

the variance to analytically unobtainable values. Therefore it would be difficult to find

parameters µ and σ such that mean and variance match the target.

Instead of cutting the probability density off, it is possible to replace it with the

probability density function of a gamma distribution. This function is zero for r < 0 and

thus negative radii are avoided, and for 〈r〉� ∆r, the gamma distribution is close to the

normal distribution [20].
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Fig. 4.3: Shifted gamma distribution for two
sets of parameters. For this plot a shift of 0.1 mm

was used.

Due to a limitation in Geant, which

prohibits the creation of spheres with radii

smaller than 10 nm, the gamma distribu-

tion must be shifted by r0 = 10 nm:

pr(r)dr = Θ(r − r0)
(r − r0)k−1

Γ(k)ϑk
· e− r−r0ϑ dr

with Θ(r) =

{
1, r > 0

0, else

and Γ(k) =

∞∫

0

dt tk−1e−t

(4.1.3)

The form of pr(r) is shown in Figure 4.3 for different parameters. The values of k and

ϑ must be chosen such that (4.1.1) is fulfilled. To achieve this, it is necessary to calculate

the first two momenta of our shifted distribution:

〈rn〉=

∞∫

r0

dr pr(r) r
n =

∞∫

0

dt ϑ
(tϑ)k−1e−t

Γ(k)ϑk
(tϑ+ r0)n

=
n∑

m=0

(
n

m

)
ϑmrn−m0

Γ(k)

∞∫

0

dt tm+k−1e−t

︸ ︷︷ ︸
Γ(m+k)

=
n∑

m=0

(
n

m

)
ϑmrn−m0

m−1∏

l=0

(k + l)
(4.1.4)
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In the last step we made use of the fact, that Γ(k + 1) = kΓ(k). With this general

formula we obtain expressions for 〈r〉 and ∆r:

〈r〉= r0 + ϑk

∆r =

√
〈r2〉− 〈r〉2 =

√
k · ϑ

(4.1.5)

Inverting this system of equations yields the necessary values for k and ϑ:

k =

(〈r〉− r0

∆r

)2

=

(
sZnS − 2r0

σ∗ZnS · sZnS

)2

ϑ =
∆r2

〈r〉− r0

=
(σ∗ZnS · sZnS)2

2(sZnS − 2r0)

(4.1.6)

With these parameters (4.1.3) is completely determined. How gamma distributed

random numbers are generated is extensively discussed in [20]. In our simulation we use

the RandGamma class of the CLHEP library, which is part of Geant. The shift is realized by

addition of r0 to every generated random number.

The number of spheres depends on the overall volume of ZnS:Ag divided by the spheres’

mean volume. The volume of ZnS:Ag depends on mass ratios φX and material densities

ρX and can be calculated from (A.2.3). The expectation value of a spherical volume with

random radius distributed as in (4.1.3) can be calculated using (4.1.4)

〈Vsphere〉=
4

3
π
〈
r3
〉

=
4

3
π
(
r3

0 + 3kϑr2
0 + 3k(k + 1)ϑ2r0 + k(k + 1)(k + 2)ϑ3

)

=
4

3
π
(sZnS

2

)2
(

1 + 3σ∗ZnS
2 +

2σ∗ZnS
4

1− 2r0
sZnS

)
.

(4.1.7)

4.1.2 Placement of the Grains

After determining the number of spheres and their radii, it is necessary to place them in

the grain box volume without overlap. Prohibiting overlaps in the placement of grains

is important in order to maintain the volume fraction. An overlap between two ZnS

spheres would reduce the total volume of ZnS:Ag in the material, and in turn could

distort the amount of energy deposited in it. The process of manufacturing scintillator

screens involves mixing the grains very thoroughly in prolonged motion before adding the

binder material and hardening it. Therefore it stands to reason that the grain placement

is close to the distribution of fluid particles in thermal equilibrium.

One possibility to find positions for the grains would be to add them sequentially and
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randomly place each sphere at a possible position, such that it does not overlap with

any other already placed sphere. However, according to [21] the distribution of distances

between neighbouring spheres resulting from this method fundamentally differs from the

one present in a fluid of spheres in thermal equilibrium.

Fig. 4.4: Schematic of how far apart
two spheres need to be moved in order

to remove an overlap

In order to better approximate such a kind of

placement, another method is employed as out-

lined in Algorithm 1. All spheres are placed com-

pletely randomly in the volume without regard for

overlaps in line 4. After that, spheres which over-

lap are moved apart. This may result in new over-

laps, so this step of removing overlap has to be

repeated iteratively in the loop in line 6 until a

configuration without overlap is reached. In or-

der to prevent infinite loops one needs to define

a maximum number of iterations, after which the

algorithm terminates. In this case a warning is

printed to inform the user of possible inaccuracies

in the simulation.

Figure 4.4 shows two overlapping spheres at positions ~x1 and ~x2 which have to be

moved apart to remove the overlap. If the new positions are ~y1/2, the displacement

vectors are ~v1/2 = ~y1/2 − ~x1/2. After displacement, the distance of the spheres should be

greater than the sum of their radii. So the minimal requirement is

|~y2 − ~y1| ≥ r1 + r2 := R. (4.1.8)

We attribute a mass m1/2 to each of the spheres and require that the center of mass

does not change due to the displacement:

m1~y1 +m2~y2 = m1~x1 +m2~x2

⇒ m1~v1 = −m2~v2

(4.1.9)

This way it is possible to have large spheres move less than small spheres, which

minimizes the risk of creating new overlaps due to the displacement. A suitable mass

value is proportional to a sphere’s volume, with one exception. The LiF-sphere at the

origin should stay in place, so it gets an arbitrarily huge mass of m0 = 1× 10127. From

(4.1.9) follows, that the displacement vector must be proportional to the mass of the other

sphere. Due to the symmetry of the problem, we choose the displacement vectors to be
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Algorithm 1 Placement of spheres

Require: kmax: maximum number of iterations
Require: ~b = (bx, by, bz)

T : size of the grain box
Require: N, r1, . . . , rN : number of spheres and radius of each one
Require: m0, r0: mass and radius of void region

1: ~x0 ← 1
2
~b+ random vector with length smaller than r0

2: for all i in {1, . . . , N} do
3: mi ← r3

i

4: ~xi ← random position in grain box

5: k ← 0
6: repeat
7: k ← k + 1
8: nov ← 0 . number of overlaps
9: for all i in {0, . . . N} do

10: ~vi ← ~0

11: for all pairs i < j in {0, . . . , N} × {0, . . . , N} do

12: ~xm ← CLOSEST MIRROR(~xi, ~xj,~b) . algorithm 2
13: d← |~xi − ~xm|
14: R← ri + rj
15: if d < R then
16: nov ← nov + 1

17: ~vi ← ~vi +
R− d
d

mj

mi +mj

(~xi − ~xm) . see (4.1.11)

18: ~vj ← ~vj +
R− d
d

mi

mi +mj

(~xm − ~xi) . see (4.1.11)

19: for all i in {0, · · · , N} do
20: ξ ← random number between 1.1 and 1.3
21: ~xi ← MODULUS(~xi + ξ~vi,~b) . algorithm 3

22: until nov = 0 or k > kmax

23: if nov > 0 then
24: print a warning!

parallel to the connection vector ~v1/2 = λ ·m2/1(~x1/2 − ~x2/1). Plugging this into (4.1.8)

we obtain the proportionality factor λ:

R ≤ |~x2 + ~v2 − ~x1 − ~v1| = |~x2 − ~x1 + λ(m1 +m2)(~x2 − ~x1)|
= |1 + λ(m1 +m2)| · |~x2 − ~x1|︸ ︷︷ ︸

−:d

⇒ λ ≥ R− d
d(m1 +m2)

∨ λ ≤ − R + d

d(m1 +m2)

(4.1.10)

We obtain two solutions for λ and choose the one which does not move the spheres
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through each other, so that the minimal displacement vectors used in lines 17 and 18 are

~v1/2 =
R− d
d

m2/1

m1 +m2

(~x1/2 − ~x2/1) (4.1.11)

This is the displacement necessary for the spheres to exactly touch each other after

the displacement. Due to numerical inaccuracies, such a displacement could result in a

state, where the numerical distance d is smaller than the required distance R, but the

resulting displacement vectors are too small for the floating point precision to change the

position vectors at all. This is why each displacement vector is multiplied with a random

number between 1.1 and 1.3 in line 21

For a performance boost, it is advisable to implement an octree structure, which omits

distance checks between spheres which are far apart from each other. This is especially

advantageous when the grain size sZnS is very small and there are many spheres to place.

Care must be taken for periodic boundary conditions described below to be implemented

correctly in the octree structure.

At each iteration of the placement algorithm, all overlapping pairs of spheres are

examined and the displacement vectors are summed up. Then the displacement of all

spheres is done simultaneously, and the next iteration is started.

When moving a sphere, it may happen that the new position lies outside the grain

box. To prevent this, periodic boundary conditions are enforced. This not only means

that movement of a sphere beyond a boundary results in a movement to the other side of

the box as in Algorithm 3. When a sphere is placed closer to a boundary than its radius,

such that it sticks out of the boundary, it should ”feel” the overlap with spheres on the

other side of the grain box. To facilitate this, Algorithm 1 does not simply calculate the

distance between two sphere positions, but rather the distance between closest mirrors,

which is calculated by Algorithm 2. This function generates all possible mirror positions

of one of two spheres with respect to the grain box boundaries and returns the one which

is closest to the unmirrored sphere.

Algorithm 2 Calculate which mirror point of ~x2 is closest to ~x1

1: function CLOSEST MIRROR(~x1, ~x2,~b)
2: mirrors← list containing the tuple {|~x1 − ~x2|, ~x2} as single element
3: for all (sx, sy, sz) in {−1, 1} × {−1, 1} × {−1, 1} do
4: ~xm ← ~x2 + (sx · bx, sy · by, sz · bz)T
5: add {| ~x1 − ~xm|, ~xm} to mirrors

6: {d, ~xm} ← distance-vector tuple from mirrors with smallest d
7: return ~xm
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Algorithm 3 Calculate modulus of vector ~x w.r.t. the bounding box ~b

1: function MODULUS(~x,~b)
2: x1, x2, x3 ← components of ~x
3: b1, b2, b3 ← components of ~b
4: for all i in {1, 2, 3} do
5: while xi < 0 do
6: xi ← xi + bi
7: while xi > bi do
8: xi ← xi − bi
9: return (x1, x2, x3)T

copy

Fig. 4.5: A sphere close to a box
boundary is copied to the opposite
side and the copy is checked for
overlaps as well. The darker area
represents the active volume inside
the grain box, the lighter area is not

part of the simulation.

After determining the positions, the spheres are

added to the grain box volume. Each sphere close to

a boundary is copied to the opposite side of the grain

box as shown in Figure 4.5.

The periodic boundary conditions together with

the prohibition of overlap ensure that the full volume

of every ZnS sphere lies inside the grain box at each

run. Thus, the volume ratios are not distorted by

geometric effects and only vary due to the grain radii

being randomly distributed.

4.2 Scintillator Plate

The scintillator plate is modelled as a rectangular

plate with adjustable width, height and thickness. Its material is a homogeneous mixture

with the same constituents as the grain box: ZnS:Ag, LiF and the binder material with

their respective mass ratios. The probability for the capture of an incoming neutron de-

pends on the kinetic energy and the density of 6Li nuclei in the scintillator plate. The

energy dependence can be found in [9] (see Figure 4.6) and is included in the Geant’s

inelastic neutron scattering database G4NDL4.2 . The ∝ E−1/2 dependence can be explained

by the fact that neutrons with smaller energy are slower and therefore stay in the vicinity

of a 6Li nucleus for a longer period of time. Thus, the overlap of wave functions of neutron

and nucleus integrated over time is larger, which leads to an increasing probability of the

neutron tunneling into the nucleus. The time spend close to a nucleus is directly propor-

tional to the inverse of the neutron’s velocity, and for non-relativistic neutrons v ∝
√
E



variable name symbol default value description

/var/scint/thickness d 0.4 mm Thickness of scintillator plate
/var/global/width w 5 cm Width of scintillator plate
/var/global/height h 5 cm Height of scintillator plate
/var/global/scintYield – 1 Scintillation yield factor
/var/scint/aluminiumMount – false Whether to use an alu-

minium plate behind scintil-
lator

/var/scint/doubleScint – false Whether to place a second
scintillator behind WLSF
screen

/var/global/gapLength g 2 mm Gap between both scintilla-
tors

/var/global/partLiF φLiF 1 Mass fraction of LiF
/var/global/partZnS φZnS 2 Mass fraction of ZnS:Ag
/var/global/partBinder φbinder 1 Mass fraction of binder ma-

terial
/var/global/grainSizeLiF sLiF 2.5 µm Grain size of LiF grains
/var/global/grainSizeZnS sZnS 7.5 µm Grain size of ZnS grains
/var/global/binderDensity ρbinder 1 g cm−3 Density of the binder mate-

rial
/var/scint/binderAbsorptionLength λbinder/λl 0.4 mm Optical attenuation length of

binder or effective attenua-
tion length

/var/scint/binderRindex nbinder 1.41 Refractive index of binder
material

/var/scint/surfacePolish – 0.1 Value for smoothness of the
scintillator’s surface

/var/scint/scintYieldZnS C 250 keV−1 Absolute scintillation effi-
ciency of ZnS:Ag

/var/scint/fastTimeScint τf 60 ns Decay time for fast scintilla-
tion mode

/var/scint/slowTimeScint τs 1 µs Decay time for slow scintilla-
tion mode

/var/scint/yieldRatio – 0.5 Ratio of photons in fast de-
cay mode

/var/scint/primaryParticleType – 0 0 = neutrons, 1 = photons
/var/scint/numberPrimaryParticles Nprimary 1 Number of particles per

event
/var/scint/neutronEnergy Ekin 25 meV Neutron’s kinetic energy
/var/scint/photonWavelength λp 402 nm Initial photon’s wavelength
/var/scint/photonInteractionType – 1 0 = random walk, 1 = effec-

tive absorption length

Table 4.2: Parameters used by the scintillator plate module with their respective default values.
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Fig. 4.6: Cross section σ for a neutron capture
of a 6Li nucleus depending on the neutron’s ki-

netic energy. Source: [9]
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Fig. 4.7: Emission spectrum of ZnS:Ag depen-
dent on the photon wavelength.

leads to the observed behaviour. The irregularities which occur for energies above 10 keV

are resonance peaks, where the neutron energy equals an excitation energy of the nucleus.

When Geant determines that a neutron is captured by a 6Li nucleus, the track is killed

immediately, and in its stead an alpha and a triton are created as secondary particles.

These particles traverse the scintillator plate and deposit energy along their paths. The

ionization processes responsible for this are already implemented in Geant.

The whole plate is defined as a scintillator by specifying the necessary material prop-

erties described in Section 3.3. Both FASTCOMPONENT and SLOWCOMPONENT are set to the same

spectrum, which is shown in Figure 4.7. The constant properties are freely adjustable to

potentially enable adjustments to the decay time or scintillation efficiency of the scintil-

lator without need to recompile.

Because the whole plate is a scintillator, the total kinetic energy of 4.78 MeV con-

tributes to the creation of scintillation photons. In order to simulate the effect, that not

all energy is deposited in ZnS grains, the grain box module (see Section 4.1) adjusts the

scintillation yield to a value proportional to the energy deposited in ZnS grains of the

grain box. This way the amount of photons created depends on the energy deposited in

ZnS grains and varies statistically for each event. It also means that a simulation which

includes the creation of scintillation photons needs to have the grain box module enabled

in order to obtain correct results.
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4.2.1 Effective Optical Attenuation Length

The microscopic structure of the scintillator cannot be simulated across the whole scin-

tillator plate, because generating and randomly positioning ZnS and LiF grains would

require too much time and memory space. Therefore, the propagation of photons inside

the scintillator plate must be treated in a special way.

The easiest method is to define the material of the scintillator plate as an optically

homogeneous material with a certain effective photon attenuation length λl. This method

has the advantage of being very fast, because every photon will have only one tracking

step to be calculated inside the plate. Either the photon is absorbed inside the plate or it

reaches the surface. This method has the disadvantage, that microscopic parameters can-

not influence the simulation directly. In the best case, there is a well defined dependence

between parameters like mass ratio, grain sizes etc. and the effective attenuation length.

In the worst case, however, the effective attenuation length has to be measured for each

configuration, which would mean that the simulation cannot be extended to arbitrary pa-

rameters without a measurement of the optical parameters of a real sample. This would

limit the applicability of the model. To examine the dependence of the effective attenua-

tion length on microscopic parameters, measurements of the former have been conducted

for several scintillator samples (see Section 5.2).

