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Chapter 1
Introduction

Global warming and rapid draining of oil are severe issues the world is facing
today. Therefore, research for renewable energy (solar energy, wind power,
biomass fuel, etc.) becomes more and more important. The utilization of
waste heat produced by industrial processes is a comfortable way to pro-
vide energy. It is not only environmentally friendly, but can also reduce the
greenhouse effect. Thermoelectric materials are used in thermoelectric de-
vices for utilization of waste heat. The thermoelectric devices can directly
convert temperature differences to electric voltage and vice versa. However,
their energy conversion efficiency (ca. 10%) [1] is relatively low compared
to traditional engines (e.g. the efficiency of a combined cycle power plant
is around 60%). In order to raise the efficiency of thermoelectric devices,
research for more efficient thermoelectric materials is required.

Transition metal silicides are cheap and environment friendly materials and
interested thermoelectric materials include FeSi2, CrSi2, Mn1.7Si2, CoSi and
Mg2Si based compounds. Their property of excellent mechanical and chem-
ical resistance make them interesting for application in high temperature
power generation [2, 3]. Three parameters of thermoelectric materials have
main impact on efficiency, i.e. Seebeck coefficient S, electrical conductivity
σ and total thermal conductivity κ (κ=κe+κl the sum of the electronic κe

and the lattice contribution κl, respectively). During this work, our focus
is on the determination of temperature dependent lattice thermal conduc-
tivity κl of two types silicide materials, i.e. n-type semiconductor material
Mg2Si0.4Sn0.6 and p-type semiconductor material MnSi1.85.

Using RUS we first measured the resonant frequencies of both thermoelec-
tric materials from room temperature to high temperature and then ex-
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tracted their elastic moduli using a computer program (based on Levenberg-
Marquardt algorithm). In order to take measurement at different set tem-
perature, development for a program to control temperature is also required.



Chapter 2
Thermoelectricity

This chapter presents a brief introduction to thermoelectricity and properties
of thermoelectric materials.

2.1 Introduction

Electricity generated directly from heat is known as thermoelectricity. This
thermoelectric effect, named and discovered in 1821 by German physicist
Thomas J. Seebeck, corresponds to the appearance of an electric potential if
junctions between conductors are placed in a thermal gradient.

In 1834 Jean-Charles Peltier reported the second of the thermoelectric ef-
fects. He discovered that when an electric current flows across a junction
heating or cooling of the junction takes place depending on the direction of
the current. Both the Seebeck and the Peltier effect occur only in junctions
between different materials [3].

In 1855 William Thomson (often referred to simply as Lord Kelvin) discov-
ered the connection between Seebeck and Peltier phenomena. He established
a relationship between the coefficients that describe the Seebeck and Peltier
effects by applying the theory of thermodynamics. His theory also showed
that there must be a third thermoelectric effect, which exists in a homoge-
neous conductor. The effect, known as the Thomson effect, describes that
in a single electric conductor subjected to a temperature gradient an elec-
tromotive force appears, and conversely, the electrical current resulting from
application of an emf is accompanied by a heat current [4].



4 Chapter 2. Thermoelectricity

All these discoveries have been used in devices using suitable thermoelec-
tric materials nowadays, e.g. thermoelectric generators (also called Seebeck
generators) which convert heat directly into electrical energy, thermoelec-
tric refrigeration devices (Peltier cooler) which pump heat using an electric
current and thermocouples in temperature sensors. These devices have undis-
puted advantages: absence of mechanical motion that significantly reduces
aging, the noiseless operation, and the absence of scaling effect [3]. But due
to the materials properties, the energy conversion efficiency is relatively low.
Therefore, research for more efficient thermoelectric materials is required. In
the next section we will talk about properties of thermoelectric materials and
discuss which parameters have impact on the efficiency.

2.2 Thermoelectric Materials

All materials show the thermoelectric effect, but in most materials it is too
small to be useful. Thermoelectric materials show the thermoelectric effect
in a strong or convenient form and thus can be used in thermoelectric devices.

Three factors have main effect on the performance of thermoelectric ma-
terials:

• The Seebeck coefficient S [unit V/K].

• The electrical conductivity σ [unit S/m].

• The total thermal conductivity κ (κ=κe+κl the sum of the electronic
κe and the lattice contribution κl, respectively) [unit W/(m· K)].

These three factors are usually incorporated in one material parameter

Z =
S2 · σ
κ

, (2.1)

where Z is called the figure of merit [unit K−1]. Because Z is tempera-
ture dependent, the dimensionless figure of merit ZT is more commonly used.
Efficient thermoelectric materials usually have Z > 0.003K−1 and ZT > 1 [1].