4.2.2 Random Walk Pseudo Process

Another possibility is to define a custom process, which emulates reflection and refraction

at virtual material boundaries with random orientations. The boundaries are virtual in the

sense that they are not part of the detector geometry and only arise in the context of the

random walk process. Such a process can take into account microscopic parameters like

grain sizes and mass ratio and does not depend on an external macroscopic parameter.

The disadvantage of employing such a process is a long runtime because each photon

undergoes many hits and changes of direction inside the scintillator plate, which means

that many tracking steps are required for each scintillation photon.

The process needs to implement the function GetMeanFreePath() , which calculates the

path length a photon travels on average before hitting a boundary, and PostStepDoIt() ,

which is called whenever a photon ”hits” a boundary.
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Calculation of the Deflection Angle

Keeping spheres as model grains, the angle under which a photon hits a grain surface can

be derived from geometrical considerations. As shown in Figure 4.8, the excentricity of

the photon equals the cosine of the angle between photon ray and surface normal. Since

the photon’s position is equally distributed over the projection circle (grey in the figure),

the probability for the photon to hit at a certain excentricity r is proportional to the

circumference of a circle with radius r. So, including a normalization factor, the cosine of

the incident angle of the photon is distributed according to the distribution function

pcos(θ) = 2 cos(θ), for 0 ≤ cos(θ) ≤ 1. (4.2.1)

θ does not fully determine the surface normal. One also needs to fix the lateral angle

φ randomly. As our model grains are spheres and thus radially symmetric, each possible

value for φ between 0 and 2π is equally probable.

As shown in Figure 4.9, a photon changes its direction by the angle θrefl or θrefr depend-

ing on the incident angle θ1 and on whether it is reflected or refracted. If it is reflected,

the excident angle equals the incident angle and the deflection angle is

θrefl = π − 2θ1. (4.2.2)

Fig. 4.8: Schematic of a photon hitting a sphere.
The excentricity of the ray is the cosine of the hit
angle θ. Since the ray can hit the projection of
the sphere anywhere with equal probability, the

cosine is distributed linearly.

Fig. 4.9: An incident photon will change its di-
rection by the angle of either θrefl or θrefr depend-

ing on whether it is reflected or refracted.
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If a photon is refracted, the angle of refraction is given by Snell’s law: sin(θ2) =
n1

n2
sin(θ1). With this, the deflection angle is

θrefr = θ1 − θ2 = θ1 − arcsin

(
n1

n2

sin(θ1)

)
. (4.2.3)

Given the lateral angle φ and the deflection angle θ∆ := θrefl/refr the photon’s new

direction vector in Carthesian coordinates where the z-axis coincides with the initial

direction of the photon is

~n(θ∆, φ) =




sin(θ∆) · cos(φ)

sin(θ∆) · sin(φ)

cos(θ∆)


 . (4.2.4)

The new global direction vector is then obtained by multiplying it with a rotation

matrix which maps the z-axis to the initial global direction, as defined by (A.3.6).

Only the sine and cosine of θ∆ and φ are needed, so it is more efficient to determine

those values directly instead of invoking the trigonometrical functions. For φ this can be

achieved by repeatedly drawing two uniformly distributed random numbers x and y from

the interval [−1, 1] until a pair is drawn which fulfils x2 + y2 ≤ 1. For such a pair one can

assign cosφ = x√
x2+y2

and sinφ = y√
x2+y2

.

The sine and cosine of θ∆ are different for reflected and refracted photons. In case of

a reflected photon as in (4.2.2) the cosine is

cos(θ∆) = cos (π − 2θ1) = − cos(2θ1) = sin2(θ1)− cos2(θ1) = 1− 2 cos2(θ1). (4.2.5)

In case of refraction we get from (4.2.3)

cos(θ∆) = cos

(
θ1 − arcsin

(
n1

n2

sin(θ1)

))
= cos(θ1)

√
1−

(
n1

n2

sin(θ1)

)2

+
n1

n2

sin2(θ1),

(4.2.6)

where the sin2(θ1) can be replaced by 1− cos2(θ1), so that it is sufficient to determine

the cosine of the incident angle, as per (4.2.1). For that, one needs to generate random

numbers which follow the given distribution.

There are many available algorithms for creating uniformally distributed random num-

bers between 0 and 1. Applying a function f : [0, 1] → R to random numbers generated

in this way, one creates random numbers with a different distribution. The cumulative

distribution function is then
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Pf (f(x) ≤ η) =

∫

f(x)≤η

dx 1 (4.2.7)

If we assume f to be continuous and monotonically increasing, we can invert it and

write integral boundaries if f(0) ≤ η ≤ f(1):

Pf (f(x) ≤ η) =

f−1(η)∫

0

dx 1 = f−1(η) (4.2.8)

The distribution function is then the derivative of this function with respect to η:

pf (η) =
d

dη
f−1(η) (4.2.9)

So, in order to generate random numbers following the distribution function (4.2.1),

where η corresponds to cos(θ), we need a function f(x) such that

d

dη
f−1(η) = 2η ⇒ f−1(η)︸ ︷︷ ︸

x

= η2 ⇒ f(x) =
√
x. (4.2.10)

Therefore, cos θ1 can be obtained by taking the square root of an uniformally dis-

tributed random number between 0 and 1.

Fig. 4.10: The s-polarized and p-
polarized planes for a photon hitting a

planary medium boundary.

Whether a photon hitting the medium bound-

ary with change of refractive index from n1 to n2

will be reflected or refracted is governed by Fres-

nel’s law [22]. The probabilities depend on the po-

larization of the photon with respect to the plane

spanned by the boundary’s normal vector and the

propagation vector of the photon (see Figure 4.10).

For s-polarized (perpendicular) photons, the prob-

ability for reflection is

psrefl(θ1) =




n1

n2
cos(θ1)−

√
1−

(
n1

n2
sin(θ1)

)2

n1

n2
cos(θ1) +

√
1−

(
n1

n2
sin(θ1)

)2




2

, (4.2.11)
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Algorithm 4 Determine change of direction

1: function PostStepDoIt(track, step)
2: m← current material of track
3: if m equals binder material then
4: m∗ ← random material, weights according to WX defined in (4.2.15)
5: else
6: m∗ ← binder material
7: E ← current kinetic energy of track
8: n1, n2 ← refractive index of m and m∗ for energy E
9: χ← uniformly distributed random number in [0, 1]

10: cos, sin← √χ,√1− χ . cos(θ1), sin(θ1) according to (4.2.10)
11: χ← uniformly distributed random number in [0, 1]
12: if χ < 1

2
(psrefl + pprefl) then . reflection, see (4.2.11) and (4.2.12)

13: cosd← 1− 2cos2 . cos(θ∆) according to (4.2.5)
14: else . refraction

15: cosd← cos

√
1−

(
n1

n2
sin
)2

+ n1

n2
sin2 . cos(θ∆) according to (4.2.6)

16: sind←
√

1− cosd2

17: repeat
18: x, y ← uniformly distributed random numbers in [−1, 1]
19: until x2 + y2 < 1
20: r ←

√
x2 + y2

21: sinp, cosp← x/r, y/r . sin(φ) and cos(φ)
22: ~p← (sind · cosp, sind · sinp, cosd)T

23: (e1, e2, e3)← current photon direction

24: A← 1√
1− e2

3




e2 e1n3 e1

√
1− e2

3

−e1 e2n3 e2

√
1− e2

3

0 −(1− e2
3) e3

√
1− e2

3


 . according to (A.3.6)

25: return A · ~p . new direction in global coordinates

for p-polarized (perpendicular) photons it is

pprefl(θ1) =




cos(θ1)− n1

n2

√
1−

(
n1

n2
sin(θ1)

)2

cos(θ1) + n1

n2

√
1−

(
n1

n2
sin(θ1)

)2




2

. (4.2.12)

Unpolarized light contains s-polarized and p-polarized photons in equal parts and is

reflected with the combined probability 1
2

(psrefl + pprefl). In the case of scintillation light the

photons are created with random polarization, which means that this is the appropriate

probability of reflection.

A summary is given by Algorithm 4. The algorithm starts with determining the cosine



CHAPTER 4. DESCRIPTION OF THE MODEL 43

of the lateral angle in line 10. Then an equally distributed random number between 0 and

1 is drawn and compared with 1
2
(psrefl + pprefl) in order to determine whether the photon

is reflected or refracted. Depending on that, the cosine of the correct deflection angle is

calculated according to (4.2.5) or (4.2.6) whereupon it is possible to calculate the new

photon direction in line 22, which is subsequently rotated to global coordinates.

One should note that the expression

√
1−

(
n1

n2
sin(θ1)

)2
is needed in (4.2.6) as well as

in (4.2.11) and (4.2.12), so that it is advantageous to calculate it only once and store it

for subsequent use.

Mean Free Path

Fig. 4.11: Simple
model of a material
slice of a grained

material

The mean free path of a photon before it hits a grain boundary can

be calculated as the inverse stopping probability in an infinitesimal

slice of material. Consider a slice shown in Figure 4.11 with frontal

area L2 and thickness ∆x. The number of grains of type X contained

in this slice is

NX =
VX
〈vX〉

=
(A.2.3)

L2∆x

〈vX〉
·

φX
ρX∑ φY
ρY

, (4.2.13)

where vX is the volume of a single grain and X can be either ZnS

or LiF. The cross section σX of a grain is the geometrical expectation

value of the projected surface of one grain, i.e. σX = 〈aX〉.With these

values it is possible to calculate the probability that a photon passing

through the slice L2∆x interacts with a grain of type X:

P (interaction with X) =
σXNX

L2
=
〈aX〉
〈vX〉

·
φX
ρX∑ φY
ρY

∆x = WX ·∆x, (4.2.14)

where in the last step we defined the interaction weight WX of the material X. This

approximation is only valid for small ∆x (because of obstruction effects), and in this limit

the interaction probablilities of ZnS and LiF can be added together:

P (∆x) := P (interaction in L2∆x) = ∆x

∑

ZnS,LiF

WX =
∆x

l
, (4.2.15)

where in the last step we defined l, which later turns out to be the mean free path



44 MODELLING A WLSF NEUTRON DETECTOR

length

l :=

( ∑

ZnS,LiF

WX

)−1

. (4.2.16)

To obtain the attenuation law dependent on the path length x, we divide the path

into N slices of thickness ∆x = x/N and calculate the probability of the photon not

interacting in the first N − 1 slices and then interacting in the last slice:

P (x,N) =
(

1− P
( x
N

))N−1

· P
( x
N

)
. (4.2.17)

In the limit N → ∞ the probability density P (x,N)/∆x becomes the exponential

function

p(x) := lim
N→∞

P (x,N)

∆x

= lim
N→∞

1

l

(
1− x

Nl

)N−1

=
e−

x
l

l
(4.2.18)

and it follows that l is the mean free path of a photon.

The quotient of mean cross section and mean volume depends on the geometry of

the grain type. For instance, spherical grains with fixed grain radius of RX = sX
2

yield
〈aX〉
〈vX〉 = 3

4RX
. Spheres with a normally distributed radius RX ±∆RX yield

〈aX〉
〈vX〉

=
π〈r2〉
4
3
π〈r3〉 =

R2
X + ∆R2

X
4
3

(R3
X + 3RX∆R2

X)
=

3

4RX

·
1 +

(
∆RX
RX

)2

1 + 3
(

∆RX
RX

)2 . (4.2.19)

Similarly, a Gamma distribution of radii leads to

〈aX〉
〈vX〉

=
3

4RX

·
1 +

(
∆RX
RX

)2

1 + 3
(

∆RX
RX

)2

+ 2
(

∆RX
RX

)4 =
3

4RX

· 1

1 + 2
(

∆RX
RX

)2 . (4.2.20)

The extra factors for the case with varying radii are plotted in Figure 4.12. For finite

variance the factor is smaller than one, which means that the mean free path length is

larger than in the case with fixed grain radii. This would also translate to an increased

effective attenuation length due to less scattering.

Finally, a shifted gamma distribution as defined in (4.1.3) yields
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Fig. 4.12: Plot of the
extra factors of (4.2.19)
and (4.2.20) with respect to

the case with fixed radii.

〈aX〉
〈vX〉

=
3

4RX

·
1 +

(
∆RX
RX

)2

1 + 3
(

∆RX
RX

)2

+ 2
(

∆RX
RX

)4 (
1− r0

RX

)−1

(4.2.21)

However, for values r0/RX ∼ 10−3 as in our case, this

function is indistinguishable from the result of a simple

gamma function. In our simulations we therefore use (4.2.20)

for calculating the mean free path length for optical photons

in the scintillator plate.

As a photon encounters a virtual grain boundary it is nec-

essary to determine the grain type in order to obtain the refractive index at the boundary.

The probability to hit a certain grain is distributed according to the weigths WX intro-

duced in (4.2.14). In the simulation a uniformally distributed random number is drawn

from the interval [0,WZnS +WLiF] whenever a photon hits a virtual boundary. If this num-

ber is below WZnS, the process assumes that a ZnS grain was hit, a LiF grain otherwise.

r

x

ρ

Fig. 4.13: The path travelled
through a sphere of radius r at ex-
centricity ρ. In this consideration

we have x = 2
√
r2 − ρ2.

If the photon is refracted, the random walk process

considers the photon to enter the grain. This changes

optical properties like refractive index and optical atten-

uation length, but also the mean free path of the ran-

dom walk process itself, because the path length then

depends on the grain size only and not on the grain den-

sity. The average section length of a line intersecting a

sphere of radius r at random excentricity is

lr =
1

πr2

r∫

0

dρ

2π∫

0

dφ ρ · 2
√
r2 − ρ2 =

4

3
r, (4.2.22)

where ρ is the excentricity as shown in Figure 4.13.

Therefore, 2
3
sX is adopted as the new mean free path of the random walk process.

If a virtual boundary is encountered while the photon is inside a virtual grain, the

medium beyond the boundary is always considered to be the binder material. If the

photon is refracted, it enters the binder material again, if it is reflected, it stays inside

the grain. This way, the attenuation lengths of different materials excert an influence

proportional to the distances the photons travel inside them.

Due to the composite structure of the scintillation material, the surface of the scin-
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tillator plate is not smooth, but rough. Since Geant treats boundary surfaces as smooth

and polished per default, it is necessary to define its roughness. That way, whenever

an optical photon hits the scintillator surface, the normal vector used for reflection or

refraction will be randomly altered.

4.2.3 Mie-Scattering

The scattering of light at perfect spheres has already been solved analytically in 1908 by

Gustav Mie [23]. The solution was approximated for spheres of radius similar to the light’s

wavelength by Henyey and Greenstein in 1941 [24]. This approximation is implemented

in the Geant process G4OpMieHG , and is readily available.

However, this process handles scattering processes as singular events. At no time is

the photon considered to be inside a particle, and thus only the attenuation length of the

binder material is considered. This attenuation length would either have to be modified

like in Section 4.2.1 or an additional custom process would have to emulate the absorption

in ZnS grains. Further, the approximation was done for the very diluted interstellar dust

particles. It is unclear if it holds for very densely packed grains.

Geant’s implementation of the Mie process is designed for one type of particles only,

and since ZnS and LiF grains have different sizes and refractive indices this is not sufficient.

So, in order to use the Mie process in our simulations, further extensions to the library or a

custom implementation of the process would be required. Because of the approximation’s

shortcomings discussed earlier, this has not been done in the scope of this work.

4.3 Wavelength Shifting Fibers

The WLSFs are naturally modelled as long straight cylinders running along the scintillator

plate. The bend at the edge of the plate, which leads the fibers back to the PMTs, is

very sharp. This way is it possible to place several detector modules next to each other

with little dead space in between them. After the sharp bend, the fiber continues on an

arbitrary path to the PMT. In our model we include the sharp bend at the edge, but

keep the following part straight. So, the model of a fiber consists of two to three cylinders

joined by one or two quarter tori, depending on whether both fiber ends are read out or

not.

The length of the straight fiber segments is as long as the scintillator plate is wide,

or high respectively. The thickness of the fiber and the distance between two fibers is

adjustable independently for both layers. Further adjustable geometric parameters are
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variable name symbol default value description

/var/global/width w 5 cm Length of horizontal fibers
/var/global/height h 5 cm Length of vertical fibers
/var/wls/distanceToPMT b 30 cm Length of fiber segments from scin-

tillator to PMT
/var/wls/thickness df 0.1 cm Fiber diameter
/var/wls/bendRadius rb 6 mm Bending radius at scintillator

edges
/var/wls/claddingRatio – 0.03 Quotient of cladding thickness and

fiber radius
/var/wls/dyeConcentrationPPM ρdye 200 Dye concentration in parts per mil-

lion
/var/wls/dyeType – 7 Dye type: 7, 8 or 11 (see Fig-

ure 4.14)
/var/wls/claddingAbsLength λc 5 mm Optical attenuation length in the

outer cladding
/var/wls/duplexReadOut – false Whether both fiber endings should

lead to PMTs
/var/wls/multiCladding – true Whether WLSF has two cladding

layers
/var/wls/gapBetweenFibersHori gh 1 mm Distance between two horizontal

fibers
/var/wls/gapBetweenFibersVert gv 1 mm Distance between two vertical

fibers
/var/wls/quantumEfficiency pq 0.25 Detection efficiency of PMTs.

Table 4.3: Parameters used by the WLSF module with their respective default values.

bending radius and the segment length leading back to the PMT.

The fiber cladding is realized by a concentric hierarchy of cylinders and tori. The

outermost structure represents the outermost cladding material, and contains the next

layer as daughter volume and so forth. It is possible to choose single cladding and double

cladding for the simulation.

Finally, the PMTs are modelled as simple cylidric slabs of glass, which detect photons

entering them. There is the possiblity to specify the PMT’s efficiency pq. If such a

number between zero and one is specified, a hit is only registered with probability pq.

This probability models the photo cathode’s quantum efficiency as well as any further

sources of loss in the signal chain. It is not strictly necessary to use this feature, since it

is possible to randomly filter photon events during analysis.
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Fig. 4.14: Dye’s emission (above 0) and
absorption (below zero) spectra of optical
light for three different dye types, provided

by the manufacturer Kuraray [25].

The WLS dye is characterized by its

absorption- and emission spectra, and for our

simulation we adopted the spectra provided by

the manufacturer Kuraray (see Figure 4.14).

These spectra are read into the program from

files, which contain the data in plain text,

and set as material properties WLSABSLENGTH and

WLSCOMPONENT (see Section 3.4) of the core ma-

terial. Kuraray’s Y-11 dye has a decay time

of 12 ns [26], which is used as the decay

time in the simulation via material property

WLSFTIMECONSTANT . The decay times of Y-7 and Y-8

are of the same order of magnitude as Y-11 [27]

and thus insignificant in comparison with the decay time of the scintillator. This is why

the decay time is the same for all dye types in our simulations.

The form of absorption spectra is always the same as shown in Figure 4.14, but absolute

values of attenuation lengths depend on the dye concentration, which is adjustable via

/var/wls/dyeConcentrationPPM . The attenuation of two dyed fibers, where one fiber is twice as

long, but has only half the dye concentration, is equal, because the amount of dye particles

in both fibers is the same. More generally, given an arbitrary multiplicative factor χ, light

traversing the length χ ·d of a fiber with dye concentration ρdye is attenuated by the same

amount as light traversing the length d of a fiber with dye concentration χ · ρdye. Thus,

the transmitted intensity must depend on the product of the two and can be written as

I(λ) = I0(λ) · e−k(λ)ρdyed, (4.3.1)

where λ is the wavelength and k(λ) is a wavelength dependent proportionality factor.

The wavelength dependence of k(λ) has been measured by KURARAY for different dye

types and the results are shown in the absorption part of Figure 4.14. The absorption

length is defined as the inverse coefficent of the exponent:

λdye =
1

k(λ)ρdye

(4.3.2)

In order to obtain absolute values for k(λ), the transmittance I/I0 needs to be mea-

sured with monochomatic light of wavelength λ and fixed thickness and dye concentra-

tion. Then, the absolute value of k(λ) at this wavelength can be calculated from (4.3.1).

The results of measurements conducted by KURARAY are shown in Table 4.4. Fig-
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dye type ρdye[ppm] d[mm] λp[nm] I/I0[%] k(λp)[ppm−1mm−1]

Y7 24.8 10 439 3.61 0.0134
Y8 34.5 10 455 4.49 0.0090
Y11 18.2 10 430 6.89 0.0147

Table 4.4: Results of transmission measurements conducted by KURARAY. For each dye type a 10 cm
cube with dye concentration ρdye was illuminated at the wavelength λp of maximum absorp-
tion of the dye type. The resulting value for k(λp) can be used to obtain a value for the
absorption length of a WLSF.
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Fig. 4.15: Total optical attenuation length de-
pending on photon wavelength for a dye concen-

tration of 1 ppm−1.
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Fig. 4.16: Absorption length of a photon in a
clear fiber depending on its wavelength according

to [28].

ure 4.15 shows the absolute values for the attenuation length λdye for a dye concentration

of ρdye = 1ppm−1. For a different dye concentration these have to be multiplied with a

factor of (ρdye[ppm])−1 according to (4.3.2).

The absorption length for optical photons in the fiber (besides absorption by the WLS

process) is defined as the absorption length of a clear fiber according to [28] as shown in

Figure 4.16. This property is independent of dye concentration or any other parameter.

The outermost cladding receives a much shorter absorption length, as described in

Section 2.5.1. For simplicity it is adjustable and constant for all photon energies because

there is no data provided about it. A default value of about 5 mm seems appropriate,

given that undesired photons travel at least 1.29 cm inside the outer cladding when guided

along a 30 cm fiber (see Appendix A.1).
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variable name symbol default value description

/var/photoncounter/width wpc 30.0 mm Width of the cylinder
/var/photoncounter/thickness – 0.01 mm Thickness of the cylinder
/var/global/gapLength g 0.4 cm Needed for correct placement
/var/photoncounter/distance gpc 0 mm Distance between cylinder and scin-

tillator plate
/var/photoncounter/rindex npc 1.5 Refractive index of the cylinder’s

material

Table 4.5: Parameters used by the photon counter module with their respective default values.

4.4 Photon Counter

The photon counter is a small module for counting photons which exit the scintillator

plate. It consists of two oblate cylinders defined as sensitive detectors in front and back

of the first scintillator plate. The dimensions of the cylinder and its distance to the scin-

tillator can be adjusted freely by setting the respective variables mentioned in Table 4.5.

This way it is possible to simulate measurements of scintillator samples without WLSFs.

In this case, the refractive index can be set to that of a PMT’s photo cathode such that

it simulates a PMT mounted behind the scintillator plate.

However, with refractive index equal to that of air, it is also possible to use the photon

counter in simulations including WLSFs. The photon counter stores not only the amount

of photons passing through, but also the photons’ positions and whether they exited on

the front or on the back of the scintillator. This way it is possible to get a picture of how

the exiting photons are distributed across the surface.



Chapter 5

Validation of the Model

A validation of the model is necessary in order to be able to trust its results. Since the

detector consists of several parts it would be very difficult to directly validate the model

as a whole. Therefore, the different parts of the model were validated separately at first.

For this, simulations of single modules have been carried out and the results compared to

theoretical expectation and/or experimental measurements. Finally, the entire detector

model was simulated and compared to measurements of one of the detector banks for

SAPHiR.

5.1 Neutron Attenuation in the Scintillator Plate

Fig. 5.1: Setup of a neutron absorption
measurement.

A simple validation step is to compare the neu-

tron absorption of the scintillator plate in simu-

lation and measurements. This way it is checked

whether the neutron cross sections and mass ratios

are calculated correctly.

Figure 5.1 shows the setup of the measure-

ment. A monochromatic neutron source provides

neutrons with a single wavelength. Using a 3He

proportional counter the neutron flux is measured with and without a scintillator sample

between source and detector. The transmission rate is the quotient of the two measured

neutron fluxes. In this measurement the scintillator plate only functions as an absorber

and not as a detector itself. A monochromatic neutron source is necessary, because the

lithium’s cross section for neutron capture depends on the kinetic energy of the neutron

as discussed in Section 4.2.

51
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The measurement described here was conducted by Ralf Engels and Günter Kem-

merling in February 2013 at the HEiDi instrument at the FRM-II [29]. HEiDi utilizes

neutrons from a hot neutron source, monochromatized via a Germanium single crystal.

During the measurement the reflexes (422) and (311) were used, which give two different

neutron wavelengths (see Table 5.1). In order to get a well defined beam, a boron carbide

diaphragm with hole diameter of 2 cm was placed in front of the sample. The 10B inside

the diaphragm (approximately 20 % of natural boron is 10B) absorbs all neutrons which

do not pass through the diaphragm’s hole.

Table 5.1 shows most of the results mentioned in [29]. We exclude measurements of

ELJ scintillators which were backed by a Mylar foil. Because the Mylar’s polyethylene

contains hydrogen, neutrons passing through the foil may scatter there and miss the 3He

detector. This way the measured absorption is too high. Here we include only ELJ

samples backed by an aluminium foil, which has a very low interaction probability. The

Applied Scintillation Technologies (AST) samples are without backing, so all of them are

included.

In order to compare simulation and measurement it is necessary to determine the

microscopic parameters mentioned in Table 4.1. The mass ratios, grain sizes, and the

densities of ZnS and LiF are readily available in sample specifications. However, the

density of the binder material is usually not provided by manufacturers and needs to be

obtained from the measurements. This is possible by measuring the absorption coeffi-

cient of the scintillator material and calculating which binder density leads to such an

absorption coefficient.

The lithium’s cross section σ is defined as the quotient of the absorption coefficient

µ = λ−1
n and the particle density ηLi of 6Li:

σ =
µ

ηLi

(5.1.1)

σ depends on the neutron’s wavelength and can be obtained from Figure 4.6. The

attenuation coefficient can be obtained by absorption measurements. If the neutron beam

intensity is I0 before passing the scintillator and I afterwards, the absorption coefficent is

µ =
ln(I0/I)

d
. (5.1.2)

The particle density is the total number NLi of 6Li nuclei divided by the total volume.

NLi in turn is the total mass of LiF divided by the combined mass of 6Li and fluorine
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nuclei, such that

ηLi =
NLi

V
=

1

V
· MLi

mLi +mF

=
VLi

V
· ρLiF

mLi +mF

=
(A.2.3)

φLiF∑ φX
ρX

· 1

mLi +mF

. (5.1.3)

The sum over X in the denominator contains a term for the binder, which is the single

dependency on the binder density. Combining (5.1.1) and (5.1.3) yields an expression for

the binder density after a few trivial transformations:

ρbinder = φbinder ·
(

φLiF · d · σ
(mLi +mF) ln (I0/I)

− φLiF

ρLiF

− φZnS

ρZnS

)−1

(5.1.4)

Mass fractions φX as well as the thickness d are provided by the manufacturers of the

samples and the densities of ZnS:Ag and LiF are given in Appendix A.2. The masses of
6Li and F are mLi = 9.9883× 10−24 g and mF = 3.154× 10−23 g [30, 31]. The quantity

to be measured is the transmission ratio I/I0, which determines the value for the binder

density.

Fig. 5.2: An incoherent neutron beam passes the
scintillator plate in a conic section. Almost all neu-

trons traverse a distance longer than d.

As Table 5.1 shows, the measured

binder densities show some tendencies.

For all measurements with a neutron

wavelength of 1.1695 Å the binder density

is lower than for the respective measure-

ment at 0.794 Å. This might indicate a

systematic difference in the measurement

with the two neutron beams.

With the exception of the 4:1:1 AST

scintillators, the calculated binder den-

sity decreases with increasing thickness.

One might assume that this behaviour is due to the imperfect collimation of the neutron

beam. If we assume a setup as shown in Figure 5.2 with an isotropic neutron beam where

a neutron under the angle 0 ≤ θ ≤ δ travels a distance d/ cos θ through the scintillator

plate, the beam intensity behind a scintillator plate of thickness d is

I(d)

I0

=

δ∫
0

dθ
2π∫
0

dφ sin θ · exp
(
− d
λn cos θ

)

δ∫
0

dθ
2π∫
0

dφ sin θ

=
1

1− cos δ

(cos θ)−1∫

1

dy
e−

d
λn
y

y2
, (5.1.5)

where we substituted y = 1/ cos θ. If we calculate the effective binder density ρ∗binder
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as in (5.1.4) with I/I0 from 5.1.5, we get a value which decreases with d as can be seen in

Figure 5.3 for an opening angle of δ = 0.3 ≈ 17◦. However, this figure shows, that even

for such a large opening angle the measured binder density varies by only 0.002 % over

the thickness range of 0.2 mm to 0.4 mm, so the geometric effect can be ruled out. As of

now it is unclear what causes the apparent decrease of binder density.
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Fig. 5.3: Dependence of the effective
binder density ρ∗binder on the scintillator
thickness d for an opening angle δ = 0.3 ≈
17◦, which is already a very large value. No-
tice that the change in binder density is in
fact small, since the vertical axis is shifted

by 1.583 48 g cm−3.

Another interesting fact is that for AST

scintillators the binder density seems to in-

crease with increasing ZnS mass ratio, while for

ELJ scintillators it seems to decrease. If LiF

and binder mass ratios stay fixed while the ZnS

ratio increases, a configuration will be reached,

where there is not enough binder material in

the mixture to fill out the whole interior space

between the grains, so that air pockets can form

inside the scintillator. In such a case the den-

sity of the material between the grains would

decrease, as is the case with ELJ scintillators.

Why the binder density increases in the case of

AST scintillators is an open question.

For our simulations we chose to use different

binder density values for samples of different

manufacturers, because it stands to reason that different binder materials have been

used. For AST scintillators we use the average of all binder densities of AST samples

in Table 5.1, while for ELJ scintillators we exclude the two 3.2:1:1 samples. These two

samples show a binder density which is much lower than the otherwise very similar values.

The results are:

ρAST
binder = 1.58 g cm−3, ρELJ

binder = 1.98 g cm−3 (5.1.6)

Table 5.1 also shows a comparison between measurement and simulation of the neutron

absorbtion rate. The simulated values fit quite well with the measurement except for

ELJEN’s 3.2:1:1 scintillators, which show an abnormally low binder density as discussed

earlier. In summary, the experiments described in this section are able to validate the

aspect of neutron capture in the scintillator plate and also provide values for the binder

densities of AST’s and ELJEN’s scintillators.
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Figure 5.4: Setup for transmission measurements. The PMT signal is amplified in a pre-amplifier and
then, if necessary, attenuated by some factor of 2n. After a shaping amplifier creates pulses
for the ADC to digitize, the computer records the pulse data in a histogram.

5.2 Light Attenuation Measurements

In order to examine the propagation of light inside the scintillator plate and to vali-

date our optical processes, the transmission of light emitted by a blue Light Emitting

Diode (LED)was measured for several scintillator samples.

The common setup of measurements is shown in Figure 5.4. A blue LED directs a

pulsed beam at the target, of which we want to measure the optical transmission. The

LED is mounted behind a very narrow diaphragm with 0.5 mm hole diameter in order to

illuminate only a small region of the target. The target is mounted directly in front of a

PMT, in which transmitted photons are detected.

The PMT produces signals, which closely resemble the pulse shape of the light source.

Due to capacitative effects, the signal has a small intrinsic rising and falling edge. These

signals are fed into a pre-amplifier, which integrates the signal by collecting charges on

a capacitor, which slowly discharges through a high-Ohmic resistor. The discharging

current is amplified, so that signals with sharp rising edges and long tails are produced.

This way longer lasting pulses of the LED result in higher signals from the pre-amplifier.
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The differential shaping amplifier creates gaussian pulses, which the Analog Digital

Converter (ADC) can easily convert into digital signals. The attenuator between pre-

amplifier and shaping amplifier is necessary because the possible output range of the

pre-amplifier is much larger than the possible input range of the shaping amplifier before

it goes into saturation. Besides the unipolar signal output which is fed into the ADC, the

Shaping amplifier has a second, bipolar signal output, so that it is possible to monitor the

bipolar signal on an oscilloscope and adjust the attenuation factor in case of saturation.

The ADC digitizes the pulse heights of the unipolar signals and sends that information

to a PC, where the values are binned in a histogram. This way we obtain information

about the pulse strength of the light reaching the PMT after passing the target.

5.2.1 Light Source
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Fig. 5.5: Emmission spectra of the scintil-
lator material and the blue LED used in the

transmission measurements.

The blue LED is driven by a pulse generator

and provides pulses of blue light with a spec-

trum in the range of the ZnS:Ag emission spec-

trum. Figure 5.5 shows a comparison of the

optical emission spectra of LED and ZnS:Ag.

The amplitude of the pulses is kept constant in

order to prevent damage to the LED, so that

the intensity of pulses is varied by changing the

pulse width.

To determine the absolute absorption rates

of different targets, it is necessary to calibrate

the LED pulse. Therefore the PMT’s response

to the LED without target was measured for

several pulse widths. However, the pulse widths necessary to generate measurable signals

with scintillator targets lead to signal saturation in the pre-amplifier when the beam is

not attenuated.

Therefore, we measured the transmissions for several pulse widths of several optical

attenuators – in our case sheets of paper – while insuring that attenuators of similar

strength have several pulse widths in common. The result is shown in Figure 5.6(a).