Ideal thermoelectric materials have a high value of ZT , which means that
the materials should have high values of Seebeck coefficient S and electrical
conductivity, but a low value of total thermal conductivity κ. To find such
a proper material is a quite complex problem, because the three factors are
not independent. For solid materials, S usually increases with decreasing σ.
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When the factor σ increases, the factor κ also increases. For instance, metals
normally have a high value of electrical conductivity σ, but according to the
Wiedemann-Franz Law κ = L·T ·σ (here L is the Lorenz number and T is the
temperature) [5], they will also exhibit a high value of thermal conductivity
κ. Therefore, the quest for high ZT materials is a great challenge nowadays.

In this work, the silicides Mg2Si0.4Sn0.6 and MnSi1.85 were chosen to investi-
gate because they are not only cheap and environment friendly, but also have
excellent mechanical and chemical resistance property which makes them in-
teresting for application in high temperature power generation [2].

2.3 Thermoelectric Generator

Thermoelectric generators, as indicated in section 2.1, are the devices that
convert wasted excess heat energy (temperature gradient) directly into elec-
trical energy. Figure 2.1 shows a typical thermoelectric module. To make a

Figure 2.1: A typical thermoelectric generator module.

thermoelectric generator, typically we connect many thermoelectric couples
of n-type and p-type thermoelectric semiconductors (Figure 2.2) electrically
in series and thermally in parallel.

Thermoelectric generators have many advantages: they contain no moving
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Figure 2.2: Construction of thermoelectric generator module. Figure taken
from [6].

parts, recycle wasted heat and operate quietly. But compared to traditional
engines they have lower efficiency. To find materials with good efficiency,
which means to find materials with high value of ZT , we have many aspects
to consider. One aspect is the determination of the temperature dependency
of lattice thermal conductivity κl which is the focus in this investigation.
How to find the relationship between κl and temperature? Well, with the
Debye model, the lattice thermal conductivity is given by

κl ≈
1

3
cvvsλph =

1

3
cvv

2
sτph, (2.2)

where cv is the lattice specific heat, vs the speed of sound, λph and τph the
phonon mean free path and mean free life time, respectively [3]. Because
the phonon mean free life stays almost constant as temperature changes, we
will try to investigate the change of speed of sound with temperature. In the
next chapter we will discuss how we solve this problem.



Chapter 3
Elasticity

Since the speed of sound in a material depends on the so called elastic ten-
sor of the material, its temperature dependence is reflected in temperature
dependent elastic constants. Before the method of how the elastic constants
can be experimentally accessed is described, the relationship between speed
of sound and elastic constants will be presented in this chapter.

3.1 Introduction

If we apply forces on a material, then a deformation will occur. If the defor-
mation does not exceed a certain limit, the material will return to the original
shape after being deformed. This property of material is called elasticity.

The physical reason for elastic properties is quite different for different mate-
rials. Basically, it is caused by interatomic forces acting on atoms when they
are displaced from their equilibrium positions. Figure 3.1 shows a typical
interatomic potential energy curve.
Using a Taylor series, the potential energy near the position r = r0 can be
written in the form of

U(r) = U0+
U ′(r0)

1!
(r− r0)+

U ′′(r0)

2!
(r− r0)

2+
U ′′′(r0)

1!
(r− r0)

3+ · · · . (3.1)

We take only the first 3 terms (further can be ignored) and at the equilibrium
position r = r0, U

′(r0) = 0, so we get

U(r) = U0 +
U ′′(r0)

2!
(r − r0)

2. (3.2)
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Figure 3.1: A typical binding curve has a minimum potential energy at the
equilibrium interatomic distance r0. Figure adopted from [7].

Using the relationship between force F and potential energy, i.e. F = −dU
dr
,

we obtain force F acting on an atom

F = −dU

dr
= −U ′′(r0)(r − r0), (3.3)

where U ′′(r0) is a constant. We define k = U ′′(r0) as an interatomic force
constant and u = r − r0 is the displacement of an atom from equilibrium
position. Thus, Eq. (3.3) can be written in the form F = −ku, which repre-
sents the simplest expression for the Hooke’s Law that shows the force acting
on an atom. For homogeneous and isotropic materials, the Hooke’s Law is
accurate enough to describe the relation between the forces and deformations
in a certain limit [8].

3.1.1 Stress

The definition of stress in mechanics is like pressure. In general, the force
per unit area, acting perpendicular to the surface is defined as the normal
stress and to the tangent of the surface is called shear stress. This is
shown in Figure 3.2, which is the general state of stress. We can write these
stresses in a form of σij. This means, the force is applied on ”i” face in ”j”
direction. Here obviously the normal stresses are components σxx, σyy, σzz

and the shear stresses are components σxy, σxz, σyx, σyz, σzx, σzy.
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Figure 3.2: Stresses acting on a cubic volume element of a material.