To obtain the initial pulse strengths, one can now patch the intensity curves of different

attenuators together by calculating the mean attenuation factor for overlapping regions

and multiplying the data of stronger attenuators with this factor. The result is shown in

Figure 5.6(b).
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Figure 5.6: Calibration measurements for the LED. (a) shows the measured light intensity reaching
the PMT with different number of absorbers plotted against the pulse width. The different
measurements are patched together in (b) and show the total intensity of the non-attenuated
pulse which can be used as basis for total absorption measurements.

5.2.2 Absolute Light Transmission
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Fig. 5.7: Total transmission signal strength of cer-
tain scintillator samples at different pulse widths. The
AST samples shown are the ones with 4:1 ZnS/LiF ra-

tio.

For the absolute transmission measure-

ments, the target in Figure 5.4 con-

sists solely of a scintillator plate. There

are samples from two manufacturers,

namely AST and ELJ. The AST sam-

ples vary in thickness from 0.2 mm to

0.4 mm and have a ZnS to LiF ratio

of 2:1, 3:1 and 4:1. As discussed in

Section 5.1, several of the ELJ sam-

ples have an aluminium backing, which

is completely opaque for visible light.

Therefore only two samples with My-

lar backing could be used in these

measurements. The used samples had

thicknesses of 0.32 mm and 0.5 mm,

and a ZnS:Ag/LiF ratio of 2:1.

The transmission of each sample is measured at several pulse widths. Figure 5.7

shows the transmission signal strengths of several samples depending on five different

pulse widths each. The quotient of the transmission signal strength and the initial signal

strength (see Figure 5.6(b)) then yields the transmission factor, which is constant for each
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serial no. thickness ZnS:Ag/LiF transmission
[mm] ratio rate [%]

A
S
T

23166 0.2 2:1 0.81(3)
23168 0.3 2:1 0.73(2)
23173 0.4 2:1 0.66(2)

23174 0.2 3:1 0.69(2)
23178 0.3 3:1 0.71(2)
23182 0.4 3:1 0.539(18)

23184 0.2 4:1 0.88(3)
23188 0.3 4:1 0.63(2)
23191 0.4 4:1 0.546(18)

E
L

J 4085-05-01 0.32 2:1 2.98(9)
4085-06-01 0.5 2:1 1.37(5)

Table 5.2: Absolute transmission values of several samples using the LED light source.

sample and is shown in Table 5.2.

Figure 5.8 visualizes the data in a semi-logarithmic plot. The transmission of AST

scintillators loosely follows an exponential attenuation law with axis intercept of about

one percent. The fact that it differs from 100 % (full transmission at zero thickness) can

be ascribed to surface effects, such as partial reflection of the incoming beam, which are

independent of the sample’s thickness. How much of the light is lost at which surface

cannot be discerned from the data.

Also, it is not possible to differentiate between samples of different ZnS:Ag/LiF ratios

with regard to an optical attenuation length. Their values are too entangled to make

significant statements about the dependence of the attenuation length on compositional

parameters. It is further noteworthy that the AST 3:1 0.3 mm sample has a higher

transmission rate than the thinner AST 3:1 0.2 mm sample. Although the difference

is not significant (0.71(2) % vs 0.69(2) %), it hints at poor homogeneity in our samples.

Since only two ELJ samples have been measured, the number of fit parameters of

the exponential attenuation law equals the number of degrees of freedom. Thus there

is no possibility for error estimation, and the validity of the exponential law cannot be

confirmed. However if we assume its validity, it means that ELJ scintillators have smaller

surface effects, which lead to a higher total tranmission rate, but their effective attenuation

length is shorter. In the WLSF detector, light will be produced in ZnS grains inside

the scintillator, so the influence of surface effects will be not as significant as in the

transmission measurements. This is why the AST scintillators might be a better choice

than ELJ. However, in order to confirm this, measurements of additional ELJ samples
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Figure 5.8: Absolute transmission values of several samples using the LED light source. The thickness
dependent transmission value was fitted for different manufacturers. Since there are only
two data points for ELJ, there is no error estimation. The fact that the transmission at
zero thickness does not equal unity can be attributed to surface effects.

are necessary.

5.2.3 Comparison With Simulations

The two models of photon propagation described in sections 4.2.1 and 4.2.2 require dif-

ferent input parameters. As the model of effective attenuation length does not depend

on microscopic parameters, it requires only the scintillator thickness and a value for the

optical attenuation length. The latter is a result of the measurement described above.

The model of virtual grain boundaries requires scintillator thickness, mass ratios,

and grain sizes, as well as density, refractive index, and absorption length of the binder

material. Similar to the binder density in Section 5.1, other properties of the binder

material are not easily available and have to be guessed or estimated.

Early studies of ZnS/LiF scintillator plates reported the use of Polyethylene (PE) [32],
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Figure 5.9: Simulated optical transmission factor for the compositions measured in the experiment.
The results were obtained by using modules of scintillator plate and photon counter and
optical photons as primary particles. (a) was simulated using the random walk process
described in Section4.2.2. Binder densities were chosen according to 5.1.6, the attenuation
length of the binder material is λbinder = 20 cm. In (b) an effective attenuation length has
been used according to values fitted in Figure 5.8. Since this value has been fitted without
regard to mass ratios, the only parameter is the scintillator thickness.

process type manufacturer ZnS/LiF a [%] λeff [mm]

random walk process

AST 2:1 95 0.17
AST 3:1 95 0.15
AST 4:1 99 0.14
ELJ 2:1 78 0.19

effective attenuation length
AST — 62 0.59
ELJ — 59 0.22

Table 5.3: Parameters of an exponential fit of the form a · exp(−d/λeff) to the simulation results shown
in Figure 5.9.

Lucite (i.e. PMMA) [33] or epoxy [34] as binder material. With an attenuation length of

0.45 mm at 404 nm [35], PE probably is not a favourable choice for a binder, because it

might absorb a significant fraction of the scintillation light. With an attenuation length

of the order of 1.5 m at 440 nm [36], PMMA is much better suited. Since there are many

types of epoxy compounds, including some which are completely opaque when hardened,

it is not possible to give an estimate for its attenuation length. Thus, manufacturers can

choose from a wide set of materials and usually do not provide information about their

choice. In our simulations a somewhat arbitrary value of λbinder = 20 cm was chosen,

independent on the exact wavelength. Thus the binder material is effectively transparent

to the scintillation light.
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The simulation results are shown in Figure 5.9 and summarized in Table 5.3, which

shows fit parameters of an exponential function fitted to the results shown in the fig-

ure. The simulation using the random walk process shows a discernible dependence on

the composition of the material. Simulations with a larger ZnS mass ratio show a lower

transmission factor, and the table shows that the fitted effective attenuation length de-

creases with an increasing amount of ZnS:Ag. This is due to the increased fraction of path

length spent in ZnS grains, which exhibit the strongest absorption. The trend of higher

ZnS ratio leading to worse transmittance can also be guessed from the measurements in

Figure 5.8 for thicknesses of 0.3 and 0.4 mm.

The strong surface effects observed in the measurements are captured by neither model.

The values of y-intercept of the exponential fits to the measurements in Figure 5.8 of

1.05(14) % and 11.9 % are orders of magnitude smaller than the values obtained in sim-

ulations. A reason for this might be a high reflectance of ZnS of about 90 % [37], which

are not included in the simulations.

The absolute value of the effective absorbtion length simulated with the random walk

model are in the range of 0.14 mm to 0.19 mm, which is about a factor 4 too small for AST

and a factor 1.4 too small for ELJ scintillators. Possible reasons for the shortcomings are

discussed below.

1 2 3 4

0.15

0.2

0.25

0.3

φZnS

λ
eff

[m
m

]

Fig. 5.10: Effective attenuation length
obtained from exponential fit to simula-
tions with different scintillator thicknesses
for each ZnS mass fraction φZnS. The simu-
lations use the photon counter module and
the scintillator plate, in which the random
walk process is used for photon propagation.

In order to examine the influence of the

ZnS mass fraction φZnS on the effective attenu-

ation length, further simulations of the random

walk model have been conducted with mass ra-

tios ranging from 0.5 to 4.5. For each value,

the transmission of scintillator plates of thick-

nesses ranging from 0.1 mm to 0.9 mm was sim-

ulated and the results fitted by an exponential

function. The result is shown in Figure 5.10.

Over the whole plausible range of ZnS mass

ratios from φZnS = 1 to φZnS = 4, the effec-

tive attenuation length varies between 0.15 mm

and 0.25 mm, which is a significant difference

of 40 %. However, if one is considering only

φZnS ≤ 2 the difference is only about 20 % which

might not be resolvable in measurements due to

inhomogenities in the scintillators, as was the case with our samples.

The reason for the shorter effective absorption lengths in the simulations might be that
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Fig. 5.12: Simulation of the simulated effective
optical attenuation length λeff in dependence on
the simulation parameter λbinder. The dashed

line is the identity λeff = λbinder.

it happens that photons travel a large distance inside one single grain as Figure 5.11 shows.

It happens that a photon travels more than 20 or even 40 µm inside a single grain which is a

much longer distance than the mean ZnS grain size of 7.5 µm. This is due to the fact, that

the step length proposed by a Geant process is distributed exponentially by default, which

means that there is no upper limit to the possible step length. A possibility to improve

this behaviour might be to override the PostStepGetPhysicalInteractionLength() method with a

custom bounded distribution.

The model of an effective attenuation length λbinder for the whole plate material has

also been examined in further simulations. Figure 5.12 shows the simulated effective

optical attenuation length dependening on the input parameter λbinder. Again, it has

been obtained by simulating the transmittance of several different thicknesses for each

input and fitting an exponential attenuation function to the result. For small λbinder it

closely follows the identity as expected, but for larger values it begins to visibly deviate

from the identity. This deviation can be explained by geometric effects. Since the surface

is rough, photons are refracted in a random direction upon entry and have a longer travel

distance through the material.

In conclusion, this validation measurement revealed some discrepancies between mea-

sured effective attenuation length and the one simulated with the random walk process.

This might be addressed by further measurements and by improvements of the algorithm.

Using an effective attenuation length in the first place gives results as expected, except for

a small geometric effect. However, care must be taken when generalizing to unknown com-
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positions, because microscopic parameters probably excert an influence on the effective

attenuation length.

Both processes do not show the huge attenuation due to surface effects, which are

apparent in the measurements. Because neutron events happen inside the scintillator

plate, only effects at the exit surface play a role for the neutron detector. Unfortunately,

our measurements do not allow differentiation between contributions from both sides.

The effect of the surface where the light enters the plate might be examined by measuring

the amount of light backscattered from the scintillator sample in a future measurement.

5.3 Light Intensity Measurements

Experiments conducted in 2010 by Ralf Engels and Jakob Schelten examine the bright-

ness of light flashes of ZnS/LiF scintillators in order to evaluate the usability of different

scintillator types in large scale position sensitive neutron detectors [38]. During the mea-

surements pulse heights of different scintillator samples under neutron irradiation were

recorded. These measurements can be compared to simulations of the grain box model in

order to validate the model of the microscopic structure.

The simulation of the grain box model gives an estimate of the distribution of energy

deposition inside ZnS grains. This distribution cannot be compared directly to measured

results, because the pulse height spectrum also depends on light attenuation inside the

scintillator plate. For the comparison, the propagation of photons was not simulated, but

rather calculated analytically by assuming an effective absorption length as described in

Section 4.2.1.

The neutron source for the measurements was the Kleinwinkel-Streuanlage at the

FRM-II in Munich. The thermal neutrons from the reactor were monochromatized to

a wavelength of 4 Å. A PE sample in the beam scattered neutrons isotropically and

the targets were mounted behind a boron carbide diaphragm positioned at an angle of

90◦ of the PE sample. The diaphragm was used to ensure a well-defined neutron flux

by absorbing all neutrons not passing through a circular hole, so that the samples are

irradiated equally.

For these measurements scintillator samples of AST were used. They were mounted

directly between diaphragm and a PMT, which measured the brightness of scintillation

pulses. After passing a similar signal processing chain as the signals in the absorption

measurements (see Section 5.2), the signal height was digitized in an ADC and binned in

a histogram.

The intensity spectrum of scintillation flashes is very broad and overlaps with signals
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from undesired sources like gamma radiation or thermal fluctuations in the PMT. Be-

cause of this it is necessary to filter out most of these background signals via the ADC’s

threshold, which means that the pulse height spectrum is not recorded entirely and low

intensity pulses are cut off.

5.3.1 Expectation

The PMT was not calibrated, so there is no possiblity to obtain the number of photons

per event. However, the signal pulse height is proportional to the brightness of the scintil-

lation flash, so there is a proportional connection between the number of photons exiting

the scintillator and the PMT’s signal strength. Thus, we can expect the spectrum to be

like (A.4.5) with an additional proportionality factor for the argument and the overall am-

plitude. The ADC digitizes the signal strength with a certain accuracy, and counts data

in a histogram with discrete channel number χ ∈ {0, 1, . . . , χmax}. To obtain the expecta-

tion for the histogram, one therefore needs to integrate the continuous intensity spectrum

(A.4.5) over each bin, which means an integration from γχ to γ(χ + 1), where γ is the

proportionality constant between channel number and number of detectable scintillation

photons:

I(χ) = k

γ(χ+1)∫

γχ

dN pN(N) (5.3.1)

Here, k is the number of neutron events inside the scintillator plate and pN(N) is the

probability density of N photons exiting the scintillator plate on one side after a neutron

event, as calculated in Appendix A.4. Under the assumption that pN(N) does not change

significantly over the bin width, one can approximate the integral with the product of bin

width and function value:

I(χ) ≈ k · γ · pN(γχ)
(A.4.5)

= k · γ ·
d∫

0

dx
h(x)

αl(x) · C · pE
(

γχ

αl(x) · C

)
. (5.3.2)

Here, h(x) is the probability distribution of an event happening in depth x given in

(A.4.6). αl(x) is the extinction factor of scintillation light, which describes the fraction

of the photons that exit the scintillator after a neutron event at depth x. It is derived

in (A.4.3) by geometrical considerations. Since neutron energy, mass ratios and binder

density (1.58 g cm−3, see (5.1.6)) are known, it is possible to calculate the neutron’s at-
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tenuation length λn, which is needed in h(x), by combining (5.1.1) and (5.1.3):

λn =
(mLi +mF) ·∑ φX

ρX

σ · φLiF

, (5.3.3)

where σ can be obtained from Figure 4.6 and the atomic masses mLi and mF are given

in Section 5.1. In this case, it is also possible to calculate k as a fraction of the total

number of neutrons K which pass through the scintillator during the measurement:

k =
(

1− e− d
λn

)
K (5.3.4)

K depends on the experimental setup and can be measured. A measurement with a

lithium-glass scintillator yielded a rate of 729 000 neutrons in 10 min. All further pulse

spectra were obtained in 10 min measurements as well, so we have K = 729 000. The

unknown values λl and C/γ must be fitted to the data.

5.3.2 Results

ZnS/LiF d[µm] λl[mm] C/γ[MeV−1] χ2 χ2
exp

2:1 450 0.438(2) 130.5(3) 2460 820

4:1 450 0.328(3) 108.2(4) 1250 1530

4:1 225 0.205(3) 104.4(7) 1600 2280

Tab. 5.4: Fit values for samples shown in Figure 5.13 according
to (5.3.2) with the χ2 values for this fit and the fitted exponential

function.

Figure 5.13 shows three mea-

sured pulse height spectra of

different samples, as well as a

fit of (5.3.2), with fit param-

eters given in Table 5.4. The

expectation fits the data very

well, and the fit parameter

for C/γ seems stable. Even

though the fit parameter for

λl varies by a factor of 2, which seems very large, the tendency that a larger ZnS mass ratio

leads to a smaller effective optical attenuation length is consistent with results described

in Section 5.2.

The fit parameters for different fits show some inconsistencies. While the value for λl

shows the expected trend of increasing for decreasing ZnS mass ratio, it should be similar

for the two samples where the ZnS mass ratio is identical. The different sample thickness

should not have an influence on the optical attenuation length. Further, the value for C/γ

should be equal for all three samples. The deviation of 20 % for the 2:1 sample cannot be

explained.

Unfortunately the spectra have been cut off just above the point where the fit shows

a change in slope. This was probably intentional at the time of the experiment, as the
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Figure 5.13: Results of light intensity measurements of different scintillator samples irradiated by 4 Å
neutrons, with fits according to the expectation in (5.3.2) and an exponential function.
The single spectra are offset by 50 channels for better visibility.

increasing slope might be mistaken for the onset of background radiation. The additional

information of the slope onset might have improved the fits significantly and yet increased

the trust in the validation of the grain box module.

However, in comparison with the exponential fit, the result of our model is a clear

improvement at higher channels, where the measured signal starts to decrease faster than

exponentially. Our model captures this feature well for the 4:1 samples and to some extent

also for the 2:1 sample. The χ2 values of the model fits are better for the 4:1 samples as

well. This shows that the model of the grain structure is able to simulate the distribution

of energy in ZnS grains realistically.
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5.4 Prototype Measurements

In order to validate the model of the detector system as a whole, measurements of a single

detector bank for the SAPHiR instrument as described in Section 2.6 have been compared

with simulations of the model in its entirety. The measurements were conducted in 2013

by Ralf Engels at the TREFF reflectometer at FRM-2 reactor in Munich.

As a reflectometer, TREFF is designed to examine larger structures on the nm-scale,

like thin films. For this task neutrons with longer wavelengths are better suited. The

TREFF instrument uses neutrons with a wavelength of 4.73 Å in order to resolve these

larger structures. At this wavelength, the two detector plates of the detector have a

combined conversion efficiency of about 98 %.

This value can be obtained by extrapolation of the absorption coefficient of 39.7 %

from Table 5.1 for the 2:1 500 µm ELJEN sample at 1.17 Å. Here we have two 500 µm

plates instead of one, which translates to an exponential factor of 2 in the transmittance.

Since µ
(5.1.1)∝ σ ∝ E−1/2 ∝ λ, there is an additional exponential factor of 4 because

the wavelength of the neutrons at TREFF is 4 times longer than at HEiDi. Thus the

conversion efficiency must be 1− (1− 0.397)8 ≈ 0.98.

In order to examine the scintillation detector, several different measurements were

conducted, including a reference measurement without neutron irradiation. The spatial

resolution of the detector was examined in several measurements with different boron

carbide diaphragms. Here we restrict ourselves to the reference measurement as well as one

measurement with a 1 mm slit diaphragm at a distance of 10 cm from the detector. This

measurement was arbitrarily chosen, since we are mainly interested in the comparability

of photon counts and duration of neutron events in this context.

5.4.1 Event Reconstruction Algorithm

The data provided by the PMTs consists of single photon events with timestamp and

channel information. Besides signals resulting from neutron events, there are contributions

due to gamma radiation and thermal noise in single PMTs. Recognizing single events is

only possible, if the time difference between two noise photons is much longer than the

time difference between two photons which belong to the same neutron event. In this case

neutron events cause several photons to arrive in rapid succession on neighbouring fibers.

Thus, events can be recognized by finding clusters of photons close to each other in both

layers and by checking for coincidence of two clusters between the layers.

Algorithm 5 describes how clusters can be found in a stream of photon data, where
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each photon event consists of timestamp, channel and layer information. For each photon

it is checked, if this photon fits into any existing cluster in line 5. If it fits to exactly one

cluster, it is simply added to this cluster. If it fits to multiple clusters, then those clusters

are merged and the photon is added to the resulting single cluster. If none of the existing

clusters are fitting, a new cluster is created with the photon as single constituent.

Algorithm 5 Clustering of photons

1: clusters← empty list
2: while there are more photons do
3: p← next photon
4: for all c in clusters do
5: if p FITS TO c then . algorithm 6
6: if p has no cluster yet then
7: put p in c
8: else
9: remove c from clusters

10: merge c with cluster of p

11: if p has no cluster yet then
12: c← new cluster containing p
13: add c to clusters

The question whether or not a photon fits to a cluster is addressed in Algorithm 6.

The basic idea is to define the distance between two photons p and q as

d(p, q) =

(
tp − tq
τ

)2

+

(
np − nq
nc

)2

, (5.4.1)

where tp/q is the timestamp and np/q is the channel number of p and q respectively.

The constants τ and nc are parameters of the algorithm. A photon fits to a cluster, if and

only if it is from the same layer as other photons of the cluster and its distance to at least

one of those photons does not exceed 1. Two photons from the same channel can have a

time difference of at most τ in order for them to be part of the same cluster, and photons

detected at the same time can be at most nc channels apart. As a reasonable value for

τ , the decay time of the scintillator of about 1 µs [12] should not be exceeded. For nc a

value of 2.5 has been chosen for the following analysis. This way photons separated by

two channels can form a cluster, larger differences are forbidden.

As a performance boost, it is possible to define a bounding box for large clusters,

which contains the smallest and largest timestamp and channel number of the cluster’s

photons. A new photon can be compared to these bounds and if it does not fit, it can be

rejected before comparing it to every photon already in the cluster.
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Algorithm 6 Check if photon fits to cluster

Require: τ : maximum duration between clustered photons
Require: nc: maximum channel distance between clustered photons

1: function p fits to c (p is a photon event, c is a cluster)
2: tp, np, lp ← timestamp, channel and layer of p
3: for all q in c do
4: tq, nq, lq ← timestamp, channel and layer of q
5: if ((tp − tq)/τ)2 + ((np − nq)/nc)2 ≤ 1 and lp = lq then
6: return True
7: return False

If the photon stream is ordered with respect to photon timestamp, it is possible to

rule out very old clusters for new photons. If the newest photon of a cluster is older than

tp− τ at line 3 in Algorithm 5, no further photon will fit to it and thus it can be removed

from clusters and stored in a list of finished clusters. Thus, the number of active clusters

remains low and the execution time of the for-loop in line 4 does not increase over time.

This can always be done offline with sorted data.
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Fig. 5.14: Two dimensional histogram of photon clusters found by
Algorithm 5 in the data of a neutron measurement. The histogram
plots the duration of a cluster versus its size logarithmically. The
black line indicates a possibility to differentiate between fast clusters

and slow clusters.

In a scenario where

such an algorithm is em-

ployed in situ during the

measurement for data re-

duction, multiple ADC

units collect data paral-

lely, so there might be a

delay in the data transfer

of one ADC module which

leads inversions with re-

spect to time ordering.

In that case the condi-

tion should be relaxed to

finishing clusters if their

newest photon is older

than tp − ατ with α > 1

in order to increase the robustness. The finished clusters are not stored, but passed to

the coincidence finding algorithm described below.

Figure 5.14 shows the result of the cluster finding algorithm on the data of one mea-

surement. The data was comprised of 8 164 472 sets of timestamp, channel, and layer
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information for single photons, of which around 34 % were discarded as single-photon

clusters. The remaining 66 % were organized into 1 054 285 clusters with an average size

of 5 photons per cluster.

The black demarcation line visualizes the differentiation of two distinct types of clus-

ters. Clusters above the line are somewhat smaller and slower. Figure 5.15(a) shows

clusters found in the data of the reference measurement with the neutron beam turned

off. Both measurements had the same duration, so that it is possible to subtract the

reference measurement from the measurement in Figure 5.14. The result is shown in Fig-

ure 5.15(b) and clearly shows that neutrons cause the slower kind of clusters, above the

demarcation line, and the clusters below it belong to the background.

After the photons have been ordered into clusters, it is possible to match clusters from

different layers to form neutron events. To this end, Algorithm 7 first sorts the clusters

found by Algorithm 5 in two lists according to their layer and evaluates how well any pair

of clusters from different layers scores. This is done using the SCORE-function defined

in Algorithm 8, which first checks if the timestamps t1/2 of the first photons fall within

a coincidence window of 2tc. If so, the score is the product of the cluster sizes with the

gaussian factor exp ((t1 − t2)2/t2c), otherwise the score is zero. Thus, big clusters close

to each other get large scores. tc should be significantly smaller than the decay time of

the scintillator, but not too small since only few photons reach the PMTs, and thus the

difference in time stamps may vary significantly due to statistical effects. For the following

analysis, a value of tc = 200 ns has been chosen.

Each cluster might be part of multiple pairs. However, one cluster can be counted

for only one event, so it is necessary to assign at most one partner to each cluster. In
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Figure 5.15: Correction of background signals. (a) shows the cluster finding algorithm applied to a
measurement without neutron irradiation. In (b) this background has been subtracted
from the histogram in figure 5.14.
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Algorithm 7 coincidence matching

Require: clusters from algorithm 5
Require: sm: minimum score for a pair of cluster

1: a1, a2 ← clusters from clusters with photons from layer 1/2
2: pairs, events← empty lists
3: for all c1 in a1 do
4: for all c2 in a2 do
5: s← SCORE(c1, c2) . algorithm 8
6: if s > sm then
7: add {s, c1, c2} to pairs

8: while pairs is not empty do
9: {s, c1, c2} ← triple in pairs with largest score s

10: remove {s, c1, c2} from pairs
11: if c1 in a1 and c2 in a2 then . If one cluster has been removed already, skip the

pair
12: remove c1 from a1 and c2 from a2

13: x1/2 ← average photon channel of cluster c1/2

14: t← earliest timestamp of c1 and c2 combined
15: add {t, x1, x2} to events

our algorithm this is done by picking pairs in succession, sorted by their score, with the

highest score getting picked first. Thus, large clusters are paired with other large clusters.

The idea behind this is that neutron events have varying brightness, and if two events

happen at the same time at different positions, they will cause two clusters on each layer.

If one neutron event was brighter than the other, it is possible to reconstruct both events

correctly by matching the larger clusters and the smaller clusters respectively.

In order to be stored, the score of a pair of clusters needs to be larger than a certain

threshold sm, which prevents the detection of events with too few photons. In the following

analysis a value of sm = 4 has been chosen, which requires about 2 photons per cluster

with perfect coincidence. If the coincidence is worse, more photons are necessary for the

Algorithm 8 scoring for pairs of clusters

Require: tc: coincidence time
1: function SCORE(cluster c1, cluster c2)
2: t1, t2 ← time of earliest photon of c1 and c2

3: if |t1 − t2| > 2tc then
4: return 0
5: n1, n2 ← size of clusters c1 and c2

6: return n1n2 exp

(
−(t1 − t2)2

t2c

)
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score to be registered.

The position of a neutron event can be reconstructed via the channel distribution

of its two clusters. The easiest method, which is also used in this work, is to take the

average channel number of all photon events of a cluster. Knowledge of the fiber thickness

and distance can then be used to estimate the vertical and horizontal position on the

scintillator screen. A more elaborate approach might be a gaussian fit to the channel

distribution. This way the position of neutrons at the border would be estimated more

accurately.

The performance of Algorithm 7 can be increased by sorting clusters by starting time

and checking the score only for those clusters which are not further apart than 2tc. In

order to be applicable in in situ analysis, this algorithm needs to be modified as well.

As the in situ cluster finding algorithm described earlier returns a finished cluster, it

needs to be buffered and its score with already buffered clusters needs to be calculated.

Then, if the clusters with the currently highest score date back more than 2tc before the

oldest unfinished cluster, they can be removed from the buffer and given to the laboratory

computer as detected neutron event.

The result of matching clusters from Figure 5.14 is shown in Figure 5.16. The algorithm
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Figure 5.16: Position reconstruction via coincidence matching of clusters as described in Algorithm 7.
The underlying data is the same as in Figure 5.14. As the distribution of neutron events
suggests, this measurement was conducted with a 1 mm wide slit diaphragm in front of
the scintillator plate at a distance of 10 cm.
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matched only 129 699 neutron events, leaving 75 % of clusters unmatched. This large rate

stems from the fact, that most of the small clusters are not matched, as the analysis of the

size of unmatched clusters in Figure 5.17 shows. This rejection mechanism is by design

a part of the algorithm. The score function penalizes small clusters and thus it is less

probable for them to exceed the score threshold.
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Fig. 5.17: Rate of unmatched clusters depending on cluster size.

The figure reveals an-

other important fact. None

of the large clusters be-

low the demarcation line

(white in this figure) are

matched. Large clusters

cannot be rejected due to

their size, because a clus-

ter containing 30 or more

photons will get a mini-

mum score of 30 · e−2 ≈
4.1, so it will always ex-

ceed the threshold if there

is a coincident cluster. It

follows, that the clusters are unmatched solely because there is no coincidence cluster

accompanying them, which means that they did not originate on the scintillator plate.

Rather, it may be possible, that they are caused by gamma particles passing through the

WLSF bundles directly in front of the MaPMT.

The algorithm described above is capable of finding neutron events reliably when the

counting rates are sufficiently small. In particular, it is not capable of differentiating

between overlapping events at the same position, i.e. the second neutron arrives before

the scintillation flash of the first one fully subsided. A problem arises when the counting

rate increases to a point where almost all events overlap. In this case the clustering would

fail because all photons would be collected in one single cluster. These difficulties could

be addressed by a more intelligent algorithm for fitting photons to clusters. Such an

algorithm might reject photons which arrive after a maximum duration for a cluster, or

split a cluster when the photon density suddenly increases.
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Figure 5.18: Cluster finding Algorithm 5 applied to full simulations of the SAPHiR prototype. Pho-
ton events were rejected with probability pq, which emulates quantum efficiency of the
PMTs and further possible losses. The axis ranges and demarcation line are identical to
Figure 5.14.

5.4.2 Simulation Results

Figure 5.18 shows simulation results analysed by the same cluster finding algorithm as the

measured data in Figure 5.14. The simulation was carried out with parameters resembling

the SAPHiR prototype: two ELJEN 392×256×0.5 mm3 scintillator plates with ZnS/LiF

ratio 2:1 sandwiching the multicladded 1 mm WLSFs. A gap of 1 mm between two fibers

leads to 128 channels in one direction and 196 in the other. Within the scope of this work,

this validation is the first one including the creation of scintillation photons. The default

scintillation efficiency was obtained by comparison of grain box simulations to literature,

as described in Section 7.4. Also, the matching effective optical attenuation length of

λbinder = 0.4 mm was used.

The PMT efficiency pq was set to one during the simulation and only reduced during

analysis via rejection of photon events with probability pq < 1. The four panels of

Figure 5.18 show results for pq = 0.02, 0.05, 0.1 and 0.25. The photo cathodes of the



76 MODELLING A WLSF NEUTRON DETECTOR

PMTs usually have a quantum efficiency of about 25 %, but the resulting histogram for

pq = 0.25 shows significant deviation from the measured result in Figure 5.15(b). It shows

an accumulation of photon clusters around a size of 70 photons and a duration of 3 µs.

These clusters are detached from an accumulation of clusters of two or three photons on

the left of the panel, which occur when some photons arrive later than τ after a previous

photon in the same event.

For smaller efficiencies the separation is reduced and eventually vanishes for pq = 0.05.

The reason for this is simply that less photon events are accepeted and thus the clusters

get smaller. However, the number of small clusters also decreases, because the probability

that two or more late photons arrive together within a time of τ decreases when there are

fewer photons.

The panel with pq = 0.05 already shows a good conformity with the measurements.

Except for very small ones, all clusters lie above the demarcation line and the distributions

are similarly shaped. However, in Figure 5.15(b) the counting rate per bin decreases from

about 1000 for clusters of size 10 to 10 for clusters of size 100, which is three orders of

magnitude. In the pq = 0.05 simulation the difference is only one order of magnitude,

which is why a still smaller efficiency might better fit the data.

This means that the simulation registers many more photons than the measurement.

A potential reason for this might be that the scintillation efficiency was chosen too high

(which is a concern, see Section 7.4), or that there is another source of attenuation not

regarded so far. One source might be surface effects discussed in Section 5.2.2, where

some photons are scattered, absorbed or reflected at the surface of the scintillator plate.

Photons guided along the fiber might also be scattered at defects created when bending

the fiber. This degradation is reduced by bending the fibers in a warm water bath, but

it cannot be prevented completely. These effects are not captured by the simulation

and might be examined by comparing measurements of the whole detector with different

scintillator compositions.

5.4.3 Optical Attenuation in Outermost Cladding

A further source for photon loss might be the optical attenuation in the outermost fiber

cladding. If it is very strong, scintillation photons may be absorbed in the cladding before

reaching the core. Then they would be lost for the wavelength shifting and thus less

photons would arrive at the PMTs. The default attenuation length λc = 5 mm used in

the simulation is a maximum value for which a fiber of about 30 cm length is still well

defined. It may be shorter in the fibers used for the prototype.
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Fig. 5.19: Normalized distribution of the
fraction of photons counted in the WLSF
layer closer to the neutron source. The his-
togram uses the data of the slit diaphragm
measurement and bins the quotient of the
size of the photon cluster from the first

layer and the sum of both clusters.

λc not only influences the total amount of

photons, but also the ratio between photons in

both layers. If λc is short, more photons will

be absorbed in the cladding of the nearer layer

and thus less photons are available to be shifted

in the second layer. Although the prototype

contains two scintillator plates sandwiching the

WLSFs, 87 % of the 4 Å neutrons are converted

in the first plate. So, for most events the WLSF

layer closer to the neutron source is the near

layer.