Since the body must be in equilibrium (resultant force R = ΣFi = 0 and
resultant moment MR = ΣMi = 0), we must have

σij = σji. (3.4)

These components at any point inside a material can be arranged in the form
of a matrix, which is called Cauchy stress tensor σ:

σ =



σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 . (3.5)

This matrix is symmetric because of σij = σji and will be used later.

3.1.2 Strain

As already indicated, when we apply force on an object, a deformation will
occur. For example, consider we have a straight bar with undeformed length
L0 (Figure 3.3) and we apply force on it. The normal strain is given by the
equation ε = ∆L

L0
. This equation is valid only if ε is constant over the entire

length of the bar. Now we consider an infinitesimal rectangle ABCD, which is
transformed to abcd (Figure.3.4). The displacement vector u depends on the
point (x, y). Here for point A(x, y) it has components ux(x, y) and uy(x, y)
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Figure 3.3: A straight bar with undeformed length L0

Figure 3.4: Two-dimensional geometric deformation of an infinitesimal ma-
terial element.

in x - and in y-direction, respectively. For the functions ux and uy, which
depend on the two variables x and y, we obtain

ux(x+ dx, y + dy) = ux(x, y) +
∂ux(x, y)

∂x
dx+

∂ux(x, y)

∂y
dy + · · · ,

uy(x+ dx, y + dy) = uy(x, y) +
∂uy(x, y)

∂x
dx+

∂uy(x, y)

∂y
dy + · · · .

Using these formulas, we now obtain the displacement of point B in x -
direction (higher order terms are neglected)

ux(x+ dx, y) = ux +
∂ux

∂x
dx,
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and displacement of point C in y-direction

uy(x, y + dy) = uy +
∂uy

∂y
dy.

After the deformation, side AB became ab. Since the deformation is very
small, we assume α � 1. So the length of ab is:

ab = x+ ux +
∂ux

∂x
dx− ux = dx+

∂ux

∂x
dx.

As indicated before, the normal strain in x -direction of the rectangular ele-
ment is defined:

εxx =
ab− AB

AB
=

dx+ ∂ux

∂x
dx− dx

dx
=

∂ux

∂x
.

Similarly, the normal strain in y- and in z -direction is εyy = ∂uy

∂y
and εzz =

∂uz

∂z
, respectively. Not only are the lengths of sides changed, but also the

angle between the sides. For instance, the change in angle between AB and
AC equals α+β and we have the geometric relations

tanα =
∂uy

∂x
dx

dx+ ∂ux

∂x
dx

=
∂uy

∂x

1 + ∂ux

∂x

,

tan β =

∂ux

∂y
dy

dy + ∂uy

∂y
dy

=

∂ux

∂y

1 + ∂uy

∂y

.

For small deformations, i.e. α, β � 1, εxx, εyy � 1, we obtain α = ∂uy

∂x

and β = ∂ux

∂y
. Finally, the total change of angle between AB and AC on x,

y-plane is γxy = ∂uy

∂x
+ ∂ux

∂y
, which is called shear strain. The subscripts

x and y represents that γxy describes the angle change in x, y-plane. By
interchanging x, y, ux and uy, it can be easily shown that γxy = γyx.
Similarly, the shear strain on x-z and y-z planes are

γxz = γzx =
∂uz

∂x
+

∂ux

∂z
,

γyz = γzy =
∂uz

∂y
+

∂uy

∂z
.

These components can be also organized into a matrix which is called strain
tensor ε:

ε =



εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


 =




εxx
1
2
γxy

1
2
γxz

1
2
γyx εyy

1
2
γyz

1
2
γzx

1
2
γzy εzz


 . (3.6)
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3.1.3 Elastic Constants

So far, we know the stress and strain tensors, and now the elastic constants
will be introduced. The elastic constants c relate the strain and stress in a
linear form

σij =
3∑

k=1

3∑

l=1

cijklεkl, (3.7)

where the subscripts 1, 2, 3 refer to x, y, z axes, respectively. The matrix c
in a most general form has 3×3×3×3 components, however, because of the
symmetrical form of σij and εkl, we only need to find 36 elastic constants.
Therefore we write the general form




σxx

σyy

σzz

σyz

σxz

σxy




=




c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66







εxx
εyy
εzz
εyz
εxz
εxy




. (3.8)

Here the convention to denote the elastic constants by cmn was used, where
m and n are defined as 1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz, 6 = xy and
of course due to symmetry 4 = zy, 5 = zx, 6 = yx. We see that all the 36
elastic constants are independent. For crystals, many of them are the same
due to symmetry restriction. For instance, in an orthorhombic crystal there
are 9 different moduli (c11, c22, c33, c12, c13, c23, c44, c55, c66); in tetragonal
crystal, there are 6 moduli. For other crystal systems, the elastic constants
are summarized in Table 3.1.

Table 3.1: Independent elastic constants for different crystal symmetries.
Compare [10].

Crystal class Number of cij List of elastic constants

Triclinic 21 All possible combinations
Monoclinic 13 c11; c12; c13; c16;c22; c23; c26;

c33; c36; c44; c45; c55; c66
Orthorhombic 9 c11; c12; c13; c22; c23; c33; c44;

c55; c66
Trigonal 6 or 7 c11; c12; c13; c14; c25; c33; c44;
Tetragonal 6 c11; c12; c13; c33; c44; c66
Hexagonal 5 c11; c12; c14; c44;
Cubic 3 c11; c12; c44;
Isotropic 2 c11; c44
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3.2 Propagating Stress Waves

Propagating stress waves are just elastic waves of various types such as longi-
tudinal, transverse, surface and more. Solids support such a variety of stress
waves, now we consider an elastic wave in a long, thin bar with cross-section
area A and density ρ (Figure 3.5). Look at a segment width dx at point x

Figure 3.5: A long thin bar of cross-section A and density ρ. Figure taken
from [8].

and the elastic displacement u. According to Newton’s Second Law we have

ρAdx
d2u

dt2
= F (x+ dx)− F (x), (3.9)

ρ
d2u

dt2
=

1

A

dF

dx
=

dσxx

dx
. (3.10)

Assuming that the wave propagates along the x-direction we obtain σxx =

c11εxx, where c11 is here Young’s modulus. Since εxx =
du

dx
, this leads to

d2u

dt2
=

c11
ρ

d2u

dx2
. (3.11)

which is the wave equation for a long, thin bar. A solution of the wave
equation has the form of a propagating longitudinal wave (each atom moves
parallel to the direction of the wave vector) [11]

u(x, t) = u0e
i(kx−ωt), (3.12)

where

vL =
ω

k
=

√
c11
ρ

(3.13)

is the Young’s modulus longitudinal speed of sound [8].
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Figure 3.6: A long thin bar of cross-section A and density ρ. Figure taken
from [8].

Similar analysis for transverse waves, in this case, we have

ρ
d2u

dt2
=

dσxy

dx
, (3.14)

where the shear stress σxy = c44εxy with εxy=
du

dx
. Therefore, we obtain the

wave equation
d2u

dt2
=

c44
ρ

d2u

dx2
(3.15)

and the solution for this propagating transverse wave is:

u(x, t) = u0e
i(kx−ωt), (3.16)

where

vT =
ω

k
=

√
c44
ρ
. (3.17)

is the transverse speed of sound [8].

Using equation
3

v3S
=

2

v3T
+

1

v3L
(3.18)

after a measurement of the elastic constants c11 and c44 we can calculate the
speed of sound and with equation (2.2), eventually we find the way to the
investigation of the lattice thermal conductivity κl dependent on the tem-
perature. Now we face a new question: how to measure the elastic constants
c11 and c44. We will talk about this question in next chapter.



Chapter 4
Resonant Ultrasound
Spectroscopy

As indicated before, we only have the last problem: how to measure the
elastic constants c11 and c44. In this chapter, we will introduce Resonant
Ultrasound Spectroscopy, an elegant method of measuring the elastic tensor
of a material.

4.1 Introduction

Resonant Ultrasound Spectroscopy (RUS) is a modern nondestructive eval-
uation technique for modulus measurements. It uses resonance frequencies
corresponding to normal modes of a vibrating elastic body to infer its elastic
constants. The samples are usually polished and made as a cube, paral-
lelepiped, sphere or short cylinder. If the dimensions and mass are given, the
complete elastic tensor can be inferred from a single measurement.

4.2 Measurement Principle

Figure 4.1 shows the classical experimental arrangement of RUS method. A
sample was lightly placed between two transducers. A frequency synthesizer
generates a wide range of frequencies and then the frequencies are emitted
from one simple piezo-electric transducer. So the first transducer excites an
elastic wave of a constant amplitude and varying frequency in the sample,
while the second is used to detect the sample’s mechanical response in an
ultrasonic frequency band. If the incoming generated wave matches a natural
frequency of the sample, it oscillates resonantly and a peak can be detected
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Figure 4.1: A schematic of classical experimental arrangement of RUS
method.

at this frequency. Then we find every single resonance frequency from a
measured spectrum (Figure 4.2). Calculation of the resonance frequencies of
a sample is possible if its mass, dimensions, and estimated elastic moduli are
known. Eventually, a computer program (based on the Levenberg-Marquardt
algorithm) can accurately extract elastic moduli by fitting the calculated
frequencies most closely to the measured resonance frequencies, which will
be discussed in the next section.

4.3 Data Analysis

So far, we have discussed how we measure a sample with RUS method, but
what is the principle of this data analysis of the RUS method actually?
In order to extract useful information (here the elastic constants) using RUS,
two steps are necessary:

• Computation of resonance frequencies of our sample.