To examine the distribution of the ratio of

photons, event data of the slit diaphragm mea-

surement is analysed again. For each neutron

event found by Algorithm 7 the size of the clus-

ter from the first layer divided by the overall size of the event was determined and the

result binned in a histogram. The result is shown in Figure 5.19. The distribution shows

a strong bias towards the first layer, with a peak at a ratio of about 80 %. There is a

small dip for a ratio of 50 %, however, this may be due to statistical fluctuations.

The same analysis with simulated data with different values for λc is shown in Fig-

ure 5.20. For these simulations an efficiency factor of pc = 25 % was chosen, otherwise

the parameters are identical to the simulation presented in Figure 5.18.

Longer attenuation lengths show a very high peak at smaller ratios of about 60 %. At

this attenuation length the cladding absorbs almost none of the perpendicularly incident

scintillation photons. With a fiber thickness of df = 1 mm, the cladding has a thickness

of 15 µm. Travelling such a distance, an attenuation length of 1 mm or even 10 mm

does not lead to absorption of more than two percents. This is why the absorption in

the first layer is only due to absorption in the dyed core of the WLSF. Because of the

good transparency of the outer cladding, many photons reach the core, and statistical

fluctuations are minimal. This explains the narrowness of the peak for large λc. There is

even a second peak visible at a ratio of about 40 %, which indicates neutron events in the

second scintillator plate.

For smaller attenuation lengths, the photon absorption in the cladding increases.

λc = 0.1 mm leads to 14 % absorption of perpendicular photons, for λc = 0.01 mm it

is 78 %. The higher absorption leads to a smaller ratio of photons reaching the second

layer, because the probability that a photon passes a fiber without interaction decreases.
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Thus, only photon paths through the gap between two fibers of the first layer remain un-

obstructed. This leads to an increase of the peak ratio for shorter λc. Since more photons

are absorbed in the cladding, less photons can contribute to the shifting process, such

that statistical fluctuations become stronger. This leads to a broadening of the peak.
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Fig. 5.20: Normalized distribution of the fraction of
photons in the first WLSF layer according to simulations
with different optical attenuation lengths λc in the outer

cladding.

Comparing the simulation re-

sults with the measurement, an

attenuation length of λc =

0.01 mm shows the closest resem-

blance. Since both figures are nor-

malized to an integral of one, the

peak height can be compared and

is of the same order of magni-

tude. The peak position at 80 %

matches as well. The absorp-

tion factor of 78 % reduces the

photon detection efficiency by a

factor of 22 %. In combination

with a quantum efficiency of 25 %,

this results in a total efficiency of

5.5 %, a value similar to pq = 0.05,

which shows good agreement be-

tween simulations and measurement in Figure 5.18. However, as discussed earlier, this

value might still be too high, so the other sources of attenuation already mentioned must

be considered as well.

In conclusion, the validation of the model has been mostly successful. With a clustering

event reconstruction algorithm, the distribution of cluster size and cluster duration could

be reproduced using a fairly small photon detection efficiency. This small efficiency could

be explained by a short attenuation length in the outer fiber cladding of the WLSFs.



Chapter 6

Optimization

One aim of this work is the development of an optimization algorithm for the parameters

of the model. The parameters should be optimized with respect to detection efficiency

and/or position resolution. These detector characteristics can be obtained by the simu-

lation of several neutron events in the full detector model. For the detection of a neutron

event, for instance, a certain number of photons need to be detected in each WLSF

layer. Thus, the value to be optimized would be the fraction of simulated events in which

enough photons reach the PMTs. Naturally, the number of photons required depends on

the detection algorithm employed for the detector.

Because possible optimization functions depend on simulation results, it is not possi-

ble to calculate the gradient analytically in order to use it for steepest decent methods.

Calculating the gradient numerically would require a huge effort, because the change of

the function value under a very small change of the parameters is dominated by sta-

tistical fluctuations. Therefore, a numerical gradient obtained with insufficient data is

meaningless.

In cases where the gradient is unavailable and properties of the optimization function

are not known, commonly employed optimization algorithms are genetic or evolutionary

algorithms [39]. These imitate the biological process of evolution in that a population

of random solutions creates offspring via reproduction, mutation and recombination of

parameters. Better solutions, i.e. solutions where the optimization function has a higher

yield, exert a larger influence on the new offspring, so that bad solutions fade out. This

way the population of solutions converges towards an optimum.

However, a population of such an algorithm should be of substantial size in order for

the recombination of the fittest to yield enough diversity. To determine the fitness of

each solution, several hundred events have to be simulated. This adds up to a very long
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simulation time for only one generation.

Another popular optimization algortithm for such problems is called simulated anneal-

ing [40]. This algorithm simulates a random walk of a particle in the parameter space with

an optimization function as potential. A random step is always accepted if it improves the

optimization function. Otherwise it is accepted with the probability exp (−∆f/Tt), where

∆f is the change of the function value between steps and Tt is called the system temper-

ature at the time of the step. If the temperature is high, the probability of acceptance

is high even for steps which lower the function value. Thus, the algorithm avoids getting

stuck in local optima. The temperature is lowered slowly as the random walk proceeds,

which results in unfavourable regions being avoided. When the temperature eventually

reaches zero, the algorithm only accepts steps which improve the function value, and

therefore finds the current local optimum which usually is also the global optimum if the

parameters of the algorithm are suitable.

This algorithm also requires many function evaluations, because it should be possible

for the random walk to reach the whole parameter space at each temperature setting.

Otherwise, if the temperature is decreased too rapidly, there is a probability of finding a

local optimum only. Also, this algorithm compares function values between small steps

of parameters, which is heavily influenced by statistical fluctuations as discussed earlier.

This is why this algorithm is also ill suited to our problem.

6.1 Multi Dimensional Golden Section Search

The algorithm chosen for our task is a multi dimensional generalization of the Golden

Section Search (GSS). The one dimensional variant is one of the fastest optimization

algorithms which do not use a derivative (like e.g. the Newton method). As counterpart

to the bisection method for finding roots, the GSS divides a search interval and excludes

part of it in each iteration.

In order to find the maximum of a function f(x) on the interval x ∈ [a, b] ⊂ R with

GSS, f needs to be unimodal on this interval, i.e. it is monotonically increasing between

a and the maximum and monotonically decreasing between the maximum and b. If this

is the case, we can choose any two points x1, x2 such that a < x1 < x2 < b and compare

the function values at these points. If f(x1) < f(x2), then f must be monotonically

increasing up to at least x1, so the optimum surely lies between x1 and b. Otherwise, if

f(x1) > f(x2), the optimum must lie between a and x2. This way it is possible to narrow

the interval by successive function evaluations.

In order to minimize the number of iterations, the choice of x1 and x2 should be
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symmetrical, so that the length of the interval which can be excluded is the same regardless

of which function value is greater. If we choose

x1/2 =
a+ b

2
± ξ · a− b

2
, 0 < ξ < 1 (6.1.1)

the interval is reduced by a factor of 1
2
(1 + ξ). In order to minimize this factor one

needs to choose an ξ close to zero. However, if the function evaluation is costly, this is

not the fastest solution, because during every iteration two function values have to be

calculated. Since the point with larger function value lies inside the new interval, it is

possible to choose ξ such that this point is used again, so that only one new function

evaluation has to be made per iteration. Without loss of generality, let us assume, that

f(x1) > f(x2) so that the new interval is [a, x2]. Then we want x1 to be equal to the

greater of the new evaluation points:

x1 =
a+ x2

2
− ξ · a− x2

2
⇒ ξ2 + 4ξ − 1 = 0 ⇒ ξ1/2 = −2±

√
5 (6.1.2)

The negative solution is discarded, since (6.1.1) requires ξ to be positive, so we have

ξ =
√

5− 2 ≈ 0.236. The reduction factor per iteration is then 1
2
(
√

5− 1) ≈ 0.618, which

is the golden ratio φ and the namesake for this algorithm. Since one of the function values

can be reused, the golden ratio is also the reduction factor per function evaluation. In

the case of a very small ξ two function evaluations are necessary per iteration, so the

reduction factor per function evaluation is always greater than
√

0.5 ≈ 0.707.

To show the unimodality of a function is often a difficult task. However, if the function

is differentiable and the derivative has finitely many roots, the algorithm still converges

towards some local maximum or towards the boundary of the initial interval, even if the

function is not unimodal.

A multi dimensional generalization is given in [41] and is summarized in Algorithm 9.

The parameter space is generalized to a hyper-cuboid defined by the product of allowed

parameter intervals which are successively narrowed during iterations. In the algorithm

two vectors ~p and ~q are used to keep track of upper and lower bounds of each parameter.

There are 2n points of function evaluations, where n is the number of parameters or the

dimensionality of the optimization problem. The points are determined by starting from

the center of the hyper-cuboid and moving towards its corners by a fraction of ξ. In line 6

of the algorithm the displacements from the center are calculated component-wise from

binary direction vectors ~s ∈ {−1, 1}n.
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Algorithm 9 Multi dimensional GSS

Require: n: number of parameters (dimensionality of optimization problem)

Require: ~bmax ∈ Rn: upper bounds of parameters
Require: ~bmin ∈ Rn: lower bounds of parameters
Require: ε: relative required accuracy
Require: ξ: excentricity of function evaluation points

1: ~p← ~bmax

2: ~q ← ~bmin

3: while |~p− ~q|2 < ε2
∣∣∣~bmax −~bmin

∣∣∣
2

do

4: max← −∞
5: for all ~s ∈ {−1, 1}n do
6: ui ← si

ξ
2
(pi − qi), for i ∈ {1, . . . , n}

7: ~r ← 1
2
(~p+ ~q) + ~u

8: f ← FUNCTION VALUE(~r) . see 10
9: if f > max then

10: max← f
11: ~umax ← ~u
12: for all i ∈ {1, . . . , n} do
13: if umax

i > 0 then
14: qi ← 1

2
(pi + qi)− umax

i

15: else
16: pi ← 1

2
(pi + qi)− umax

i

17: Result: value and error of ith parameter: 1
2
(pi + qi)± 1

2
(pi − qi) for i ∈ {1, . . . , n}

max

f(~r)

parameter 1

p
ar

am
et

er
2

Fig. 6.1: Schema of multi dimensional
GSS in two dimensions. The function
is evaluated at the four crossing points.
If the maximum is for example found
at the upper left point, the gray area is

excluded for the next iteration.

After evaluating the function, the parameter

space needs to be restricted depending on the

point with the maximal function value. As shown

schematically in Figure 6.1, each parameter inter-

val [qi, pi] is cut off beyond the ith component of

the evaluation point opposite to the maximum.

Thus, the parameter volume is reduced by a factor

of (1
2
(1 + ξ))n at each iteration. If ξ is chosen as

in the one dimensional golden section search, it is

again possible to reuse the function evaluation re-

sult of the maximum in the next iteration and one

evaluation is saved. It follows, that for this special

case the volume reduction per function evaluation

is φ
n

2n−1 instead of (1
2
(1 + ξ))

n
2n in any other case.

While this is an advantage in the one dimensional
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Figure 6.2: Example of a non-unimodal function, where the two dimensional GSS cannot find the
maximum of (6.1.3) and does not converge towards the border.

GSS, for n ≥ 2 the reduction factor for the golden section is larger than the one for very

small ξ. However, with very small ξ the distances between function evaluations are very

small, which is a problem as described above. For larger values of ξ, the advantage of the

resuable function value persits, which is why the GSS was chosen despite not being the

optimal method in general.

The requirement of unimodality is more strict in the multi dimensional case, because

it is possible to construct non-unimodal functions for which the multi dimensional GSS

does not terminate at a local maximum or at the initial boundary. An example of such a

function is shown in Figure 6.2, where the first three GSS iterations on the function

f(x, y) = exp

(
−(7x)2 −

(
y − 2

3

)2
)
− 5

13
y (6.1.3)

for x and y between −1 and 1 is shown. The maximum is excluded in the second

iteration, and the algorithm converges on (0.2−
√

5)T , which is neither a local maximum

nor a point on the initial boundary.

However, this kind of behaviour does not only depend on the function itself, but also

on the starting parameters. Note that the function parameters had to be tuned with

respect to the points of initial function evaluation in order to fool the algorithm. An

initial parameter space only slightly smaller would have led to the maximum being found.
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An indication for such an error is, when the final result of the algorithm lies on the

boundary of an early iteration. If unimodality of the function is not certain, the validity of

the result needs to be checked by performing a further GSS around the alleged maximum.

If the second GSS gives some other, better result, the first solution was probably not a

local maximum. Of course, if the second GSS also shows convergence to an early boundary,

its result needs to be checked again.

6.2 Calculation of Function Values

One of the challenges of the optimization is the dependence of the function value on

costly simulations, which entails statistical fluctuations. In order to hold the number of

simulation runs as low as possible, a measure has to be developed by which an algorithm

can decide if further simulations for a certain set of parameters is necessary.

As a precursor to a more complete detection efficiency function, consider Figure 6.3

showing the distribution of energy deposited in ZnS grains obtained via simulations of

the grain box. Since the reconstruction algorithm needs a certain amount of photons

in order to detect an event, there is a threshold below which an event is undetectable.

This threshold can be translated to a threshold of minimal energy to be deposited in ZnS

grains. Thus, a rough estimate for the detection efficiency can be given by integrating the

number of events in which the deposited energy is sufficient and multiplying it with the

neutron conversion efficiency of the scintillator plate.
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Fig. 6.3: Distribution of energy deposited in
ZnS grains. If one assumes a threshold of en-
ergy needed to produce enough photons for the
neutron to be detected, the efficiency is the area
under the curves to the right of the threshold.
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Algorithm 10 Calculation of function value at ~r

Require: m: number of events per simulation run
Require: L: integral length
Require: f(~r,Σ): function to be optimized, where Σ is simulation data
Require: e(~r,Σ): error of f(~r,Σ)
Require: α: error factor

1: function FUNCTION VALUE(~r)
2: Σ← initial state without simulation data
3: C ← empty list
4: n, k ← 0
5: repeat
6: simulate m events and add results to Σ
7: add f(~r,Σ) to C
8: k ← k + 1 . Number of iterations
9: if k > L then

10: s← 1

L

L∑

i=k−L
(C[i]− C[i− 1])2

11: if s > (α · e(~r,Σ))2 then
12: n← 0
13: else
14: n← n+ 1 . Number of consecutive iterations below threshold

15: until n > L
16: return f(~r,Σ)

Given an arbitrary threshold of 1 MeV, Figure 6.4 shows the development of efficiency

value and its statistical error with the accumulation of simulation data. The value seems

to be leveled out after about 300 simulation runs, but it is actually steadily increasing

until there is a noticable kink after the 400th iteration. Thus, it is advisable to continue

the simulation to collect more data. During the optimization process the decision whether

or not to continue needs to be made automatically by a suited algorithm.

The final function value is reached when there is little change if more data is taken

into account. This can be checked by comparing the function value before and after a

simulation run. However, statistical fluctuations allow for those function evaluations to be

similar by chance. To have a robust check, the differences induced by many consecutive

runs should be taken into account. Since a change can be positive or negative, the average

of squares of the changes can be used as a measure for the evenness of the function. The

error of the function can serve as a value to compare against. However, the average change

should be much smaller than the error.

Algorithm 10 shows how a function value is calculated during our optimization process.
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It requires the definition of the integral length L, which is the number of change values

that are summed up after a new simulation run finished. In order to be able to sum them

up, function values are stored in a list C in line 7. For each parameter set ~r at least

L + 1 runs with m events are simulated, so that there are at least L function differences

available for the sum. Starting from the (L + 1)th run, the average square change s is

computed in line 10 and compared to the square of the function error multiplied by a

factor α� 1.

If s is smaller, the algorithm does not directly terminate. It rather requires L consec-

utive checks to succeed in that manner. Only if that happens, the function terminates

and returns the function value containing all simulation data.

6.3 Example Optimization Function

The precursor function introduced in the previous section can be extended to take into

account the thickness of the scintillator by choosing a threshold dependent on it. Assuming

that the WLSFs need a certain amount of light and that the transmittance of light inside
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Figure 6.5: Function evaluations during a GSS of the precursor function defined in this section with
color coded function values. The mass ratio φZnS was restricted to 1 – 6 and the thickness
d to 0.1 – 0.6 mm. GSS-result: φZnS = 3.83(9), d = 0.574(9) mm with a detection efficiency
of 12 %.
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the scintillator plate is governed by αl(x) defined in (A.4.3), one can define the threshold

as

Ec(d) = E0
c

d∫
0

dx h(x)

d∫
0

dx h(x) · αl(x)

, (6.3.1)

where d is the scintillator thickness, E0
c the energy required to create the amount of

light needed by the WLSFs, and h(x) the probability for a neutron event happening at

depth x defined by (A.4.6). The neutron attenuation length λn, which is needed for the

definition of h(x) and the neutron conversion efficiency of the scintillator plate, can be

calculated as (σηLi)
−1, where σ is the neutron capture cross section of 6Li and ηLi is its

nucleus density defined by (5.1.3). ηLi depends on the mass ratios, so the composition

will not only influence the function through the simulation of energy deposition, but also

through a change in h(x).

The function is defined by counting all grain box events, in which more than Ec(d) is

deposited in ZnS grains, dividing it by the total number of events and multiplying it by

the neutron conversion efficiency 1− exp(−d/λn). An estimate for the error is the square

root of the count multiplied by the same factors.

Figure 6.5 shows a GSS of the maximum of this function with scintillator thickness

0.1 mm < d < 0.6 mm and ZnS mass ratio 1 < φZnS < 6 as parameters, and the ar-

bitrary choice E0
c = 0.2 MeV. The GSS finds the maximum at φZnS = 3.83(9) and

d = 0.574(9) mm.

The algorithm shows a reliable increase in the function value for consecutive GSS it-

erations until the point where the difference in mass ratio becomes about 0.1. At these

parameter distances the statistical fluctuations mentioned earlier in this chapter begin to

dominate the variation of function values. It would require much more data in order to

reliably compare function values that close to each other. However, this is not necessary

for optimizing the detector. Scintillator plates are usually not manufactured with sev-

eral digits of precision in their parameters. Thus, a rough estimate of the maximum is

sufficient.

The error returned by the algorithm depends entirely on the required accuracy ε. This

may lead to unreasonable error estimations for very small ε because the algorithm does

not yet detect the strength of statistical fluctuations. As an improvement, the algorithm

could check for function values which strongly deviate from an interpolation estimate of

already calculated values and in such a case either terminate or increase the statistical
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requirements for function values.

In this example it might be advisable to check the validity of the result by performing

a further GSS around the maximum found in the first iteration. However, since this is

only a proof of concept, it has not been done.



Chapter 7

Further Simulation Results

7.1 Refractive Index of Binder Material in Random

Walk Process
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Fig. 7.1: Effective optical absorption length
λeff of the scintillator plate depending on the
binder refractive index nbinder. For each value
of nbinder, the optical transmission was sim-
ulated for several scintillator thicknesses, and
an exponential attenuation law was fitted to
the results. The error bars indicate the confi-

dence of the fit.

The refractive index nbinder of the binder ma-

terial is an unknown parameter of the ran-

dom walk model for photon propagation and

had to be guessed in Section 5.2. Since it

is unknown it might possibly be used as a fit

parameter for the model. To test this, optical

simulations with different values for nbinder

have been carried out. For each value of

nbinder several scintillator thicknesses d were

simulated in order to determine the effective

absorption length of the model via exponen-

tial fit.

These simulations used only the scintilla-

tor and photon counter modules. Primary

particles were 10 000 optical photons with

wavelengths sampled according to the LED

spectrum shown in Figure 5.5. The binder material was chosen to have an optical atten-

uation length of λbinder = 20 cm and a density of ρbinder = 1.58 g cm−3, which is the AST

binder density determined in Section 5.1.

Figure 7.1 shows the fit results to our simulations. While the fitted effective attenu-

ation length does depend on nbinder, the range of plausible values is 1.3 . nbinder . 2.2
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in which the effective attenuation length varies between 0.11 mm and 0.19 mm. Further-

more, the attenuation length seems to have a maximum of about 0.19 mm for nbinder ≈ 1.4,

which is the default value used in the other simulations. This maximum is close to the

measured value for ELJ scintillators, but there were not enough statistics in the mea-

surements of ELJ samples for it to give a reliable value. The much more reliable value

for AST scintillators, λl = 0.66(18) mm (see Section 5.2), is outside this range. There-

fore, variation of the refractive index of the binder material cannot explain the deviation

between measurements and simulations of the random walk model.

A reason for the maximum might be the optical similarity between binder material and

LiF grains (nLiF = 1.4 at 450 nm [14]). If nbinder = nLiF, the probability for reflection at a

binder/LiF boundary vanishes and the deflection angle upon “refraction” is zero. Thus,

the only light scattering component remaining is ZnS. With less scattering events, average

path lengths are shorter, and the effective attenuation length increases. This suggests

that a binder material should be chosen with a refractive index as close as possible to the

refractive index of LiF.

7.2 Variation of Grain Sizes

As mentioned in Chapter 4, the variation of the grain size of ZnS has already been

examined in [4]. However, the placement of LiF grains was not included in that model.

Therefore, starting points for alpha and triton pairs close to ZnS grains were more likely

than when considering the placement of a LiF grain first and placing alpha and triton

anywhere in it. For LiF grain sizes much smaller than the alpha particle’s range this effect

is not significant. However, typical grain sizes of LiF are of the order of 2 µm to 3 µm,

which is about half of the alpha’s range of about 5 µm [16].

Figure 7.2 shows the dependence of the average energy deposited in ZnS grains per

neutron event on the grain size of both grain types. While there exists a clear dependence

on both grain sizes, the influence is rather small. Varying one of the grain sizes between 3

and 9 µm while keeping the other one constant results in changes of about 10 % to 20 %.

Lower ZnS grain sizes were not examined due to the cubic dependence of the number

of grains on the inverse grain size and finding a valid placement for a large number of

grains is computationally expensive. The number of grains can be reduced by decreasing

the width and height of the grain box, but alpha and triton particles might get deflected

laterally and leave the grain box if it is too small.

Since the grain size of LiF is taken into account only for one sphere around the origin,

it is no problem to examine the behaviour for small LiF grain sizes. Figure 7.3 shows
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Fig. 7.2: Average amount of energy deposited
in ZnS grains for different grain sizes of ZnS and
LiF grains. Results were obtained from simula-
tions of the grain box module with ZnS/LiF ratio
2:1. For each point on a 1 µm × 1 µm grid 1000
events were simulated and the average energy cal-
culated. The space in between grid points was

interpolated bilinearly.
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Fig. 7.3: Average amount of energy deposited in
ZnS grains for LiF grain sizes smaller than 3 µm
and default ZnS grain size of 7.5 µm. The bars
indicate the root mean square deviation of the
distribution, the error is a factor 45 smaller since
each data point represents 2000 simulated events.
The linear fit shows that the average deposited
energy is decreasing for increasing LiF grain size.

the average deposited energy for small LiF grains at the default ZnS grain size of 7.5 µm.

The bars in the figure show the root mean square deviation of the distribution, not the

error of the average. Since each data point is backed by 2000 simulated events, the error

is smaller than the root mean square by a factor of
√

1999 ≈ 45.

A linear fit shows a very gentle slope of 0.07 MeV µm−1, which does not continue

beyond sLiF > 4 µm, as Figure 7.2 shows. For LiF of such a grain size, the alpha particle

leaves much of its energy inside its origin grain. Thus the probability that it reaches a

nearby ZnS grain to deposit energy there diminishes rapidly. Then the main contribution

comes from the triton particle, which is not heavily influenced by the size of the LiF grain

due to its longer range.

In conclusion, if the grain size of LiF is known to be about 2.5 µm, neglection of this

grain size in simulations can result in errors of the order of 10 % to 15 %. For detectors

based on a ZnS/LiF scintillator this is usually the case and thus the finite grain size should

be taken into account in all simulations.
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7.3 Influence of Variance in Grain Radii
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Fig. 7.4: Influence of the relative deviation of ZnS grain
size on the amount of energy deposited in ZnS grains in
a 4:1 scintillator. The left axis denotes the energy for
circles, the right axis denotes the fraction of events in
which no energy is deposited in ZnS:Ag for diamonds.
Bars for the amount of energy represent the root mean
square. With 20 000 events per data point, the error is
smaller by a factor of 140. Data points have been slightly
offset horizontally in order to increase readability. σ∗

ZnS

was varied between 0 and 0.5 in steps of 0.1, sZnS was
10 µm.

Another novelty in our model is

the variability of radii of individ-

ual grains. The radii are randomly

distributed according to a gamma

distribution with freely adjustable

expectation value and variance (see

Section 4.1.1). This enables us to

examine the influence of the vari-

ance of grain sizes on the energy de-

position in ZnS grains.

Figure 7.4 shows the results of

simulations where the relative ZnS

grain size deviation σ∗ZnS was var-

ied between 0 and 0.5 with a grain

size of sZnS = 10 µm. The influ-

ence on the average amount of en-

ergy deposited in ZnS grains does

not seem very high. However, the

energy changes from the maximum

1.73 MeV at σ∗ZnS = 0.1 to 1.61 MeV

at σ∗ZnS = 0.5, which is a difference

of 7 %.

The influence is mainly due to the increased number of events without energy deposi-

tion, as the diamonds in the figure show. That number increases from 1 % to more than

4 %. A reason for this effect might be that according to (4.1.7) the expectation value for

the volume of a sphere increases with increasing σ∗ZnS, so less spheres are placed in the

grain box such that the space between spheres gets larger.

It is peculiar that the maximum energy deposition does not occur at σ∗ZnS = 0. It may

be worth further investigation in order to verify the non-zero minimum. If it persists, it

would mean that a small variance in grain sizes is beneficial to the detection efficiency.
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7.4 Scintillation Efficiency of ZnS:Ag

One of the necessary input parameters of the G4VScintillation process is not known: the

absolute scintillation efficiency C of ZnS:Ag. In the measurements described in Section 5.3

a value for C/γ was obtained, but since the PMT was not calibrated, it is not possible to

determine γ and thus C.

Fortunately, measurements which determined the number of emitted photons have

been carried out for several scintillator samples in 1969 by Spowart [42]. However, during

these measurements single neutron events were not resolved. Instead, the photo current

resulting from the neutron flux was measured. Thus, only the average number of photons

per neutron event was determined. The results are shown in Table 7.1.

The value for 〈Nexit〉 given in [42] is directly proportional to the amount 〈N〉 of

photons passing through the photo cathode of the PMT. According to calculations in

that report, 45 % of the light exiting the scintillator is bound to the photo cathode, so

〈N〉= 0.45〈Nexit〉. Using the probability distribution pN(N) from (A.4.5), the theoretical

expectation for 〈N〉 can be calculated in a similar manner as in Section 5.3:

〈N〉=

∞∫

0

dN N pN(N)

=

d∫

0

dx h(x)

∞∫

0

dN
N

αl(x) · C pE

(
N

αl(x) · C

)

=

d∫

0

dx h(x)

∞∫

0

dE Cαl(x) · E pE(E)

= C

∞∫

0

dE E · pE(E)

d∫

0

dx h(x) αl(x)

= C〈E〉〈αl〉h

(7.4.1)

with αl(x) and h(x) defined as in (A.4.3) and (A.4.6), and pE(E) being the distri-

bution of energy deposited in ZnS grains approximated by simulations of the grain box

module. In the third step we substituted the integration over N by integration over

E = N/αl(x)C, which is the energy deposited in ZnS:Ag. The two integrals factor out

and can be performed independently of each other. The last step is a definition of two

expectation values 〈E〉 and 〈αl〉h.
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mass ratio scintillator neutron number of
ZnS/LiF/binder thickness attenuation photons emitted

factor per neutron hit
d[µm] 1− I/I0[%] 〈Nexit〉

2:1:1 730 48 59 000
2:1:1 250 16 157 000
3:1:1 220 15 174 000
6:1:1 210 8 157 000
1:3:1 230 37 47 000
1:6:1 230 41 27 000

Table 7.1: Scintillation efficiency of some samples as reported in [42]. The neutron attenuation coeffi-
cient was measured using a manganese foil, and the number of photons emitted were obtained
by measuring the photo current of a calibrated PMT mounted behind the scintillators in a
defined neutron flux. The light output differs across samples due to differences in mass ratios
and thicknesses.

0 1 2 3 4
0

0.2

0.4

0.6

E[MeV]

p
E

(E
)

Mass ratio
1:6:1
1:3:1
2:1:1
3:1:1
6:1:1

Fig. 7.5: Simulated probability distribution of the
amount of energy deposited in ZnS grains after a neu-
tron event for all different mass ratios mentioned in

Table 7.1.

〈E〉 can be obtained from simula-

tions of the grain box module with the

same mass ratios as in Table 7.1. The

ZnS grain size is set to 10 µm which

is mentioned in [42] to be the optimal

grain size. The other parameters are

left at the default values shown in Ta-

ble 4.1.

Even though the neutron attenua-

tion factor is given, we cannot reliably

determine the binder density in this

case. The formula for the binder den-

sity (5.1.4) requires the cross section

of a single 6Li nucleus, which depends

on the neutron energy. Since a ther-

mal neutron source without monochromator was used in [42] and the energy spectrum

of the source is not provided, the average neutron energy is unknown. The assump-

tion of monochromatic thermal neutrons (25 meV) yields binder densities in the range of

0.3 g cm−3 to 0.6 g cm−3. This value is much lower than that of common binder materials

which is why the more conservative default value of 1 g cm−3 was chosen. Simulation

results are shown in Figure 7.5.

For the calculation of 〈αl〉h the knowledge of attenuation lengths for neutrons λn and
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mass ratio scintillator energy photon scintillation
ZnS/LiF/binder thickness deposited transmission efficiency

in ZnS coefficient at λl = 0.41 mm
d[µm] 〈E〉[MeV] 〈αl〉 Cs[keV−1]

2:1:1 730 1.09 0.23 246
2:1:1 250 1.09 0.42 338
3:1:1 220 1.43 0.45 267
6:1:1 210 2.10 0.45 168
1:3:1 230 0.39 0.48 249
1:6:1 230 0.23 0.49 238

Table 7.2: Deposited Energy, photon transmission and scintillation efficiency for the configurations men-
tioned in Table 7.1. The latter two values were calculated at λl = 0.41 mm. This gives a mean
scintillation efficiency of C = 249 keV−1 and a root mean square deviation of ∆C = 55 keV−1.

photons λl is necessary. The former can be obtained from the attenuation factor 1− I/I0

and the sample’s thickness d:

I = I0e
− d
λn ⇔ λn =

d

ln(I0/I)
(7.4.2)

Under the assumption that all samples have the same optical attenuation length, one

can calculate the scintillation efficiency Cs for each sample s and calculate the mean C

as well as the root of the mean square deviation ∆C:
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Fig. 7.6: Relative standard deviation of the
absolute scintillation efficiency C of ZnS:Ag
depending on the effective optical attenuation

length λl.

C =
1

6

∑

s

Cs

∆C =

√
1

5

∑

s

(Cs − C)2

(7.4.3)

Figure 7.6 shows the relative standard de-

viation ∆C/C depending on λl in the range

of 0 mm to 1 mm, which shows a minimum at

λl = 0.41 mm. This means that this value for

the effective photon attenuation length is the

best fit for our data. At this optical attenu-

ation length the mean scintillation efficiency

becomes C = 249 keV−1 and the root mean square deviation ∆C = 55 keV−1.

This value seems very high, especially when compared to the value of 100 keV−1 for

gammas [43], and it is necessary to critically reflect on some of its aspects. One assumption
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that has been made is, that the effective optical attenuation length is the same for all

samples. However, as simulations in Section 5.2.3 suggest, increasing the fraction of ZnS

of a scintillator probably leads to a shorter optical attenuation length.

Another point to mention is the inconsistency of neutron attenuation length in Spowart’s

measurements for samples of equal mass ratios but different thicknesses. Using (7.4.2),

the attenuation lengths of the 2:1:1 samples in table 7.1 are 1.1 mm and 1.4 mm respec-

tively. Such a discrepancy of about 30 % also shows up for the values of the scintillation

efficiency Cs, as can be seen in table 7.2. So the relatively large variation in Cs may in

fact originate from these inconsistencies.

Further, since the photodetector was operated in current mode during the measure-

ments, single events could not be resolved. That is why only information about the mean

value and no information about the distribution of the number of photons per neutron

event were obtained.

However, our result is a first estimate of the scintillation efficiency of ZnS:Ag. In

conjunction with the effective optical attenuation length, it is suitable for simulations of

photons in a detector system using a ZnS/LiF scintillator.

A new measurement including a larger variety of sample configurations with well

known binder density, a monochromatic neutron source, and event based data collection

could address all problems discussed and combined with further simulations yield a much

more precise value for the scintillation efficiency of ZnS:Ag.



Chapter 8

Conclusion and Outlook

This work addressed the numerical simulation of a ZnS/LiF scintillation neutron detector

with WLSF readout. A model of the physical front end of this detector system was

developed and compared to experimental results and earlier models regarding such a

detector. The model was implemented in Geant4 and includes the description of the

scintillator’s microscopic grain structure and the propagation of photons in scintillator

plate and WLSFs.