• Fitting the computation to our experiment.

Unfortunately, a complete solution of this problem in an analytical form does
not exist. Thus, a non-analytic solution is required. Two methods could be
used for this computation and analysis:

• Finite-element methods.

• Energy minimization techniques.
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Figure 4.2: A spectrum of sample Mg2Si0.4Sn0.6 obtained by RUS at room
temperature, where x- and y-axis represent the frequency range and detected
signal amplitude, respectively. Here the frequency range is from 500 kHz to
1200 kHz.

Indeed minimization techniques are dominating the RUS method. From
classical mechanics, the general form of Lagrangian is written as

L =

∫

V

(Ek − Ep)dV, (4.1)

where Ek is the kinetic energy and Ep is the potential energy. For an elastic
solid with volume V bounded by a surface S with density ρ, elastic tensor
cijkl and a angular frequency of the normal modes ω, the kinetic energy and
potential energy are given by

Ek =
1

2

∑

i

ρω2u2
i , (4.2)

Ep =
1

2

∑

i,j,k,l

cijkl
∂ui

∂xj

∂uk

∂xl

, (4.3)

where every index runs over all 3 spacial directions and ui is the corresponding
component of the displacement vector. Using the variational principle, i.e.
δL = 0 with arbitrary δui in V and on S, we obtain the condition

ρω2ui +
∑

j,k,l

cijkl
∂2uk

∂xj∂xk

= 0 (4.4)
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which connects the resonance frequencies with the elastic tensor.

For further analysis, we expand the displacement vector ui in a series of
polynomial basis functions. Eventually, one can derive an eigenvalue equa-
tion in the form of

ω2E�a = Γ�a, (4.5)

where �a is a vector corresponding to the displacement vector in the chosen
basis and the two matrices E and Γ incorporate the corresponding terms of
the former equation (4.4). For further information, please see [9].

Given the density, dimensions, and initially estimated elastic constants, equa-
tion (4.5) can be solved by standard numerical techniques. The solution of
this eigenvalue equation gives the free-oscillation frequencies. So far, a sig-
nificant accomplishment is achieved, but the most powerful ability of RUS
method is then working backward to determine the accurate elastic constants
by continuously adjusting the elastic constants until the calculated resonance
frequencies match the experiment. During this investigation, the data analy-
sis program is based on [9] and more detailed information about the program
can be found in [9]. For a measurement of a polycrystalline rectangular par-
allelepiped sample, which we are working with, good fits have a root mean
square error (abbreviated RMS or rms) of less than 0.05%



Chapter 5
Experimental Setup

After we figure out how elastic constants can be measured, our work of mea-
surement should be moved into implementation now. This chapter provides
a detailed description about our experimental setup.

5.1 Apparatus and Materials

Since the elastic properties of a material depend on temperature, the pur-
pose of this investigation is to determine the elastic constants c11 and c44
of our samples from room temperature to a high temperature with a high-
temperature RUS measurement system. A good preparation of samples is
very important. In this investigation, we are interested in two different poly-
crystalline materials: p-type semiconductor material MnSi1.85 and n-type
semiconductor material Mg2Si0.4Sn0.6. Usually the samples are processed
into rectangular parallelepiped by cutting and polishing. Before we start
the measure measurement, we should also first check if the samples have
any visible defects. Figure 5.1 shows the picture of the high-temperature
RUS measurement system used during this investigation. The measurement
system contains a classical experimental arrangement of RUS method which
was described before in Chapter 4, a furnace which heats the sample in the
quartz tube from room temperature to high temperature and a temperature
measuring device. To reduce vibrational interference, a vacuum pump is also
required to create a vacuum environment for the sample. The essential parts
of this apparatus are the buffer rods, which transfer the ultrasonic signal from
the transducers to the sample. This is mandatory for high temperature mea-
surement, since the transducers could be destroyed otherwise. For further
details concerning this implementation please see [12] and for high temper-
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ature RUS please see [10]. The temperature of the sample was measured
suing a type-K thermocouple nearby the sample position. Furthermore, the
alumina discs, which can be seen in Figure. 5.1 (nearby the arrow denoting
“Quartz tube”) serve as heat shields.

Figure 5.1: High-temperature RUS measurement system used during this
investigation.
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5.2 Control Program

In this investigation, the graphical environment National Instruments Lab-
VIEW is used to control the furnace, i.e. to set temperature and record the
temperature measured by a type-K thermocouple.

LabVIEW is a system-design platform developed by National Instruments
and is commonly used for device control and data acquisition. The main
advantage of LabVIEW is its graphical programming language (usually is
called G programming language). Compared to general text-based program-
ming languages like C and Java, G programming language uses “connecting
wires” to connect graphical icons in block diagram and build up relationships
between them, so G code is easier to quickly learn and understand.