Contrary to earlier models, the LiF grain size was included in this model in form of a

region around the starting point of alpha and triton particles, where placing ZnS grains

is not possible. It was shown that the variation of LiF grain sizes between 0 µm and 3 µm

leads to energy depositions in ZnS differing by 10 % to 15 %. This means that addressing

the LiF grain size in the model gives an advantage over models which treat the LiF/binder

surrounding as homogeneous.

Another enhancement of earlier models was allowing individual, random grain sizes.

Simulations with different variances of grain radii revealed that this parameter excerts

an influence on the average energy deposition of about 7 %. This is mainly due to an

increased average grain volume and consequently a reduction of the number of spheres,

which results in larger spaces in between the grains and leads to slightly more events

without energy deposition in ZnS:Ag.

Different parts of the model were validated independently against real measurements.

Measurements of neutron attenuation in several scintillator samples with different com-

positions and thicknesses were in good agreement with simulated values and showed an

average deviation of about 5 %. They also provided estimations for the binder densities

of scintillator samples of the manufacturers ELJ and AST.

The propagation of photons inside the scintillator plate was modelled by random

97
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virtual grain boundaries, at which optical processes occur, or interchangeably by an ex-

ponential attenuation law governed by an effective attenuation length. Simulations using

the random walk model indicate that the optical absorption of the scintillator plate de-

pends on the refractive index of the binder material and has a minimum when refractive

indices of binder and LiF are equal. In this case photons do not scatter at the very small

LiF grains and have straighter paths, which leads to a longer effective attenuation length

for photons, thus increasing the light yield of the scintillator.

Optical transmission measurements revealed that surface effects play an important role

for the photon propagation. Currently neither the random walk model nor the effective

model capture this effect. Further measurements of the scintillator’s reflectance might

reveal to what extent surface effects contribute to the attenuation of scintillator light.

The effective model reproduces the attenuation length for photons in the scintillator

up to a geometric effect. Simulations using the random walk model produce attenuation

lengths which roughly match the ELJ measurements with a deviation of 17 %, but are

too small to fit AST data. Results for varying the ZnS mass ratio indicate that the

attenuation length in fact depends on microscopic parameters and thus the results from

the measurements are not necessarily generalizable. An improvement of the random walk

process might be to override the default exponential step length distribution of Geant

with some finite distribution.

The validity of the grain box model could be shown by comparing neutron pulse

height statistics between measurements and simulations. Since the pulse height of an

event does not only depend on the amount of energy deposited in ZnS, but also on the

attenuation of light in the scintillator, the simulated distribution of deposited energy

had to be convoluted with the fraction of light exiting the scintillator after an event at

a certain depth. This analytically calculated function depends on the effective optical

attenuation length and the proportionality constant between ADC channel number and

energy as fit parameters. The latter value, which should be equal for all measurements,

shows a deviation of 20 % in the fit of one sample. The attenuation length varies by a

factor of 2 between measurements, which is more than simulations of the random walk

model indicates, but its absolute value is of the same order of magnitude as the values

obtained in the light transmission measurements. However, although the fit values show

these discrepancies, the form of the pulse height spectra could be reproduced very well

and have better χ2 test values than an exponential fit.

For the comparison of the full detector system including the WLSFs a position re-

construction algorithm for offline data based on cluster analysis was developed. In order

to form a cluster, Photons must be from the same WLSF layer and cannot have their
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timestamps differ by more than the maximum allowed time difference τ and their chan-

nels by more than the maximum channel difference nc. Two clusters from different layers

can form a neutron event, if they have enough photons and if the difference in starting

time does not exceed the coincidence time tc. The reconstruction algorithm was applied

to data from measurements with a prototype detector for SAPHiR, where neutron events

could clearly be distinguished from events probably caused by gamma radiation in fiber

bundles.

The algorithm is easily adaptable for online analysis of photon event data. In order

to increase the detection efficiency there is the potential for optimization of algorithm

parameters like τ, nc and tc. If very high counting rates are expected, the cluster finding

algorithm needs to be improved by introducing a maximum cluster length, or by splitting

up clusters when the amount of photons per time suddenly increases.

The application of the reconstruction algorithm to simulation results of the full detec-

tor system showed a distribution of cluster sizes and durations similar to those obtained

in the measurement.The previously unknown attenuation length of the outermost WLSF

cladding could be estimated by comparing the ratio of the number of photons in the first

WLSF layer in measurement and simulation. A value of 0.01 mm shows a good agreement

of the peak ratio of 80 % and explains a light loss factor of 78 %. With the photo cathodes’

quantum efficiency of 25 %, this results in a total efficiency of 5.5 %. However, the best

agreement between simulation and measurement is reached for an efficiency factor of less

than 0.05. This means, that there are still some photon losses unaccounted for, which

might be explained by surface effects in the scintillator or by a wrong estimation of the

scintillation efficiency. Determining these factors requires additional measurements.

Furthermore, an algorithm able to optmize multiple parameters of the model simulta-

neously has been developed. As a proof of concept, the scintillator thickness d and ZnS

mass ratio φZnS were optimized using an estimation of detector efficiency as optimization

function. Since the chosen function depends on an arbitrary assumption of detection ef-

ficiency of the WLSF readout, the result d = 0.574(9) mm, φZnS = 3.83(9) is not yet a

recommendation for the detector design.

The challenge of very long simulation times was met by choosing the GSS algortithm

for optimization, which requires only few function evaluations. How much simulation data

is required is determined by a function evaluation algorithm, which stops the simulation

as soon as it detects that further data only marginally influences the function value.

The scintillation efficiency of ZnS:Ag used in the full simulation was obtained by com-

parison to a measurement of the average number of photons per event exiting different

sample scintillators. A value of C = 249(55) keV−1 was found, which is very high com-
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pared to the gamma response of 100 keV−1 of ZnS:Ag given in the literature. The large

uncertainty might be caused by poor consistency of the neutron absorbtion rates pre-

sented in the measurement. The neutron attenuation lengths of samples with the same

ZnS/LiF/binder composition should be equal, but the measurements show a difference

of more than 30 % in two samples differing only in thickness. In order to improve the

reliability on our value for C, additional measurements are needed, which resolve the

distribution of the number of photons of single events.

Based on this work it will be possible to support the analysis of measurement data

of ZnS/LiF detectors with WLSF readout. By simulating detector systems of this kind,

the response to neutrons of different wavelengths can be estimated and used to correct

counting rates in the analysis. Also the dependence on the neutron’s position can be

examined, which is of special interest for detectors with loosely spaced WLSFs. However,

neutrons at the edge of the scintillator plate of any detector system might cause a different

channel-distribution of photons than neutrons at the detector’s center.

The model will also help new developments of scintillation detectors by optimizing

parameters of the model and of the reconstruction algorithm with regard to the applica-

tion’s needs. And, due to the modular structure of the model, it can easily be extended

to incorporate future designs.
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Appendix A

Calculations

A.1 Minimum Path Ratio in Outermost Fiber Cladding

n1

n2 xξr θ2

θ1

y

r

Fig. A.1: Undesired photon being reflected
at the outermost fiber boundary

In order to calculate the path length traversed

inside the outermost cladding of a fiber, it

is sufficient to consider a half period of the

path. A period in this context means the time

between two internal reflections at the fiber

boundary. Figure A.1 shows a half period of

an undesired photon for a single cladded fiber.

We are interested in the travel distance x in-

side the outer cladding with respect to the to-

tal fiber length y traversed. Simple geometric

consideration gives

x =
ξr

cos θ2

=
ξr√

1−
(
n1

n2
sin(θ1)

)2
,

y = (1− ξ)r tan θ1 + ξr tan θ2 = r sin θ1




1− ξ√
1− sin2 θ1

+
n1

n2
ξ

√
1−

(
n1

n2
sin θ1

)2


 ,

(A.1.1)

where we used Snell’s law and the trigonometric relation cos(arcsinx) =
√

1− x2.
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Then the quotient is simply

η :=
x

y
=

(sin θ1)−1

n1

n2
+ 1−ξ

ξ

√
1−
(
n1
n2

sin θ1
)2

1−sin2 θ1

. (A.1.2)
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Fig. A.2: Distance travelled in outer
cladding per fiber length as calculated in
(A.1.2) for n1 = 1.59 and ξ = 0.03. For n2

the two possible refractive indices of outer
cladding, PMMA and FP have been chosen.

The minimum of η is easier calculated nu-

merically than analytically. A plot of this func-

tion can be seen in Figure A.2. The minimal

path ratio clearly depends on the refractive in-

dices. In our case, the core has a refractive

index of n1 = 1.59 and the outermost cladding

has a refractive index of n2 = 1.49 or n2 = 1.42.

The minimum value for n2 = 1.49 is

ηmin ≈ 0.0429. (A.1.3)

Thus, if we assume the length of fiber lead-

ing back to the PMTs being 30 cm, there will

be photons which travel through the outermost

cladding for a total length of only 1.29 cm.

Helical paths do not need to be considered here, because a helical path would have an

increased x, while y stays the same. Thus, ηmin is the lower bound for the path ratio.

A.2 Volume and Mass Fractions in Heterogeneous

Materials

In a heterogeneous mixture of several materials, let VX ,MX , φX and ρX denote the total

volume, total mass, mass ratio and density of material X. In the case of a ZnS/LiF

scintillator, the different materials would be ZnS, LiF and the binder material. With the

definition of the mass ratios
(
MX = φX∑

φY
·M
)

we can express the volume as

VX =
MX

ρX
=

φX
ρX∑
φY
·M. (A.2.1)

The total density is then

ρ =
M

V
=

M∑
VX

=

∑
φX∑ φX
ρX

, (A.2.2)
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so that the volume fraction of each material is

VX
V

=
ρ · VX
M

=

φX
ρX∑ φY
ρY

. (A.2.3)

The mass ratios φX are usually provided by the manufacturer of a scintillator plate.

At room tempertature the density of ZnS:Ag is ρZnS = 4.09 g cm−3, that of unaltered

LiF 2.635 g cm−3. If the LiF is enriched in 6Li, the density is lowered due to the missing

neutron. The molecular mass of natural LiF is 25.94 [44], so the molecular mass of enriched

LiF is 24.94. This leads to a density of enriched LiF of ρLiF = 24.94/25.94 ·2.635 g cm−3 =

2.533 g cm−3. Different manufacturers use different binder materials, which may result

in different binder densities. This quantity is usually not mentioned in the scintillator

specifications, so it has to be determined experimentally.

A.3 Rotation of Basis Vector to Arbitrary Vector

Let n̂ be an arbitrary vector in R3 with Cartesian coordinates (n1, n2, n3)T and length√∑
n2
i = 1. We seek a matrix Ac(n̂), c ∈ {x, y, z}, which maps the basis vector êc to

~n. Without loss of generality we choose c = z and drop this index, since it is trivial to

obtain solutions for the other axes by rotation of matrix columns.

To keep lengths and angles unchanged, the columns of A need to form an orthogonal

system of basis vectors:

∑

i

Ail · Aik =

{
1, if l = k

0 otherwise
(A.3.1)

Three of the coefficients are easily determined by A · êz = n̂:

Ai3 = ni, for i ∈ {1, 2, 3} (A.3.2)

For the remaining 6 entries there are 5 independent equations of the form (A.3.1).

This means we are free to choose one of the entries and arbitrarily choose A13 = 0. Now

we name the coefficents of A:

A =




a c n1

b d n2

0 f n3


 (A.3.3)
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From a2 + b2 = 1 and a · n1 + b · n2 = 0 follows

a = ± n2√
n2

1 + n2
2

= ± n2√
1− n2

3

,

b = ∓ n1√
n2

1 + n2
2

= ∓ n1√
1− n2

3

,
(A.3.4)

where the circles around the plus/minus sign indicate that those two unary operators

depend on each other. This notation is necessary, because there will be further choices for

quadratic equations later on and it is necessary to keep track which ± signs are connected

to each other.

ac+ bd = 0 simplifies to cn2− dn1 = 0 which can be plugged into cn1 + dn2 + fn3 = 0

and c2 + d2 + f 2 = 1:

(n2
1 + n2

2)
c

n1

+ fn3 = 0

(n2
1 + n2

2)
c2

n2
1

+ f 2 = 1

⇒ f = ±
√

1− n2
3

⇒ c = ∓ n1n3√
1− n2

3

⇒ d = ∓ n2n3√
1− n2

3

(A.3.5)

It remains to make the two choices regarding the ± signs. We want a pure rotation,

which means we want the determinant of A to be positive. A simple calculation shows

that detA =
(
± 1

)
· (∓ 1)

!
= 1, which means that if we choose plus (the upper choice)

from ± , we also need to choose plus (the lower choice) from ∓ . The matrix then is

Az(n̂) =
1√

1− n2
3




n2 n1n3 n1

√
1− n2

3

−n1 n2n3 n2

√
1− n2

3

0 −(1− n2
3) n3

√
1− n2

3


 . (A.3.6)

A.4 Expectation of Light Intensity After a Neutron

Event

If a certain amount of energy is deposited in ZnS grains after a neutron event, it will cause

a flash of scintillation light with brightness proportional to the energy. So, the number of
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created photons due to scintillation can be estimated by an equation like

Nscint = C · Edep, (A.4.1)

Fig. A.3: Schema of the calculation:
A leftbound neutron is captured at dis-
tance x to the PMT-boundary. The
light ray emitted at angle ϑ is exponen-
tially attenuated along the distance of

l(ϑ) = x
cos(ϑ) .

where C is the absolute scintillation efficiency

of ZnS:Ag. How many of these photons reach the

surface and are then detectable depends on the

depth of the event because of self absorption in-

side the scintillator plate. So the cause for a flash

of certain brightness could be either an event close

to the surface, where little energy is deposited in

ZnS grains (i.e. few photons are created in the first

place), or an event further inside, where more en-

ergy is deposited. So the distribution of energy

deposited in ZnS grains is not necessarily of the

same shape as the pulse height spectrum observed

outside the scintillator.

Photons will take random paths through the

material in general, but we can model their prop-

agation as straight paths with exponential attenuation (see Section 4.2.1). Assuming a

schema as depicted in Figure A.3 one can calculate the fraction αl(x) of light, which

reaches the surface on the PMT-side after a neutron event at depth x. For a given angle

θ the light reaching the surface after exponential attenuation along l(θ) is exp (−l(θ)/λl),
where λl is the effective attenuation length for light. αl(x) is obtained by integration over

the half solid angle:

αl(x) =
1

4π

2π∫

0

dϕ

π
2∫

0

dϑ sin(ϑ) · exp

(
− l(ϑ)

λl

)
(A.4.2)

Using l(θ) = x/ cos(θ) and the substitution y = x/λlcos(θ), the integral can be sim-
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plified:

αl(x) =
1

2

∞∫

x
λl

dy
x

λl
y−2e−y

=
1

2


e−

x
λl − x

λl

∞∫

x
λl

dy
e−y

y


 ,

(A.4.3)

where in the last step we employed integration by parts. e
− x
λl is the usual exponential

attenuation and the remaining part is a geometric correction term. There is no analytical

expression for the integral, but it can be approximated via numerical methods. The

number of photons exiting the scintillator plate on the PMT-side is then

Nexit = αl(x) · C · Edep. (A.4.4)

There are two statistical processes. The first determines the probability h(x)dx of an

event happening at depth x and the second determines the probability pE(E) that the

energy E is deposited in ZnS grains. To find the distribution of the number of exiting

photons, one needs to integrate probability contributions over the whole depth of the

scintillator. (A.4.4) must be fulfilled for pE(E) and h(x) to contribute to the distribution

of exiting light pN(N), so the weight function must be a Dirac-delta function:

pN(N)dN =




d∫

0

dx h(x)

Emax∫

0

dE pE(E) · δ (N − αl(x) · C · E)


 dN

=




d∫

0

dx
h(x)

αl(x) · C · pE
(

N

αl(x) · C

)
 dN

(A.4.5)

We performed the integral over the energy because E occurs linearly in the delta

function, whereas x is included as a parameter to the not easily invertible function αl.

Therefore it would require some numerical effort to find the root with respect to x. Since

pN(N) describes the probability distribution for N photons exiting the scintillator and

scintillation photons have a similar wavelength, it is also a measure for the light intensity

spectrum.

It remains to determine the probability distributions h(x) and pE(E). The latter can
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be obtained by simulations of the grain box module described in Section 4.1 and the

former is calculated as follows. In Figure A.3 the neutron beam enters the scintillator

plate from the right at x = d. From there on the beam undergoes exponential attenuation

and its intensity reduces to exp(−d/λn) on the left, where λn is the neutron attenuation

length. Since the amount of events happening in a certain depth is proportional to the

beam intensity at that point, h(x) must be proportional to exp(−(d − x)/λn). The

proportionality factor follows from normalization:

h(x) =
1

λn

e−
d−x
λn

1− e− d
λn

(A.4.6)
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