The program written in G programming language is called virtual instru-
ment which is most fundamental element of LabVIEW program. Dragging
and connecting graphical icons creates a virtual instrument and this can be
also used in other virtual instruments serving as sub-virtual instrument. An-
other characteristic of G language different from text-based programming
language is that its program is implemented linearly, which means that the
next command is implemented after the previous has been finished [11]. For
instance, we take a look at the block diagram of Keithley Read Temp (Figure
5.2). The flat sequence structure contains 5 frames and each frame contains

Figure 5.2: Block diagram of Keithley Read Temp.vi.

a graphical icon with different function. The first frame contains a case
structure. If the case is true, then a function of GPIB initialization will be
implemented. After the command in the first frame has been finished, the
command in the second frame is then executed. Here a DevClear function is
executed. It requires the address of GPIB device. If the address inputted is
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correct, the command in the third frame will be executed. It will continue
until the command in the last frame is finished. In the end, the program will
read data bytes from a GPIB device, i.e. the temperature will be read and
displayed.

For our program designed with LabVIEW, following aspects should be con-
sidered:

• We input a series of set temperatures, then the program will control the
furnace to reach corresponding temperatures and detect if the sample
temperature is constant.

• After the sample temperature is constant, monitor the temperature and
take a measurement.

• When a measurement is finished, continue and take next measurement
at next set temperature. Moreover,

Below is a calibration curve of the furnace used during this investigation.
From this figure, we see that after the temperature has been set, the sample

Figure 5.3: Calibration curve of the furnace.
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temperature increases quickly and then slowly decreases. It will take a long
time until the sample temperature is constant (here it is about 70 minutes.).
Therefore, in our investigation we take a measurement of the sample tem-
perature in every 10 minutes. We notice also that the sample temperature is
usually lower than the corresponding set temperature. Take a look at Figure
5.1, the quartz tube absorbs energy from the furnace while it radiates energy
to the room environment. So after equilibrium, its temperature should be
lower than furnace temperature and that’s why the temperature of sample in
the quartz tube is lower than the corresponding set temperature. Moreover,
the furnace temperature was actually measured closer to the set temperature
as compared to the sample temperature sensor.

In our program, which is used to detect and ensure the sample tempera-
ture stays constant, we take following steps:

• We measure the sample temperature T = T1s at time t = t1.

• After 10 minutes, we measure the sample temperature again T = T2s

at time t = t1 + 600 s.

• Compare T1s and T2s.

If the two temperatures are equal within a certain precision, which means
the temperature doesn’t change in this time interval, we conclude that that
the temperature is now constant. We take a measurement at this time and
record the sample temperature, then continue measuring until all measure-
ments are completed.

With these considerations, a flow chart (Figure 5.4) is designed. Follow-
ing this flow chart, we designed our computer program with LabVIEW.

Figure 5.5 shows the front panel of our program. In the frame of “Tem-
perature Control”, we can input a series of the set temperatures and see the
value of current set temperature. In the frame of “RUS Control” we can con-
trol the frequency range and number of data points. Because our measured
data should also be saved, so a data root directory is also designed. In the
frame of “Internal Data”, we can read the sample temperature. “Tempera-
ture 1” and “Temperature 2” show the sample temperature at different time
(here the time difference is t = 600 s).

In Figure 5.6 the actual LabVIEW implementation is shown. Key elements
are:
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1. The iteration of the different set temperature.

2. The check for constant temperature and record the data of time, tem-
perature.

3. RUS program as sub-virtual instrument.

5.3 A Test for Fused Quartz

Before the measurement of Mg2Si0.4Sn0.6 and MnSi1.85, we first took a test
measurement using a fused quartz sample at room temperature with dimen-
sions of 2.3 mm × 3.3 mm × 4.7 mm, density of 2.2 g/cm3 and estimated
elastic moduli c11 = 75 GPa and c44 = 33 GPa. We set the frequency range
from 500 kHz to 2500 kHz using 40000 data points. Using program (based
on the Levenberg-Marquardt algorithm) we obtained the results: elastic con-
stant c11 = 77.66 GPa and c44 = 31.12 GPa with an excellent RMS error of
less than 0.1%. Experimental and literature values [14] are in good agree-
ment. Thus, our setups works well.
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Figure 5.4: Flow chart for the control program. Here Ti is our set tempera-
ture. We first measure the sample temperature T = T1s. After 10 minutes
we measure the sample T = T2s temperature again.
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Figure 5.5: Front Panel of our program in this investigation.
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Figure 5.6: Block diagram of our program in this investigation.





Chapter 6
Results and Discussion

6.1 Measurement

In this investigation, we got 6 samples of n-type semiconductor material
Mg2Si0.4Sn0.6 and 3 samples of p-type semiconductor material MnSi1.85 pro-
duced by Fraunhofer IPM [15]. Before we started the measurement, we first
took several measurements for every sample with RUS at room tempera-
ture and analyzed their spectra. Selection criteria are resonance quality and
amplitude, which e.g. may be affected by inclusions or voids due to the
synthesis route. After selecting, we picked up sample #1 of MnSi1.85 with
dimensions 2.968 mm × 2.989 mm × 2.998 mm, density ρ = 4.775 g/cm3

and elastic moduli c11 = 280 GPa and c44 = 110 GPa and sample #2 of
Mg2Si0.4Sn0.6 with dimensions 3.049 mm × 3.041 mm × 2.997 mm, density
ρ = 2.914 g/cm3 and estimated elastic moduli elastic moduli c11 = 97 GPa
and c44 = 37.2 GPa (Figure 6.1) for our measurement.

Figure 6.1: Samples of n-type semiconductor material Mg2Si0.4Sn0.6 and p-
type semiconductor material MnSi1.85.
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For sample MnSi1.85, we take a frequency range from 500 kHz to 2000 kHz
over a temperature range from room temperature to 834 K in steps of 25 K
and use 30000 data points. For sample Mg2Si0.4Sn0.6, the frequency range is
from 500 kHz to 1200 kHz over a temperature range from room temperature
to 613 K in steps of 25 K and the number of data points is 20000.

6.2 Results

6.2.1 For p-type semiconductor material MnSi1.85

The resonant frequencies that could be detected from 500 kHz to 2000 kHZ
over the whole temperature range for the sample MnSi1.85 are shown in Fig-
ure 6.2. We can see that the resonant frequencies continuously decreased.
Moreover, during our investigation, it was difficult to determine the resonance
frequencies in high-temperature measurements. From the experimental point
of view, it is possible that samples and buffer rods slightly move due to ther-
mal expansion resulting in a worse mechanical contact between them and
usually, the strength of acoustic resonance of most materials becomes weaker
with increasing temperature. In these measurements, our fit RMS errors for
resonant frequencies were between 0.0688% and 0.1455%, which indicated a
reasonable result.

The decreasing values of resonant frequencies were directly related to the
determined temperature dependent elastic constants (see Figure 6.3) which
were calculated using the resonant frequencies as described in section 4.3.
With equation (4.4), we realize that if the resonant frequencies decreases,
the corresponding elastic moduli will also decrease. It is a typical conse-
quence of lattice softening [11]. For analysis, we take a look at harmonic
oscillator: an object with mass m connected to a spring with spring constant
k. We know its resonant frequency f = ω/2π with ω =

√
k/m. We realize

the spring constant k decreases with decreasing resonant frequency. Here k
is analogous to the elastic constant because in a solid-state model, the atoms
are bond together as if they are connected by springs. For insurance pur-
pose, we estimated the RMS error for elastic constants with 1% because the
fit RMS errors for resonant frequencies are not the real RMS errors for the
elastic constants.

Using equation (3.13), (3.17) and (3.18), we calculated the corresponding
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longitudinal and transverse speed of sound as well as the overall speed of
sound shown in Figure 6.4. Over the investigated temperature range, the
speed of sound decreased about 4%. Since the determined elastic constants
are quite close to the literature values for the monosilicide MnSi [16], the
data presented here are quite reasonable.

In general, the total thermal conductivity of higher manganese silicide is
expected to stay relatively constant from room temperature to about 900K
[17], which was also experimentally confirmed for this specific sample [15].
Therefore, the reduction of lattice thermal conductivity κl of about 8% (cal-
culated using equation (2.2)) due to the speed of sound reduction of 4%
must be compensated by most likely electronic thermal conductivity κe. In
any case, this investigation confirmed that the lattice contribution to the
temperature dependence of thermal conductivity is rather small.

Figure 6.2: Resonant frequencies of MnSi1.85 from room temperature to 834
K. In this investigation, 10 common resonant frequencies were found and
tracked throughout the temperature range.



32 Chapter 6. Results and Discussion

Figure 6.3: Elastic constants c11 and c44of MnSi1.85 from room temperature
to 834 K.

Figure 6.4: This figure shows the longitudinal speed of sound vL, transverse
speed sound vT and overall speed of sound vS from room temperature to 834
K.
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6.2.2 For n-type semiconductor material Mg2Si0.4Sn0.6

For the measurement of sample Mg2Si0.4Sn0.6, we selected a frequency range
from 500 kHz to 1200 kHz. Figure 6.5 shows the resonant frequencies that
could be detected over the whole temperature range from room temperature
to 613 K. In these measurements, our fit RMS errors for resonant frequen-
cies were between 0.0753% and 0.1639%, which indicated also a reasonable
result. The resonant frequencies of this sample decrease also with increasing
temperature. Therefore, as indicated before, its elastic constants should also
decrease which are shown in Figure 6.6. Using equation (3.13), (3,17) and
(3.18), we calculated the corresponding longitudinal, transverse and overall
speed of sound of this sample shown in Figure 6.7. Its experimental elastic
constants values at temperature are in very good agreement with literature
values of Mg2Si0.5Sn0.5 [18] and between the values of pure Mg2Si and Mg2Sn
[19, 20].

From results, the overall speed of sound vS reduced about 4% which means
the lattice thermal conductivity reduced about 8%. In general, a further
decrease of vS is expected but the total thermal conductivity κ increases
strongly above 600 K [15]. Therefore, in this case the electronic part of κ
must dominate the thermal transport.

Figure 6.5: Resonant frequencies of Mg2Si0.4Sn0.6 from room temperature to
613 K. In this investigation, 8 common resonant frequencies were found and
tracked throughout the temperature range.
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Figure 6.6: Elastic constants c11 and c44 of Mg2Si0.4Sn0.6 from room temper-
ature to 613 K.

Figure 6.7: This figure shows the longitudinal speed of sound vL, transverse
speed sound vT and overall speed of sound vS from room temperature to 613
K.
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Conclusions

In this work, we have presented an experimental method for investigation of
the temperature dependence of the lattice thermal conductivity κl at high
temperatures. To control the temperature and make it easy for our measure-
ment, a program was also developed in the lab during this investigation.

Using RUS, we measured the resonant frequencies of both silicides n-type
semiconductor material Mg2Si0.4Sn0.6 and p-type semiconductor material
MnSi1.85 from room temperature to high temperature. It is observed that the
resonant frequencies of both materials decreased with increased temperature.
Using the relationship between resonant frequencies and elastic constants, we
confirmed that the elastic constants of both materials also decreased with in-
creasing temperature. Eventually, we concluded that κl of both materials
decreases 8% throughout the temperature range.

The experiment setup works quite well at room temperature. But at high
temperature, it is hard to find resonant frequencies in the spectrum. There-
fore, improvement of our high-temperature RUS measurement system is still
required. We should improve the sensitivity of our transducers or give
more powerful signals to the samples. Upon this work, further work can
be also expanded. For instance, one can change the compositions of material
Mg2Si0.4Sn0.6 to Mg2Si0.3Sn0.7 and take a new measurement.

35





Appendix A
Spectra for Sample MnSi1.85
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Figure A.1: A spectrum of sample MnSi1.85 obtained by RUS, where x- and
y-axis represent the frequency range and detected signal amplitude, respec-
tively. Every peak represents a resonant frequency. Here the frequency range
is from 500 kHz to 2000 kHz and temperature T = 300 K.
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Figure A.2: A spectrum of sample MnSi1.85 obtained by RUS, where x- and
y-axis represent the frequency range and detected signal amplitude, respec-
tively. Every peak represents a resonant frequency. Here the frequency range
is from 500 kHz to 2000 kHz and temperature T = 540 K.
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Figure A.3: A spectrum of sample MnSi1.85 obtained by RUS, where x- and
y-axis represent the frequency range and detected signal amplitude, respec-
tively. Every peak represents a resonant frequency. Here the frequency range
is from 500 kHz to 2000 kHz and temperature T = 834 K.



Appendix B
Spectra for Sample
Mg2Si0.4Sn0.6
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Figure B.1: A spectrum of sample Mg2Si0.4Sn0.6 obtained by RUS, where
x- and y-axis represent the frequency range and detected signal amplitude,
respectively. Every peak represents a resonant frequency. Here the frequency
range is from 500 kHz to 1200 kHz and temperature T = 393 K.
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Figure B.2: A spectrum of sample Mg2Si0.4Sn0.6 obtained by RUS, where
x- and y-axis represent the frequency range and detected signal amplitude,
respectively. Every peak represents a resonant frequency. Here the frequency
range is from 500 kHz to 1200 kHz and temperature T = 516 K.
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Figure B.3: A spectrum of sample Mg2Si0.4Sn0.6 obtained by RUS, where
x- and y-axis represent the frequency range and detected signal amplitude,
respectively. Every peak represents a resonant frequency. Here the frequency
range is from 500 kHz to 1200 kHz and temperature T = 613 K.
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trum Jülich, 2010.

[4] H. J. Goldsmid. Introduction to Thermoelectricity. Springer-Verlag
Berlin Heidelberg, 2010.

[5] William Jones and Norman H. March. Theoretical Solid State Physics.
Courier Dover Publications, 1986.

[6] Thermoelectric Generators, Washington State University.
http://e3tnw.org/ItemDetail.aspx?id=278, last access on 03.01.2014.

[7] F. A. Carey. On-Line Learning Center for “Organic Chemistry”.
McGraw-Hill Companies.

[8] E. Y. Tsymbal. Physics-927: Introduction to Solid State Physics Uni-
versity of Nebraska-Lincoln.
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